基于EEP法的平面变截面杆件自由振动自适应分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
变截面杆件在各工程领域中有着广泛应用,对其自由振动做高效精确的分析具有重要意义。随着数值计算的发展,自适应求解功能正成为各种数值方法所竞相追求的目标。本文基于具有最佳超收敛阶的超收敛算法——单元能量投影(Element Energy Projection,简称EEP)法凝聚格式,对平面变截面杆件的自由振动问题建立了一套自适应分析方法,并成功将其推广应用至求解一般的2阶Sturm-Liouville(简称SL)问题和4阶SL问题中。
     本文首先以变截面杆件的轴向自由振动问题为模型,通过一维Ritz有限元C~0问题EEP法凝聚格式的自适应算法求解杆件单元的动力形函数,探索和验证了基于EEP法的自适应算法在振动问题求解中的可行性。在这一基础上,通过对动力刚度法与精确有限元法等价性的深入认识,本文开展了下列工作:
     第一,将EEP法凝聚格式的自适应算法和Wittrick-Williams算法相结合,建立了杆件动力分析通用的自适应求解方案、实施策略和具体算法,并用于变截面杆件轴向自由振动和Euler梁横向自由振动的求解中。
     第二,推导了变截面Timoshenko曲梁自由振动的微分控制方程。基于2阶常微分方程组EEP法凝聚格式,将上述自适应求解思想用于求解变截面Timoshenko直梁横向自由振动和曲梁自由振动的常微分方程组特征值问题。
     第三,通过对2阶和4阶SL问题力学模型的分析,提出了SL问题中边界条件、负特征值问题的处理方案,并将杆件自由振动的自适应求解方案推广至SL问题的求解中。
     本文编制了上述问题的自适应求解程序,并对各种问题中代表性的算例进行了分析。文中的理论研究和数值试验表明,本文方法不依赖于用户提供的初始网格,程序能自动给出满足用户误差要求的频率(特征值)和振型(特征函数),且任一点的位移解和内力解均具有和单元结点位移解相当的精度。本文方法几乎克服了其它现有方法的缺陷,具有精确、稳定、高效、实施方便等特点。本文自适应算法的思想为求解变截面杆系结构自由振动问题及一般的常微分方程组特征值问题等开辟了新的途径。
It is of great significance to make efficient and accurate analysis to the free vibration of non-uniform members, which have wide applications in many fields of engineering. With the development of numerical computation, adaptive analysis becomes the goal of various numerical methods. Based on the condensed scheme of Element Energy Projection (EEP) method with optimal super-convergent order, the dissertation proposed an adaptive solution for the free vibration of non-uniform members. The above method is further applied to general 2nd and 4th order Sturm- Liouville eigenvalue problems successfully.
     Taking the axial free vibration of non-uniform members as the model problem, the dissertation first presented the adaptive analysis, which is used in one-dimensional C 0 problem based on EEP condensed scheme, to get dynamic shape functions of elements. The above analysis is used to check the feasibility of the method in free vibration problems. Based on the in-depth understanding of equivalence between dynamic stiffness method (DSM) and the exact finite element method (FEM), the dissertation carried out the following work:
     Firstly, the self-adaptive method based on EEP condensed scheme and the Wittrick-Williams algorithm were creatively combined. The dissertation proposed a generalized self-adaptive method, implementation strategy and computational algorithm in dynamic analysis of non-uniform members. Then the method was applied to solve axial free vibration of non-uniform members and flexural free vibration of non-uniform Bernoulli-Euler beams.
     Secondly, the governing differential equations of free vibration of non-uniform Timoshenko curved beams was derived. The self-adaptive method to solve the flexural free vibration of non-uniform Timoshenko beams and the free vibration of non-uniform Timoshenko curved beams, which is a kind of eigenvalue problems for ordinary differential equations, was also constructed respectively.
     Finally, through the analysis of mechanics models of the 2nd and 4th SL problems, the dissertation proposed a way to deal with boundary conditions and negative eigenvalues and extended the self-adaptive method of free vibration to solve the 2nd and 4th SL problems.
     Computer programs have been developed for self-adaptive analysis, and representative numerical examples for various problems were analyzed. The theoretical research and numerical tests show that the method is independent of the initial mesh provided by users, not only can the program produce the frequency (eigenvalues) and vibration mode (eigenfucntion) which are satisfied the error tolerance automatically, but also the displacements and the internal forces of any point gain the equivalent numerical precision with the displacements at the element nodes. With this method, most shortcomings in other existing methods are overcome. A large number of numerical tests prove this algorithm to be accurate, stable, efficient and convenient. The concept of the adaptive method in this dissertation provides a new way to solve the free vibration of skeletal structures constructed by non-uniform members and eigenvalue problems for ordinary differential equations.
引文
[1]王勖成,邵敏.有限单元法基本原理和数值方法.第2版.北京:清华大学出版社, 1997.
    [2] Clough, R W. Dynamics of Structures. Second Edition. McGraw-Hill Inc, 1993.
    [3]于建华,谢用九,魏泳涛.高等结构动力学.成都:四川大学出版社, 2001.
    [4]刘更.结构动力学有限元程序设计.第1版.北京:国防工业出版社, 1993.
    [5]颜云辉,谢里阳,韩清凯.结构分析中的有限单元法及其应用.沈阳:东北大学出版社, 2000.
    [6] Bathe K J and Wilson E L. Solution methods for eigenvalues problems in structural mechanics. International Journal for Numerical Methods in Engineering, 1973, 6: 213-226.
    [7]袁驷.程序结构力学.北京:高等教育出版社, 2001.
    [8] Williams F W and Wittrick W H. An automatic computational procedure for calculating natural frequencies of skeletal structures. International Journal of Mechanical Sciences, 1970, 12: 781-791.
    [9] Williams F W and Wittrick W H. A general algorithm for computing natural frequencies of elastic structures. Quarterly Journal of Mechanics and Applied Mathematics, 1971, 24(3): 263-284.
    [10] Yuan S, Xiao C, Ye K and Williams F W. An exact dynamic stiffness method for the free vibration problem of non-uniform beams. The 4th International Symposium on Vibrations of Continuous Systems, Keswick, England, 7-11 July, 2003.
    [11]肖成.动力刚度法求解变截面杆的振动稳定及Sturm-Liouville问题[硕士学位论文].北京:清华大学土木工程系, 2004.
    [12] Howson W P and Williams F W. Natural frequencies of frames with axially loaded Timoshenko members. Journal of Sound and Vibration, 1973, 26(4): 503-515.
    [13] Banerjee J R, Howson W P and Williams F W. Concise equations and program for exact eigensolutions of plane frames including member shear. Advances in Engineering Software, 1983, 5(3): 137-141.
    [14] Banerjee J R and Williams F W. Exact dynamic stiffness matrix for composite Timoshenkobeams with applications. Journal of Sound and Vibration, 1996, 194(4): 573-585.
    [15] Williams F W. Stability functions and frame instability—-A fresh approach. International Journal of Mechanical Sciences, 1980, 23(12): 715-722.
    [16] Williams F W and Wittrick W H. Exact buckling and frequency calculations surveyed. Journal of Structural Engineering, 1983, 109(1), January: 169-188.
    [17] Ye K, Yuan S and Williams F W. Towards exact computation of vibration modes in dynamic stiffness matrix methods. Proc of 5th Int Conf On Structural Engineering for Young Experts, August, Shenyang, 1998.
    [18] Yuan S, Ye K and Williams F W. Second order mode finding method in dynamic stiffness matrix methods. Journal of Sound and Vibration, 2004, 269(3-5): 689-708.
    [19] Yuan S, Ye K, Williams F W, et al. Recursive second order convergence method for natural frequencies and modes when using dynamic stiffness matrices. International Journal for Numerical Methods in Engineering, 2003, 56: 1795-1814.
    [20] Williams F W, Yuan S, Ye K, et al. Towards deep and simple understanding of the transcendental eigenproblem of structural vibrations. Journal of Sound and Vibration, 2002, 256(4): 681-693.
    [21] Leung A Y T. Dynamic Stiffness and Substructures. Springer-Verlag, London, 1993.
    [22]袁驷,叶康生,袁征.《结构力学求解器》的算法与性能.工程力学增刊, 2001, 174-181.
    [23]袁驷.结构力学求解器v1.0, v1.5, v2.0, v2.5.高等教育出版社, 1999, 2000, 2005, 2007.
    [24] Rossi R E, Laura P A A and Gutierrez R H. A note on transverse vibration of Timoshenko beam of non-uniform thickness clamped at one end and carrying a concentrated mass at the other. Journal of Sound and Vibration, 1992, 143: 491-502.
    [25] Lee S Y, Ke H Y and Kuo Y H. Analysis of non-uniform beam vibration. Journal of Sound and Vibration, 1990, 142: 15-29.
    [26] Lee S Y and Lin S M. Exact vibration solutions for non-uniform Timoshenko beams with attachments. AIAA Journal, 1992, 30: 2930-2934.
    [27] Lee S Y and Kuo Y H. Exact solutions for the analysis of general elastically restrained non-uniform beams. Transactions of American Society of Mechanical Engineers, Journal of Applied Mechanics, 1992, 59(2): 205-212.
    [28] Lau J H. Vibration frequencies for a non-uniform beam with end mass. Journal of Sound and Vibration, 1984, 97(3): 513-521.
    [29] John D P. Numerical Solution of Sturm-Liouville Problems. Clarendon Press, 1993.
    [30] William T Reid. Sturmian theory for ordinary differential equations. Springer-Verlag. New York, 1980.
    [31]秦凯.平面曲梁自由振动的精确分析[硕士学位论文].北京:清华大学土木工程系, 2005.
    [32] Ascher U, Christiansen J, Russell R D. Collocation software for boundary value ODEs. ACM Trans Math Software, 1981, 7(2): 209-222.
    [33] Ascher U, Christiansen J, Russell R D. Algorithm 569, COLSYS: Collocation software for boundary value ODEs[D2]. ACM Trans Math Software, 1981, 7(2): 223-229.
    [34] Cash J R. On the numerical integration of nonlinear two-point boundary value problems using iterated deferred corrections, Part2: The development and analysis of highly stable deferred correction formulae, SIAM Journal of Numerical Analysis, 1988, 25: 862-882.
    [35]袁驷.介绍一个常微分方程边值问题求解通用程序——COLSYS.计算结构力学及其应用, 1990, 7(2): 104-105.
    [36]方亚非,袁驷.含参数常微分方程边值问题的改进COLSYS算法.计算力学学报, 1999 16(2): 162-168.
    [37]方亚非,袁驷.分段常微分方程边值问题的改进COLSY算法.计算力学学报, 2002, 19(3): 315-319.
    [38] Brainerd W S, Goldberg C H, Adams J C. Fortran 90编程指南,第三版.袁驷,叶康生译.北京:高等教育出版社;海德堡:施普林格出版社, 2000.
    [39] Greenberg L and Marletta M. Oscillation theory and numerical solution of fourth order Sturm-Liouville problems. IMA Journal of Numerical Analysis, 1995, 15: 319-356.
    [40] Atkinson F. Discrete and continuous boundary problems. Academic Press. New York, 1964.
    [41] Wolfgang Walter. Ordinary differential equations. Springer-Verlag. New York, 1998.
    [42] Greenberg L. A prüfer method for calculating eigenvalues of self-adjiont systems of ordinary differential equations: parts 1 and 2. Tech. Rep. TR91-24, University of Maryland at College Park, MD, 1991b.
    [43] Bailey P, Gordon M and Shampine L. Automatic solution of the Sturm-Liouville problem. ACM Transactions on Mathematical Software, 1978, 4: 193-208.
    [44] Pruess S and Fulton C T. Mathematical software for Sturm-Liouville problems. ACM Transactions on Mathematical Software, 1993, 19(3): 360-376.
    [45] Eastham MSP, Fulton C T and Pruess S. Using the SLEDGE package on Sturm–Liouville problems having nonempty essential spectra. ACM Transactions on Mathematical Software, 1996, 22: 423-446.
    [46] NAG Fortran Library, Vol. 2, Numerical Algorithms Group, Ltd., Oxford, 1988.
    [47] Pryce J. Error control of phase-function shooting methods for Sturm-Liouville problems. SIAM Journal on Numerical Analysis, 1986, 6: 103-123.
    [48] Greenberg L and Marletta M. Algorithm 775: The code SLEUTH for solving fourth-order Sturm-Liouville problems. ACM Transactions on Mathematical Software, 1997, 23(4): 453-493.
    [49] Bailey P B, Everitt W N, Zettl A. Computing eigenvalues of singular Sturm-Liouville problems. Results in Mathematics, 1991, 20: 391-423.
    [50] Pruess S and Fulton C T. Performance of the Sturm-Liouville Software Package SLEDGE. MP at Los Alamos National Laboratory, 1991.
    [51]袁驷,张亿果.常微分方程特征值问题的求解器法.地震工程与工程振动, 1993, 13(2): 94-102.
    [52]叶康生,袁驷.常微分方程特征值问题求解器解法的改进.工程力学, 2004,21(3): 31-35.
    [53]陈传淼.有限元方法及其提高精度的分析.长沙:湖南科学技术出版社, 1982.
    [54]陈传淼.有限元超收敛构造理论.长沙:湖南科学技术出版社, 2002.
    [55]张铜生,张富德.简明有限元法及其应用.北京:地震出版社, 1990.
    [56] Rachowicz W, Oden J T and Demkowicz L, Toward a Universal h-p Adaptive Finite Element Strategy, Computer Methods in Applied Mechanics and Engineering. 1989, Vol. 77, No. 1-2, Dec: 181-212.
    [57] Bdoroomand B and Zienkiewicz O C, Recovery by Equilibrium in Patches(REP), International Journal for Numerical Methods in Engineering. 1997, Vol. 40: 137-164.
    [58] Zienkiewicz O C and Zhu J Z, Superconvergent Patch Recovery (SPR) and adapative finite element refinement, Comput. Methods Appl. Mech. Eng. 1992, Vol. 101: 207 - 224.
    [59]袁驷.从矩阵位移法看有限元应力精度的损失与恢复.力学与实践, 1998, 20(4): 1-6.
    [60]袁驷,王枚.一维有限元后处理超收敛解答计算的EEP法,工程力学, 2004, 21(2): 1-9.
    [61]袁驷,王旭,邢沁妍,叶康生.具有最佳超收敛阶的EEP法计算格式: I算法公式.工程力学, 2007, 24(10): 1-5.
    [62]袁驷,邢沁妍,王旭,叶康生.具有最佳超收敛阶的EEP法计算格式: II数值算例.工程力学, 2007, 24(11): 1-5.
    [63]袁驷,赵庆华.具有最佳超收敛阶的EEP法计算格式: III数学证明.工程力学, 2007, 24(12): 1-6.
    [64]袁驷,王枚,和雪峰.一维C1有限元超收敛解答计算的EEP法.工程力学, 2006, 23(2): 1-9.
    [65] Wang Mei, Yuan Si. Computation of super-convergent nodal stresses of Timoshenko beam elements by EEP method. Applied Mathematics and Mechanics, 2004, 25 (11): 1228-1240. (in both English and Chinese)
    [66]袁驷,林永静.二阶非自伴两点边值问题Galerkin有限元后处理超收敛解答计算的EEP法.计算力学学报, 2007, 24(2): 142-147.
    [67]袁征.二维有限元后处理超收敛的研究[硕士学位论文].北京:清华大学土木工程系, 2003.
    [68]王枚.一维有限单元法及二维有限元线法后处理超收敛计算的研究[博士学位论文].北京:清华大学土木工程系, 2003.
    [69]袁驷,王枚,王旭.二维有限元线法超收敛解答计算的EEP法.工程力学, 2007, 24(1): 1-10.
    [70]郭书祥.自适应有限元方法及其工程应用.力学进展, 1997, 27(4): 479-488.
    [71] Yuan Si, He Xuefeng. A self-adaptive strategy for one-dimensional FEM based on EEP method. Applied Mathematics and Mechanics, 2006, 27(11): 1461-1474. (in both English and Chinese)
    [72]王旭.基于EEP法的一维有限元与二维有限元线法自适应分析[博士学位论文].北京:清华大学土木工程系, 2007.
    [73]王文亮,张文,罗惟德等.结构动力学.上海:复旦大学出版社, 1993.
    [74]王文亮,杜作润.结构振动与动态子结构方法.上海:复旦大学出版社, 1985.
    [75]陈传淼,黄云清.有限元高精度理论.长沙:湖南科技出版社, 1995.
    [76] Douglas J and Dupont T. Galerkin approximations for the two point boundary problems using continuous, piecewise polynomial spaces. Numerical Mathematics, 1974, 22: 99-109.
    [77] Tong P. Exact solution of certain problems by finite-element method. AIAA Journal, 1969, No. 7: 178-180.
    [78] Strang G and Fix G. An analysis of the finite element method. Prentice-Hall, 1973.
    [79] Compaq Visual Fortran, v6.6. Copyright (c) 2000, Compaq Computer Corporation, Inc. http://www.compaq.com/fortran.
    [80] Vladimir I A. Ordinary differential equations.北京:世界图书出版公司, 2003.
    [81] Wolfgang Walter, Ordinary Differential Equations, (translated by Russell Thompson), Springer, 1998.
    [82] Greiner W. Quantum mechanics. Berlin : Springer-Verlag, 1989.
    [83] Coheh D S and Murray J D. A generalize diffusion model forgrowth and dispersal in a population, J.Math.Biology, 1981, 12: 257-249.
    [84] Hazewinkel M, Kaashoek J F and Leynse B, Pattern formation for a one dimensional evolution equation based on Thoma river basin model. Reprint 8519113,Econometric institute, Erasmus University(1985).
    [85] Tayler A B, Mathematical Models in Applied Mechanics, Clarendon, Oxford, 1986.
    [86] Janczewsky S A. Oscillation theorems for the differential boundary value problems of the fourth order. The Annals of Mathematics, Second Series, 1927-1928, 29(1/4): 521-542.
    [87] Kong Q, Wu H and Zettl A. Dependence of eigenvalues on the problem, Mathematische Nachrichten, 1997, 188: 173-201.
    [88] Greenberg L and Marletta M. The validity of richardson extrapolation in cofficient approximation methods for fourth order and higher order self-adjoint ODE eigenvalue problems. Tech. Rep., Department of Mathematics and Computer Science, University of Leicester, UK, 1995b.
    [89] Greenberg L. An oscillation method for fourth-order, self-adjoint, two-point boundary value problems with nonlinear eigenvalues. SIAM Journal on Mathematical Analysis, 1991, 22(4):1021-1042.
    [90] Krall A M. Orthogonal polynomials satisfying fourth order differential equations. Proceedings of the Royal Society of Edinburgh: Section A, 1981, 87: 271-288.
    [91] Anderson R A. Flexural vibration in uniform beams according to the Timoshenko theory. Joural of Applied Mechanics, 1953, 75: 504-510.
    [92] Posiadala B. Free vibrations of uniform Timoshenko beams with attachments. Journal of Sound and Vibration, 1997, 204(2): 359-369.
    [93] Maurizi M J ,Rossi R E and Belles P M. Free vibrations of uniform Timoshenko beams with ends elastically reatrained against rotation and tranalation. Journal of Sound and Vibration, 1990, 141(2): 359-362.
    [94] Bazoune A and Khulief YA. Further results for modal characteristics of rotating tapered Timoshenko beams. Journal of Sound and Vibration, 1999, 219(1) :157-174.
    [95] Yuan S, Ye K, Xiao C, Williams F W, Kennedy D. Exact dynamic stiffness method for non-uniform Timoshenko beam vibrations and Bernoulli–Euler column buckling. Journal of Sound and Vibration, 2007, 303: 526-537.
    [96] Timoshenko S, Young D and Weaver W. Vibration Problems in Engineering, Wiley, New York, 1967.
    [97] Howson W P and Williams F W. Natural frequencies of frames with axially loaded Timoshenko members. Journal of Sound and Vibration, 1973, 26(4): 503-515.
    [98] Cowper G R. The shear coefficient in timoshenko’s beam theory. Journal of Applied Mechanics, 1966, 33: 335-340.
    [99]赵跃宇,康厚军,冯锐,劳文全.曲线梁研究进展.力学进展, 2006, 36(2): 170-186.
    [100] Markus S and Nasasi T. Vibrations of curved beams. The Shock and Vibration Digest, 1981, 13: 3-14.
    [101]江烈光.曲形梁的自由与强迫振动分析[博士学位论文].台南:成功大学系统与船舶机电工程研究所, 2004.
    [102]武兰河,刘淑红,周敏娟.圆弧曲梁面内自由振动的微分容积解法.振动与冲击, 2004, 23(1): 118-12.
    [103] Love, A E H. A treatise on the mathematical theory of elasticity. Dover Publications, New York: 1927.
    [104] Childamparam P, Leissa A W. Vibrations of planar curved beams, Rings and arches. Applied Mechanics Reviews, 1993, 46: 467-483.
    [105] Kim M Y, Kim N I and M in B C. Analytical and numerical study on spatial free vibration of non-symmetric thin-wailed curved beams. Journal of Sound and Vibration, 2002, 258(4): 595-61.
    [106] Wu J S, Chiang L K. Free vibration of a circularly curved Timoshenko beam normal to its initial plane using finite curved beam element. Computers and Structures, 2004, 82(29-30): 2525-2540.
    [107] Yang S Y. Curvature-based beam elements for the analysis of timoshenko and shear-deformable curved beams. Journal of Sound and Vrbriation, 1995, 187(04): 569-584.
    [108] Eisenberger M, Efraim E. In-plane vibrations of shear deformable curved beams. International Journal for Numerical Methods in Engineering, 2001, 52: 1221-1234.
    [109] Friedman Z and Kosmatka J B. An accurate two-node finite element for shear deformable curved beams. International Journal for Numerical Methods in Engineering, 1998, 41: 473-498

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700