中速磨煤机电液比例变加载技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磨煤机是制粉系统中的重要设帑,其磨煤质量的好坏直接关系到锅炉设备的燃烧率和使用效率。在磨煤生产的实际过程中调压系统大多是采用传统的液压系统,而压力也不能根据实际的需要进行连续的控制,造成了生产实际中能源的严重浪费。
     针对上述问题,本课题结合磨煤机对实际情况的需要,在对物料的粉碎方法及LM18.20磨煤机的粉碎特点进行分析的基础上,对辊式磨煤机的粉碎机理进行了研究;分析研究了磨辊与磨盘的切线速度差、料层“拥包”现象及料层的涡流现象等方面对LM18.20磨煤机煤坛运动的特性影响研究了料层运动对磨辊磨损的影响结合LM18.20从理论上对磨辊的受力和力学模型进行了除步分析,由于LMl8.20磨煤机的磨辊的形状特点及料层分知的复杂性,磨辊与料层的碾压区域的压力分布呈非均匀性;在此基础上对LM18.20磨煤机的电液比例调压系统进行了原理设计,以满足制粉系统埘压力连续性的需要,同时分析了电液比例系统的含义、组成和特点等,比较了比例阀和伺服阀的特点,研究了比例调压系统的可行性。文章通过压力和流量等方程对液压主要元件(比例溢流阀和液压缸)建立数学模型,通过分析磨煤机对实际工况的需要,计算得到各个主要元件的参数,并进行选型。
     把计算和样本中得到的参数,代入到已建立的数学模型中。并在MATLAB仿真软件Simulink中搭建仿真框图,进行仿真。通过仿真得到比例调压系统的动态和稳念响应,经过分析和观察可以得山,所设计的比例训压系统是以个不稳定的系统,而且动态响应也达不到要求。
     针对系统的不稳定,采用了PID校正,并对PID控制器进行设计,通过仿真得到PID校正后系统的动态和稳念响应,可以看到还是不能满足系统指标的要求。最后用临界比例度法对PID控制参数进行整正,通过试筹法逐个的调节控制参数,最后得到了比较理想的PID控制参数,并通过动态和稳态响应分析,得到满足系统实际需要的稳定余度和动态响应性能指标。仿真结果表明:所设计的比例调压系统经过PID控制参数整正后响应快、超调量小、阶跃响应平稳、稳定余度大、可以实现对压力连续平稳的控制,能满足系统实际工作的需要。
     文章同时还用AMESim软件对LM18.20磨煤机电液比例加载系统进行了仿真研究。
     本项目的实验表明:将加载系统改造为电液比例变加载系统后,降低了由于煤层厚度和煤质变化引起的振动;摹本消除了磨煤机在低出力运行工况时振动的大问题;磨煤机的出力范刚扩大到25-100%;增大了磨煤机出力范围;实现了磨煤机全负载范围内负荷与碾压力的最佳匹配,使磨煤机的碾磨力随磨煤机的负载同步变化,降低了单位能耗;减小了磨煤机磨损件模损速率
     本文的研究和实验成果,为实现液压变加载系统的控制提供理论参考。
Coal pulverizer is the important equipment in coal pulverizing system, the quality of coal mill is directly related to boiler equipment's the combustion rate and efficiency. Regulating system mostly use traditional hydraulic system in the actual production of coal milling process, and the pressure can't be Continuously controled according to the actual needs, it caused serious waste of energy in practical production.
     In view of the above questions, the subject combine the needs of the coal pulverizer to the actual situation, electro-hydraulic proportional pressure system is designded to satisfie the needs for continuous pressure of pulverizing system, analyse the consitution、meaning and characteristics of the electro-hydraulic proportional system, compare the proportional valve and servo valves, and propose the feasibility of the system pressure ratio. At the same time, hydraulic major components (proportional relief valve and hydraulic cylinder) are established the mathematical model through the pressure and flow equations, the needs of the coal pulverizer to the actual situation are analysised, the parameters of the main components are calculated and the models are selected.
     The parameters of calculation and the sample are put into the mathematical model. The simulation diagram is set up under simulink in the simulation of MATLAB software, and the simulation is done. The static and dynamic response of the regulating system proportion are obtained, the proportion of regulating system is an unstable system and dynamic response is not reach the requirements,which can be obtained through analysis and observing.
     PID calibration is adopted to solve the unstable system, and the PID controller is designed, the static and dynamic response of system dynamic PID after correction are obtained, it still can not meet the requirement of system through observing the simulations. At last, the parameters of PID controler are adjusted useing the critical ratio methodthe, the parameters is adjusted through the test method, finally the ideal PID control parameters are got, the static and dynamic response of system sastisfied the requirement of system. Simulation results show that the design of regulating system through the proportion of PID control parameters after correction have the advantages of fast responsing, small overshoots, smooth step responsing, stability degree and smooth pressure controling, continuous, it can meet the needs of system.
引文
[1]李惠人 中速磨煤机.北京:中国电力出版社,1980, 1-5.
    [2]贾鸿祥 制份系统设计与运行.北京:水利电力出版社,1995,60-75
    [3]叶江明 电厂锅炉原理及设备.北京:中国电力出版社,2006,43-152
    [4][4]昌桂新 建材工业经济运行情况及明年形势展望:(2008-12-6)
    [5]范从振 锅炉原理.北京:水力电力出版社,1986,2-15
    [6]容銮恩,袁镇福,刘志敏,田子平 电站锅炉原理.北京:中国电力出版社1997,20-42
    [7]中华人民共和国电力行业标准 电站磨煤机及制粉系统选型导则.DL/T466-2004,1-5.
    [8]秦玉成,谢金萍,李海军。立式磨机的发展与应用[J]焦作大学学报,2003,2(04):71-72
    [9]郑学全,刘成,刘先荣 立磨的历史及在我国的的发展现状[J]。四川建材,2003,(05):3-4。
    [10]吴建明 国际粉碎工程领域的新进展[J]有色设备,2007,(01):4-7。
    [11]schonert,K.Interparticle Breakage of Very Fine Meterials by Altermating Crosswise StressingWith a High Pressure Sydney:The Australasin Institute of Mining and Metallurgyl993[C].
    [12]Coll,C.Hunisch,J.Energy an ration in particle bed cornrnution.Proceeding 6th Europ,1989[C],130.
    [13]kanta,Y.Abe,Y.Honma T.A consideration of ultrafine grinding based on experimentalResult of sirgle particle grushing [J].PTechnology,1989,58:137-143.
    [14]编委会2006版火电厂磨煤机与制粉系统设计与应用百科全书.北京:中国电力电子出版社,2006,1-10,86-143
    [15]梁婕,梁三定(编译)国外粉磨技术及其装备的发展[J]。粉磨技术,2004,(06):22-25。
    [16]韩仲琦 水泥厂立磨技术与设备(中)[J]。水泥,1996,(05):11-14。
    [17]MPS5000B操作手册
    [18]程琛 盘辊式磨粉机加载系统的动态特性分析与研究[D],郑州大学学报,2005(2)。
    [19]程琛,马胜钢 盘辊式磨粉机液压加载系统的理论分析与试验研究[J]。矿山机械,2005,33(04):29-31。
    [20]Schubert,H.Bruchwachwahrcheinlinchkeit,Bruchstuckgrobenverteilung and energieausnut zung bei der prallzerklein erung[J].Aufbereitungs Technik,1990,5:241-247
    [21]赵云龙,程深,马胜钢磨粉杨恒压加载系统动态建模与仿真研究[J]。矿山机械,2005,33(7):35-37。
    [22]王芳,程琛,马胜钢.盘辊式磨粉机液压加载系统关键结构参数址佳匹配的研究[J]矿山机械.2006,34(7):21-23
    [23]李继海 立磨工况参数的控制[J].中国水泥2002,12(12):60-62.
    [24]李光文 MPS、立磨系统的稳定运行[J].水泥工程,2003(5):45-48.
    [25]董战锋 关于立磨振动的分析[J]。水泥技术,2006,(06):60.
    [26]E.J.Klovers,Energs with roller mills[J].Zement-Kalk-Gips,1979(32):24-29.
    [27]P.Tiggesbaeumker,O.Knobloch.Finish grinding in the roller mill-developments and Prospects[J].Zement-Kalk-Gips.1979(32):166-170.
    [28]T.lshikawa,T.Kogc,H.Nomura,Raw matarial grinding equipment(UBE Loesche Mill)[J].Transaction of the JSIM,1982:10-13.
    [29]L.T.Schneider,L.Lohnher.G.Gudat,Roller mills for high capacities and dif cult material[J] Zement-Kalk-Gips,1985(38):705-708
    [30]王占林 近代电气液压伺服控制.北京:北京航天航空大学出版社,2005,1-11.
    [31]苏东海,任大林,杨系兰.电液比例阀与电液伺服阀性能比较及前景展望.液压气动与密封,2004(4):1-2
    [32]许益民 电液比例控制系统分析与设计.北京:机械工业出版社,2005,1-5.
    [33]江建晓 电液比例控制技术及在自动液压压砖机中的应用.陶瓷,2001,03(4):34-37
    [34]李军,张爱玲电液比例技术在工业领域的应用.机械工程与自动化,2008,04(3):177-179
    [35]蒙争争电液比例控制技术在快速深拉伸液压机中的应用.合肥工业大学学报,2006,0l(4):69-72
    [36]Ke Li, M.A. Mannan, Mingqian Xu. Electro-hydraulic proportional control of twin-cylinder hydraulic elevators. Control Engineering Practice 9 (2001):367-369
    [37]陈刚,朱石沙,王启新电液控制技术的发展与应用.机床与液压,2006(4):2-3
    [38]路甬祥,胡大纥 电液比例控制技术.北京:机械工业出版社,1988,216-240
    [39]Peter D.Hydrautulic control systems desigan and analysis of their dynamics New York:Springer Verlag,1997,16(4):61-64
    [40]魏巍MATLAB控制工程工具箱技术手册.北京:国防工业出版社,2004,11-89
    [41]编委会2006版火电厂磨煤机与制粉系统设计与应用百科全书.北京:中国 电力电子出版社,2006,1-10,86-143
    [42]宋志安基于MATLAB勺液压伺服控制系统分析与设计.北京:国防工业出版社,2007,5-7
    [43]sehonert,K.Interparticle Breakage of Very Fine Meterials by Altermating Crosswise Stressing With a High Pressure Sydney:The Australasin Institute of Mining and Metallurgy1993[C].
    [44]Coll.C.Hunisch,J.Energy an ration in particle bed cornrnution.Proceeding 6th Europ, 1989[C],130.
    [45]kanta,Y.Abe,Y.Honma T.A consideration of ultrafine grinding based on experimental Result of sirgle particle grushing [J].Power Technology,1989,58:137-143.
    [46]刘长年 液压伺服系统优化设计理论.北京:冶金工业出版社,1989,112-1 88
    [47]顾瑞龙 挖制理论及电液控制系统.北京:机械工业出版社,1984,74-93
    [48]J.-C.Renn, C. Tsai. Development of an unconventional electro-hydraulic proportional valve with fuzzy-logic controller for hydraulic presses[J]. The International Journal of Advanced ManufacturingTechnology,2005,26(7):10-16.
    [49]T.Ishikawa,T.Koge,H.Nomura,Raw matarial grinding equipment(UBE Loesche Mill)[J].Transaction of the JSIM,1982:10-13.
    [50]张利平液压控制系统及设计.北京:化学工业出版社,2006,24-57
    [51]陶永华新型PID控制及其应用(第二版).机械工业出版社,2002,1-2
    [52]范咏峰,李平浅析PID参数整定.中困仪器仪表,2002,(3):25-27
    [53]朱昆泉建材机械工程手册[M],武汉;武汉工业大学出版社,2000.
    [54]许林发建筑材料机械设计(一)[M],武汉工业大学出版社,1990
    [55]孟宪红关于粉碎、超细粉碎理论的实验研究新进展[J]。中国矿业,1996,(01):51-56.
    [56]Apling,A,Bwalya,M-Evaluationg High Pressure Milling forLiberation Enhancement andEnergy Saving[J].MineralsEngineering,1997,10(9):1013-1022.
    [57]刘金琨先进PID控制MATLAB仿真(第二版).北京:电子工业出版社,2004.9,86-116.
    [58]高压辊磨机工作机理研究及磨辊强度有限元分析[D]长春:吉林大学,2003:15-15.
    [59]Fang FANG, Jizhen LIU, Wen TAN. Nonlinear inversion-based output tracking control of a boiler-turbine unit[J]. Journal of Control Theory Applications, 2005(4):415-421.
    [60]贾建民,齐纪渝,谢敬学MPS中速磨煤机磨辊磨损机理研究[J],华北电力大 学学报,1998,25(04):88-91.
    [61]黄永强,郭培政MPS中速磨煤机磨辊磨损失效探讨[J]。内蒙古电力技术,1998,(04):12-15.
    [62]李冰,焦生杰 压路机选型及压实投术[M],北京:人民交通出版社,2001:91-105
    [63]牛海峰,沈玉红 MPS型中速磨煤机磨辊的磨损分析[J],黑龙江电力,1995,17(01):10-14.
    [64]杨士敏 压路机作用下上应力分析及对压实效果的影响[J],筑路机械与施工机械化,1994,11(6):10-13
    [65]李欣,王国强 辊压机 主要工作参数的确定[J],中国水泥,2003,7:23-26.
    [67]李冰,焦生杰 压路机选型与压实技术[M],人民交通出版社,2001:91-105
    [68]王启广,叶平 现代设计理论[M],中国矿页大学出版社,2005:131-133.
    [69]Unland,G,Wang,G,Model of high pressure roll mills-Aphenomenological-mathematical Approach[J].ZKG International,1998,51 (11):600-617。
    [70]西北工业大学,机械设计[M],北京:人民教育出版社,1978:512-514.
    [71]Xiaobin Ji,Xueyi Qi,Yonghe Feng,Yang Zhang:Performance Calculation of mill hydraulic loading system,AdvancedMaterialResearch Vols.479-481 (2012)
    [72]Jian Lin,Analytical Investigation of Planetary Gear Dynamics[D],the Ohio State University,2000.
    [73]薛定宇控制系统计算机辅助设计MATLAB语言及应用[M],北京:清华大学出版社,1997.
    [74]陈宏亮,李华聪AMESIM与Matlab/Simulink联合仿真接口技术应用与研究[J].流体传动与控制,2006(1):14-16
    [75]Xiaobin Ji,Xueyi Qi,Tianhong Song,Aijun Li,Gangyong Zuo:The Application of Electro-hydraulic Proportional Technology in Mill Loading System, Advanced Materials Research Vol.339(2011) pp157-162
    [76]Xiaobin Ji,Queyi Qi,Guobin liang,Tianhong Song,Jinbao Liang: The Optimization Design and experimental research of Electrohydraulic Proporti onal Technology in Mill Loading System,Energy Education Science and Technology Part A-Energy Science Research(ISSN 1308-772X),2012
    [77]Ahmet,Kahraman.Free Torsional Vibration Characteristics of Compound Planetary Gear Sets[J], Mechanism and Machine Theory,2001(36):953-971.
    [78]Romil pramod tanna.Dynamic chatacteristics of ring-torm structures with emphasis on Antomotive transmission ting gear vibrations[D],University of Alabama,2002.
    [79]郁凯元,龙英文具有Windows界面的液压动态仿真软件DSHW[J]。液压与 气动,2002,(1):15-17.
    [80]李谨,邓卫华AMESIM与Matlab/Simulink联合仿真技术与应用[J].情报指挥控制系统与仿真技术,2004,26(5):61-64
    [81]管忠范 液压传动系统.北京:机械工业出版社,2006,149-156
    [82]亲文强 液压缸.设计计算与生产制造、装配修理新工艺新技术及最新技术标准规范实务全书.北京:北方工业出版社,2007,12-83
    [83]黎启柏 液压元件手册.北京:冶金工业出版社,2000,193-215
    [84]张利平 液压元件及选用.北京:化学工业出版社,2007,428-429
    [85]顾文卿 电站磨煤机与制粉系统设计选型性能检测及通用标准规范实务全书.北京:华北电力出版社,2005,102-153
    [86]王勇亮,齐丽君,梁建民位移传感器在六自由度运动平台的应用.传感器技术,2003,22(4):l-2
    [87]Du H L,Nair S S.Dynamic simulation of a large hydralic capsule Engineers,1997,16(4):61-66
    [89]何存兴 液压原件.北京:机械工业出版社,1998,12-18
    [90]Peter D. Hydraulic control systems desigan and analysis of their dynamics. New York:Springer Verlag,1986,34-45.
    [91]王红艳,沈建伟,戴学丰 基于比例电磁铁的小力值发生装置应用研究.液压与气动,2006,12(4):51-54
    [92]李其朋,丁凡 比例电磁铁行程力特性仿真与实验研究.农业机械学报,2005,02(3):88-90
    [93]Xiaobin Ji,Xueyi Qi,Jianjun He,Yongli Wu:The Optimization Design of Mill Hydraulic Loading System, Advanced Materials Research Vols.468-471(2012) pp1207-1210.
    [94]杨军宏,尹自强,李圣怡 阀控非对称缸的非线性建模及其反馈线性化.机械工程学报,2006,05(7):203-207
    [95]黄卉 关于比例阀控非对称缸系统的建模问题.机械设计与制造,2000,04(3):43-45
    [96]Ke Li, M.A. Mannan, Mingqian Xu. Electro-hydraulic proportional control of twin-cylinder hydraulic elevators. Control Engineering Practice 9 (2001):367-369
    [97]吴根茂,邱秀敏,王庆丰:史用电液比例技术.浙江:浙江大学出版社,1993,52-64
    [98]黄忠霖 控制系统MATLAB计算及仿真.北京:国防工业出版社,2001,4-7
    [99]魏克新 王云亮,陈志敏等MATLAB语言与自动控制系统设计(第二版).机械工业出版社,2004,94-96
    [100]魏巍MATLAB控制工程丁具箱技术手册.北京:国防工业出版社,2004, 11-89
    [101]编委会.2006版火电厂磨煤机与制粉系统设计与应用百科全书.北京:中国电力电子出版社,2006,1-10,86-143
    [102]宋志安 基于MATLAB的液压伺服控制系统分析与设计.北京国防工业出版社,2007,5-7
    [103]谢仕宏MATLAB R 2008控制系统动态仿真实例敎程.北京:化学工业版社,2008,337-338
    [104]范影乐.杨胜天,李铁MATLAB真应用详细.北京:人民邮电出版社.2001,195-317
    [105]Lauri Laitinen, Klaus Heiskanen, Jyrki Kajaste. Frictional Phenomena in Water Hydraulic Cylinder at Low-pressure Levels[C]. The 8th Scandinavia International Conference on Fluid Power. SICFP,2003.
    [106]http://www.bath.ac.uk/
    [107]http://www.fluidon.com/
    [108]http://www.amesin.com/
    [109]http://www.biog.163.com/ty-lsp/blog/static/1444530520096269355175/
    [110]http://www.matlab.com/
    [111]刘长年液压伺服系统优化设计理论.北京:冶金工业出版社,1989,112-188
    [112]顾瑞龙控制理论及电液控制系统.北京:机械工业出版社,1984,74-93
    [113]J.-C.Renn, C. Tsai. Development of an unconventional electro-hydraulic proportional valve with fuzzy-logic controller for hydraulic presses[J]. The International Journal of Advanced ManufacturingTechnology,2005,26(7):10-16.
    [114]陶永华新型PID控制及其应用(第二版).机械工业出版社,2002,1-2
    [115]范咏峰,李平浅析PID参数整定.中国仪器仪表,2002,(3):25-27
    [116]王正林,王胜开,陈国顺MATLAB/Simulink与控制系统仿真(第二版).北京:电子工业大学出版社,2008,216-234
    [117]Antonio Visioli. A new design for a PID plus feedforward controller. Journal of Process Control,2004, (14):457-458.
    [118]A strom K J, Hagglund T, Hang C C,etc. Automatic tuning and adaptation for PID controllers-A survey. Control Eng. Practice,1993,1 (4):712-714
    [119]G. P. Liu, S. Daley, Optimal-tuning PID control for industrial systems, Control Engineering Practice 9 (2001):1185
    [120]刘金琨 先进PID控制MATLAB仿真(第二版).北京:电子工业出版社,2004.9,86-116.
    [121]Imagine company.AMESim user manuai[M],Version4.0,France:Imagine S.A,2002.
    [122]秦家升,游善兰AMESim软件的特性及其应用[J].工程机械,2004(12):6-8
    [123]马长林,黄先祥,郝琳 基于AMESim的电液伺服系统仿真与优化研究[J].液压气动与密封, 2006(1):32-34
    [124]薛定宇 控制系统计算机辅助设计MATLAB语言及应用[M],北京:清华大学出版社,1997.
    [125]陈宏亮,李华聪AMESIM与Matlab/Simulink联合仿真直接口技术应用与研究[J].流体传动与控制,2006(1):14-16
    [126]李谨,邓卫华AMESIM与Matlab/Simulink联合仿真技术与应用[J].情报指挥控制系统与仿真技术,2004,26(5):61-64
    [127]黄方平 变频闭式液压动力系统的设计与应用研究[D],[硕士学位论文],杭州:浙江大学,200,
    [128]Xiaobin Ji,Queyi Qi,Xiaoming Ji,Ling Wang: The experimental research on the variable loading system of LM 18.20 coal mill,Advanced Materials Research Vols.446-449(2012), pp2900-2903

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700