由手提相机获得的序列图像进行三维重建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究了如何由非定标图像序列恢复三维实体模型,对其中的若干关键技术进行了深入研究,特别是立体像对的稠密匹配。本文的重点是在理论和实践两方面研究了在有遮挡的情况下,如何由长图像序列进行三维欧氏重建并最终获得物体完整结构的问题。由本文所给的算法可以恢复具有很好真实感的完整三维实体模型。主要研究成果如下:
     1.提出了一种新的用于种子点可靠匹配的两层算法,该算法在图像边缘提取的基础上,首先比较目标点匹配的边缘相似性,这种特征匹配具有简单可靠的优点。在此基础上,在一个相对较小的搜索范围内比较其灰度相似性,从而得到目标点的精确匹配。该算法可以有效地避免由于重复图案所引起的匹配误差。
     2.提出了一种基于图像划分的传播式稠密匹配算法,该算法不仅适用于未经校正的图像对,而且适用于存在大视差的图像对,以及图像中纹理稀疏的区域。通过用种子点的Voronoi图对图像划分,并以特征跟踪的结果作为匹配传播的起点,有效地消除了匹配误差的积累。传播算法在极大提高匹配效率的同时,也增加了算法的准确性。
     3.提出了一种新的三维重建算法,该算法可以恢复目标物体完整的三维结构。首先将整个图像序列划分为几个子序列,使每个子序列中的重建点均不被遮挡;然后利用迭代分解算法求出物体局部的射影重建;接着通过自定标将射影重建升级至欧氏重建。这时由每个子序列得到的不同部分的重建结果是相对于不同的坐标系而言的。我们将它们通过一组相似变换转移至同一坐标系下,就得到了物体整体的三维结构。最后通过最小化重投影误差对投影矩阵和空间点坐标进行全局优化。该重建算法的突出优点在于它可以从一个长图像序列中恢复物体的完整结构,从而克服由遮挡(occlusion)引起的数据点的丢失问题。
     4.提出了一种适用于存在丢失数据(missing data)的全局优化算法。为了弥补重建算法将一个长图像序列划分为几个子序列所带来的不足,我们对结构整合后的数据进行带有加权矩阵的全局优化,最小化重投影误差以提高数据(包括投影矩阵和重建点三维坐标)的整体精度。该算法通过引入加权矩阵,将可见点和被遮挡点同等处理,提高了数据的一致性。
     5.采用带边缘约束的三角剖分算法,对模拟数据和存在遮挡的真实图像序列进行三维重建,这里的长图像序列是围绕目标物体一周拍摄得到的。每一个重建点在大约连续的10幅图像中均可见,而在其余的图像中被遮挡。我们的重建算法很好地恢复出了物体完整的几何结构。最后,通过构造相应的虚拟与真实混
    
    由手提相机获得的序列图像进行二维重建
     合的场景,进一步说明了该算法具有很好的准确性与实用性。这样重建出的三
     维场景与纯虚拟场景相比,具有更好的真实感。
     今后工作中需要进一步研究的问题有:继续研究存在遮挡问题的三维重建算
    法,进一步提高算法的准确性与实用性,减少其中一些需要手工干预的步骤:继
    续研究相机定标算法,增加外部约束条件以提高其准确性。另外,相机的内外参
    数会因为投影矩阵的微小差异而发生较大变化,其求解稳定性也有待于进一步研
    究。
Our research is focused on the problems of the recovery of a realistic textured model from image sequences and some critical issues related to this subject, such as dense matching to stereo images. The thesis investigates both the theoretical and practical feasibility in recovering the complete structure of an object from a long image sequence captured around it with occlusions. In this case, some points may be visible in a number of frames and then disappear in the following several frames. The main contributions of the thesis are as follows:
    1. We propose a new two level matching algorithm for seed points in propagation. Firstly, our algorithm compares edge similarity around the target pixel based on edge extraction. This level of feature matching is both simple and reliable. Then intensity similarity is compared within a small search window, which is constrained by the results of the first level matching. In this way, the corresponding point is located accurately. This algorithm efficiently avoids mismatches caused by the repetitive patterns.
    2. A novel and efficient dense matching method is proposed, which is based on the propagation by the Voronoi decomposition of the images. The significant merit of the algorithm is that it can be applied to a wide range of image pairs including those with large disparities, with or without rectification. And it may involve both textured part and less textured part of the images. Our dense matching begins from a number of seed points, which are reliably matched by feature tracking. Then corresponding relations are propagated from all of the seeds respectively. The decomposition of the images into Voronoi diagram restricts bad propagations within a single cell. It improves the performance of dense matching both in efficiency and accuracy.
    3. A novel 3D reconstruction algorithm with missing data is presented, by which the complete structure of the target can be recovered. Firstly, images taken around the target are divided into several subsets. Each subset has common feature points. Secondly, Euclidean reconstruction is performed by iterative factorization with all of these points visible in each image of a certain subset. Then results coming from different subset are brought into a common coordinate frame by similarity transformations. Finally, global optimization is applied to minimize the back projection errors, which can refine the data and produce a jointly optimal 3D
    
    
    structure. A significant merit of the algorithm is that it can deal with occlusions and a complete 3D model is recovered from the long image sequence.
    4. A new global optimization algorithm with missing data is proposed. To remedy the drawback of cutting a long image sequence into several subsets in our 3D reconstruction algorithm, global optimization with a weighting matrix is applied to refine the results, in which the visible and missing data are arranged together. The back projection error is minimized over the estimated camera matrices and 3D points. In our optimization, the visible points and the missing data are treated uniformly by adding different weights. Experiments demonstrate that the algorithm
    is both effective and accurate.
    5. The 3D reconstruction algorithm with constrained triangulation has been tested on both simulate data and real images with satisfactory results. The long image sequence is taken from 360 degrees around the target. Each point is visible in about 10 consecutive images and occluded in the rest of the images. The complete structure of the building is recovered with realistic textures and we also generate an augmented scene to demonstrate the good performance of our algorithm. The structures recovered in this way have better visualization effect than that of the virtual scenes.
    Future researches on this topic include: go on the work with missing data to further improve its accuracy and feasibility; decrease human interactions in the computation; improve the robustness of self-calibration by prior knowledge of orthogonal / parallel lines and ort
引文
[1] Aanaes H. and Fisker R., Robust Factorization, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24: (9), 1215-1225.
    [2] Asrom K., Cipolla R. and Giblin P., Generalized epipolar constraints. International Journal of Computer Vision. 1999, 33: ( 1 ), 51-72.
    [3] Baillard C. and Zisserman A., Automatic reconstruction of piecewise plannar models from multiple views. In Proc. IEEE Conference on computer Vision and Pattern Recognition. 1999, 559-565.
    [4] Birchfield S. and Tomasi C., Multiway cut for stereo and motion with slanted surfaces. International Conference on Computer Vision, 1999, Vol. 1, pp.489-495.
    [5] Birchfield S. and Tomasi C., Depth discontinuities by pixel-to-pixel stereo. International Conference on Computer Vision, 1998, pp. 1073-1080:
    [6] Boubakeur S. Boufama, Using Geometry Towards Stereo Dense Matching, Pattern Recognition, 33 (2000), pp.871-873.
    [7] Bougnoux S. From projective to Euclidean space under any practical situation. A Criticism of Self-calibration. Proc. International Conference on Computer Vision. 1998, 790-796.
    [8] Boykov Y. and Kolmogorov V., An Experimental Comparison of Min-Cut/ Max-Flow Algorithms for Energy Minimization in Computer Vision. Third International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition, September 2001.
    [9] Boykov Y., Veksler O., and Zabih R., Fast approximate energy minimization via graph cuts. IEEE Trans. on Pattern Analysis and Machine Intelligence, Nov. 2001, 23: (11), pp.1222-1239.
    [10] Canny J., A Computational Approac,h to Edge Detection. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1986, 8: (6), 679-680.
    [11] Kenneth R., Castleman, Digital Image Processing, Prentice-Hall International, Inc., 1998.
    [12] Chen Q. and Medioni G., Efficient iterative solutions to m-view projective reconstruction problem. In Int. Conf Computer Vision & Pattern Recognition.IEEE Press, 1999, 55-61.
    [13] Chen Z. Z., Wu C. K. and Liu Y., From an Uncalibrated lmagc Sequence of a
    
    Building to Virtual Reality Modeling Language (VRML), Journal of Imaging Science and Technology, Aug. 2002, 46: (4), 365-374.
    [14] Christy S. and Horaud R., Euclidean Shape and Motion from Multiple Perspective Views by Affine Iteration, IEEE Transactions on Pattern Analysis and Machine Intelligence, Nov. 1996, 18: (11), pp. 1098-1104.
    [15] Criminisi A., Reid I., and Zisserman A., Single view metrology. In Proc. 7th International Conference on Computer Vision, Kerkyra, Greece. 1999, pp. 434-442.
    [16] Deriche R. and Giraudon G.., A Computational Approach for Comer and Vertex Detection. International Journal of Computer Vision. 1993, 10: (2), 101-124.
    [17] Devemay F. and Faugeras O., From projective to Euclidean reconstruction. Proc. of Conference on Computer Vision and Pattern Recognition. IEEE Computer Sociery Press, 1996, 264-269.
    [18] Faugeras O., Three-Dimensional Computer Vision, the MIT Press, 1993, pp.165-243.
    [19] Faugeras O. and Luong Q.-T, The Geometry of Multiple Images, 2001, The MIT Press.
    [20] Faugeras O., et al. Real Time Con'elation-Based Stereo: Algorithm, Implementations and Applications,/NRIA Research Report,1993, No.2013.
    [21] FINCH A.M., WILSON R.C. and HANCOCK E.R.,Matching Delaunay Graphs, Pattern Recognition, 1997, 30: (4), pp. 123-140.
    [22] Fischler M. and Bolles R., Random Sampling Consensus: a paradigm for model fitting with Application to image analysis and automated cartography. Commun. Assoc. Comp., 1981, Mach. 24, 381-395.
    [23] Gong M. and Yang Y.-H., Multi-baseline S, tereo Matching Using Genetic Algorithm. CVPR 2001 Stereo Workshop / IJCV 2002.
    [24] Gool L. Van, Proesmans M. and Zisserman' A., Planar homologies as a basis for grouping and recognition, Image and Vision Computing, January,1998, 16:21-26.
    [25] Harris C. and Stephens M., A combined corner and edge detector. Fourth Alvey Vision Conference. 1988, pp. 147-151.
    [26] Hartley R., In Defense of the 8-point Algorithm, Proc. of the 5th International Conference on Computer Vision, IEEE Computer Society Press, Boston, pp. 1064-1070.
    [27] Hartlcy R.. A linear method for reconstruction from lines and points, Proc.
    
    International Conference on Computer Vision, 1995, pp.882-887.
    [28] Hartley R., Projective Reconstruction and Invariants from Multiple Images, IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994, 16: (10). pp. 1036-1040.
    [29] Hartley R., Projective reconstruction from line correspondence, Proc. IEEE Conference on Computer Vision and Pattern Recognition, 1994.
    [30] Hartley R., Kruppa's equations derived from the fundamental matrix, IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(2):133-135.
    [31] Aartley R., Lines and points in three views and the trifocal tensor, International Journal of Computer Vision, 1997, 22(2): 125-140.
    [32] Hartley R., Theory and Practice of Projective Rectification, International Journal of Computer Vision, 1999, 35(2): 115-127.
    [33] Hartley R., Minimizing algebraic error in geometric estimation problems, Proc., International Conference on Computer Vision, 1998, pp.469-476.
    [34] Hartley R., Ambiguous configuration for 3-view projective reconstruction, Proc. European Conference on Computer Vision, 2000.
    [35] Hartley R., Gupta R. and Chang T., Stereo from uncalibrated cameras, Proc. IEEE Conference on Computer Vision and Pattern Recognition, 1992.
    [36] Hartley R. and Sturm E, Triangulation, Computer Vision and Image Understanding, 1997, 68: (2), 146-157;
    [37] Hartley R. and Zisserman A., Multiple View Geometry in Computer Vision, Cambridge University Press, 2000.
    [38] Heyden A., Reconstruction from image sequences by means of relative depths. International Journal of Computer Vision. 1997, 24(2): 155-161.
    [39] Heyden A. and Astrom K., Flexible calibration: minimal cases for auto-calibration. International Conference on Computer Vision. Kerkyra, Greece, 1999, 350-355.
    [40] Heyden A. and K. Astrom., Euclidean reconstruction from image sequences with varying and unknown focal length and principle point. Proc. IEEE Conference on Computer Vision and Pattern Recognition, 1997, 438-443.
    [41] Heyden A., Astrom Kalle, Euclidean reconstruction from constant intrinsic parameters. In Proc. International Conference on Pattern Recognition. 1996, Vienna, Austria, 339-343.
    [42] Heyden A., Berthilsson R. and Sparr G, An iterativc factorization method for
    
    projective structure and motion from image sequences, Image and Vision Computing, 1999, 17(13), pp. 981-991.
    [43] Hirschmüller H., Improvements in Real-Time Correlation-Based Stereo Vision. CVPR 2001 Stereo Workshop / IJCV 2002.
    [44] Kanade T. and Morris D.D., Factorization Methods for Structure From Motion, Pkilosophical Transactions of tke Royal Society of London, Series A, 1998, 356:(1740), pp. 1153-1173.
    [45] Kanade T., Okutomi M., A Stereo Matching Algorithm with an Adaptive Window Theory and Experiment, IEEE Transactions on Pattern Analysis and Machine Intelligence, September 1994, 16: (9), 920-932.
    [46] Kolmogorov V. and Zabih R., Multi-camera Scene Reconstruction via Graph Cuts. Proc. European Conference on Computer Vision, 2002.
    [47] Kolmogorov V. and Zabih R., Computing visual correspondence with occlusions using graph cuts. Proc. International Conference on Computer Vision, 2001.
    [48] Lee S. H., Kanatsugu Y., and Park J.-I., Hierarchical stochastic diffusion for disparity estimation. CVPR 2001 Stereo Workshop / IJCV 2002.
    [49] Lhuillier M., Efficient Dense Matching for Textured Scenes Using Region Growing, INRIA Research Report, 1998, No.3382.
    [50] Lhuillier M. and Quan L. Edge-constrained.joint view triangulation for image interpolation. Proc. Conference .of Computer Vision and Pattern Recognition. 2000, Hilton Head, South Carolina, 218-224.
    [51] Lhuillier M., Quan L., Image Interpolation by Joint View Triangulation, Proc. of IEEE Conference on Computer Vision and Pattern Recognition, 1999, 139-145.
    [52] Liebowitz D. and Zisserman A., Combining Scene and Auto-calibration Constraints, International Conference on Computer Vision, 1999.
    [53] Lin M. and Tomasi C., Surfaces with Occlusions from Layered Stereo. Ph.D. thesis, Stanford University, 2002.
    [54] Liu.Y., Wu C. K. and Tsui H. T., A Practical Approach 3D building Modeling from Uncalibrated Video Sequences, International Journal of Image and Graphics, 2002, 2: (2), 287-306.
    [55] Luong Q-T. and Faugeras O., Self-calibration of a moving camera from point correspondences and fundamental matriceS. International Journal of Computer Vision, 1997, 22: (3), 261-289.
    [56] Luong Q.~T. and Faugeras O., The fundamental matrix: theory, algorithms, and stability analysis, International dournal of Computer Vision, 1996, 22: (3).
    
    
    [57] Martin U., Tomas P. and Vaclav H., Projective reconstruction from N views having one view in common, Vision Algorithms workshop (associated with ICCV'99).
    [58] Mclauchlan P.~F., Gauge Invariance in Projective 3D Reconstruction. Proc. Conf Computer Vision and Pattern Recognition. 1999.
    [59] Mendonca P. and Cipolla R., A simple technique for self-calibration. Proc. Conf Computer Vision and Pattern Recognition. 1999.
    [60] Mühlmann K., Maier D., Hesser J., and Minner R., Calculating Dense Disparity Maps from Color Stereo Images, an Efficient Implementation. CVPR 2001 Stereo Workshop / IJCV 2002.
    [61] Ohta Y., Kanade T., Stereo by Intra- and Inter-Scanline Search Using Dynamic Programming, IEEE Transactions on Pattern Analysis and Machine Intelligence, March 1985, 7: (2), pp.139-154.
    [62] Poelman C. and Kanade T., A Paraperspective Factorization Method for Shape and Motion Recovery, IEEE Transactions on Pattern Analysis and Machine Intelligence. 1997, 19: (3), 206-218.
    [63] Pollefeys M., Self-Calibration and Metric 3D Reconstruction From Uncalibrated Image Sequences, Ph.D. Thesis. Department Elektrotechniek Afdeling ESAT, Katholieke Universiteit Leuven, Belgium, 1999.
    [64] Pollefeys M., Koch R. and-.Van~Gool L., Self-Calibration and Metric Reconstruction in spite of Varying and Unknown Internal Camera Parameters. International Journal of Computer Vision, 1999, 32, 7-25.
    [65] Pollefeys M., Koch R. and Luc Van Gool, Self-calibration and metric reconstruction in spite of varying and unknown internal camera parameters, Proc. International Conference on Computer Vision, 1998, Bombay, pp.90-95.
    [66] Pollefeys M., Koch R., Vergauwen M. and Vn Gool L, Metric 3D surface reconstruction from uncalibrated image sequences. Proc. SMILE Workshop (Post-ECCV'98). LNCS1506, Springer-Verlag, 1998, 138-153.
    [67] Pollefeys M. and L. Van~Gool. Stratified self-calibration with the modulus constraint. IEEE transactions on Pattern Analysis and Machine Intelligence, 1999, 21:(8), 707-724.
    [68] Quan L., Conic Reconstruction ahd Correspondence from Two Views, IEEE Transactions on Pattern Analysis and Machine Intelligence, Feb. 1996, 18: (2), pp.1-13.
    [69] Quan L., Invariants of Six Points and Projective Reconstruction from Three
    
    Uncalibrated Images. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1995.17: (1), 1-12.
    [70] Quan L. and Kanade T., Affine structure from line correspondences with uncalibrated affine cameras. 1EEE Trans. on Pattern Analysis and Machine Intelligence. 1997, 19(8): 834-845.
    [71] Rother C. and Carlsson S., Linear Multi View Reconstruction with Missing Data, European Conference on Computer Vision, 2002, Copenhagen, Denmark, pp. 28-31.
    [72] Rother C. and Carlsson S., Multi View reconstruction and Camera.Recovery, International Conference of Computer Vision, 2001, Vancouver, Canada, pp. 9-12.
    [73] Rother C. and Carlsson S., Multi View reconstruction and Camera Recovery using a Reference Plane, International Journal of Computer Vision, (Special Issue on Multi-View Modeling and Rendering of Visual Scenes), 2002.
    [74] Roy S., Cox I. J., A Maximum-Flow Formulation of the N-camera Stereo Correspondence Problem, 1EEE Proceedings of International Conference on Computer Vision, Bombai, January, 1998, pp.492-499.
    [75] Sato J. and Cipolla R., Quasi-Invariant Parameterisations and Matching of Curves in Images, International Journal of Computer Vision. 1998, 28(2), pp. 117-136.
    [76] Scharstein D., Szeliski R., Stereo Marcia. g with Nonliear Diffusion, International Journal of Computer Vision. 1998, 28(2), 155-174.
    [77] Scharstein D. and Szeliski R., A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms, International Journal of Computer Vision, 2002, 47: (1), pp.7-42.
    [78] SCHMID Cordelia, MOHR Roger, Matching by local invariants, INRIA research reports, No.2644, 1995.
    [79] Shao J., Combination of Stereo, Motion and Rendering for 3D Footage Display. CVPR 2001 Stereo Workshop / IJCV 2002.
    [80] Sturm P. and Triggs B., A factorization based algorithm for multi-image projective structure and motion, Proc. 4th European Conference on Computer Vision, April 1996, pp.709-720.
    [81] Sun C., Fast stereo matching using rectangular subregioning and 3D maximum-surface techniques. CVPR 2001 Stereo Workshop / IJCV 2002.
    [82] Sun J., Shum H. Y., and Zheng N. N., Stereo matching using belief propagation. European Conference on Compuler Vision, 2002.
    
    
    [83] Szclliski R and Golland P., Stereo matching With Transparency and matting. IEEE Proceedings of International Conference on Computer Vision, 1998. 517-524.
    [84] Tekalp A. M., Digital Video Processing, Prentice 1 lall PTR, 1998.
    [85] Tomasi C. and Kanade T., Shap,e and motion from image streams under orthography: A factorization approach. International Journal of Computer Vision. 1992, 9(2): 137-154.
    [86] Triggs B., The absolute quadric. Proceedings of International conference on Computer Vision and Pattern Recognition, 1997, 609-614.
    [87] Triggs B., Factorization methods for projective structure and motion, Proc. IEEE Conference on Computer Vision and Pattern Recognition, 1996, pp.845-851.
    [88] Triggs B., McLauchlan P.F., Hartley R.I., and Fitzgibbon A.W., Bundle Adjustment -A Modern Synthesis, LNCS 1883, 2000, pp.298-372.
    [89] Triggs W., The geometry of projective reconstruction: Matching constraints and the joint image, Proc. International Conference on Computer Vision, 1995, pp.338-343.
    [90] Triggs W., Differential matching constraints, Proc. International Conference on Computer Vision, 1999, pp.370-376.
    [91] Tsai R., An efficient and accurate camera calibration technique for 3D machine vision. Proc. Conference of COmputer Vision and Pattern Recognition. 1986.
    [92] Tsai R. Y. and Huang T. S., The. perspective view of three points, IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984, 6:13-27.
    [93] Veksler O., Fast Variable Window for Stereo Correspondence using Integral Images. Proc. Conference of Computer Vision and Pattern Recognition, 2003.
    [94] Veksler O., Stereo matching by compact windows via minimum ratio cycle. Proc. International Conference on Computer Vision, 2001.
    [95] Weng J., A Theory of Image Matching, Proc. of Third International Conference on Computer Vision, Dec. 1990, Osaka, Japan, pp.200-209.
    [96] Zhang Zhengyou, Determining the Epipolar Geometry, and its Uncertainty: A Review, International Journal of Computer Vision. 1998, 27(2), 161-195.
    [97] Zhang Zhengyou, A Flexible New'Technique for Camera Calibration, Microsoft Research Technical Report, MSR-TR-98-71, 1998.
    [98] Zhang Zhengyou, Motion and Structure From Two Perspective Views: From Essential Parameters to Euclidean Motion Via Fundamental Matrix, Journal of the Optical Society of America A, 1997. ,,
    
    
    [99] Zhang Zhengyou, Deriche Rachid, Luong Q.-T.. Faugeras O., A Robust Technique for Matching Two Uncalibrated Images Through the Recovery of the Unknown Epipolar Geometry, INRIA research reports, No.2273, 1994.
    [100] Zitnick L. and Kanade T., A cooperative algorithm for stereo matching and occlusion detection. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2000, 22: (7), pp.1-10.
    [101] Zitnick C. L., Kanade T., A Cooperative Algorithm for Stereo Matching and Occlusion Detection, CMU Technical Report CMU-RI-TR-99-35, 1999.
    [102] Zitnick C. L., Kanade T., A Volumetric Iterative Approach to Stereo Matching and Occlusion Detection, CMU Technical Report CMU-RI-98-30, 1998.
    [103] 陈泽志,由非定标图像序列重建和测量三维物体,西安电子科技大学博士研究生学位论文,2002.
    [104] 贾云得,机器视觉,科学出版社,2000.
    [105] 刘勇,基于非定标图象序列的三维重建方法研究,西安电子科技大学博士研究生学位论文,2001.
    [106] 马颂德,张正友,计算机视觉——计算理论与算法基础,科学出版社,1998.
    [107] 梅向明,刘增贤,林向岩,高等几何,高等教育出版社,1984.
    [108] 沈沛意,基于象素点转移图像合成的若干关键技术研究,西安电子科技大学博士研究生学位论文,1999.
    [109] 孙家广,杨长贵,计算机图形学,清华大学出版社,1996.
    [110] 王润生,图像理解,国防科技大学出版社,1995.
    [111] 王世俊,马凤堂,摄影测量学,测绘出版社,1995.
    [112] 王伟,序列图像的几何约束及其应用,西安电子科技大学博士研究生学位论文,1998.
    [113] 章毓晋,图像工程(上),清华大学出版社,2000.
    [114] 章毓晋,图像理解与计算机视觉(下),清华大学出版社,2000.
    [115] 张祖勋,张剑清,数字摄影测量学,武汉测绘科技大学出版社,1997.
    [116] 郑南宁,计算机视觉与模式识别,国防工业出版社,1998.
    [117] Brown M.Z., Burschka D., Hager G.D., Advances in computational Stereo, IEEE Trans. on Pattern Analysis and Machine Intelligence, Aug 2003, 25: (8), pp. 993-1008.
    [118] Bhat D.N., Nayar S.K., Ordinal Measures for Image Correspondence, IEEE Trans. on Pattern Analysis and Machine Intelligence, 1998, Vol.20, pp.415-423.
    [119] Schmid C. and Zisserman A., The Geometry and Matching of Curves in Multiple Views, Proc. European Conference on Computer Vision, 1998, pp. 104-118.
    
    
    [120] Venkateswar V. and Chellappa R., Hierarchical Stereo and Motion Correspondence Using Feature Groupings, lnternational Journal of Computer Vision, 1995, Vol. 15, pp.245-269.
    [121] Faugeras O. and Keriven R., Variational Principals, Surface Evolution, PDE's Level Set Methods, and the Stereo Problem, IEEE Trans. Image Processing, 1998, Vol.7, pp.336-344.
    [122] Kutulakos K.N. and Seitz S.M., A Theory of Shape by Space Carving, International Journal of Computer Vision, 2000, 38: (3), pp. 199-218.
    [123]姜光,基于二次曲线的单轴旋转运动分析和三维重建,西安电子科技大学博士研究生学位论文,2003.
    [124] Roy S., Stereo Without Epipolar Lines: A Maximum-Flow Formulation, International Journal of Computer Vision, 1999, 34(2/3), 147-161.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700