天然植物材料作为吸附剂去除水溶液中离子型染料及吸附机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
染料是能使其他物质获得鲜明而坚实颜色的有机物,迄今,染料商品已超过10000多种。染料可以分为三大类:1.阴离子染料(anionic):包括直接染料、酸性染料和活性染料等;2.阳离子染料(cationic):即碱性染料;3.非离子染料(non-ionic):即分散染料。合成染料大都具有复杂的芳香结构,这些芳香结构主要来自煤焦油中的碳氢化合物,这些碳氢化合物包括:苯、萘、蒽、甲苯和二甲苯等,复杂的芳香结构使得染料更加稳定和更难生物降解。染料被广泛用于纺织、皮革、造纸、橡胶、塑料、化妆品、制药和食品等工业领域,染料的广泛使用必然产生大量的染料废水排放到环境水体中,导致自然水体的污染。某些染料在浓度低于1 ppm时就能使接受水体明显着色,所以即便是少量的染料也会污染大面积水体,这不仅影响了水环境的美观而且会减少水体透光量,进而影响水生植物的光合作用,况且,有些染料或其降解产物有毒,甚至能诱发基因突变或致癌。
     传统的处理染料废水的物理化学方法有凝结和絮凝、氧化或臭氧氧化、膜分离和活性炭吸附等,但这些技术并未表现出高效率﹑低成本的优点。活性炭是目前应用最广的染料吸附剂,但活性炭相对较高的价格、高的操作费用和再生所产生的问题阻碍了这项技术的大规模应用。活性炭价格高,且质量越好价格就越高,使用后用溶液再生会产生小体积的二次污染液,而高温再生将导致活性炭及其吸附能力的损失。所以,越来越需要寻找地产的、可更新的低成本材料作为吸附剂用于染料污染的治理。
     一些廉价的植物材料已被直接用做染料废水的吸附剂,这些材料包括:苹果渣、麦草、橘子皮、香蕉皮、玉米轴穗、玉米茎杆、稻壳、大麦壳、碎木片、棕榈果枝、锯屑、树皮、树叶、椰壳纤维、香蕉木髓、蔗渣木髓、水生植物等。但是在我国,尚没有任何用低值植物材料作为染料吸附剂的研究报道,中国是世界上合成染料的最大生产国,作为一个发展中的国家,研发经济高效的染料处理新技术尤为重要。
     本文调查了粉碎的花生壳作为吸附剂去除水溶液中离子型染料的可行性,目的是在中国寻找新的、低值的、具有高效染料去除能力的地产植物材料加强染料废水污染的治理工作。据我们所知,迄今为止,国内外尚没有用花生壳作为染料吸附剂的研究报道。花生壳是一种农产品废弃物,我国的花生壳资源非常丰富,这一生物资源的开发利用必然带给我们明显的经济和社会效益。研究所选的染料是三种阴离子染料:苋菜红(Am)、日落黄(SY)、固绿FCF(FG)和三种阳离子染料:亚甲蓝(MB)、亮甲酚蓝(BCB)、中性红(NR)。研究了各种实验参数对染料吸附的影响,这些因素包括:吸附剂浓度、吸附剂颗粒大小、吸附时间、离子强度、染料浓度和pH值,确定了最佳吸附实验条件。通过化学修饰确定了一些官能团在染料吸附中的作用,用电感耦合等离子发射光谱分析技术阐明了阳离子染料吸附的离子交换机理。
     染料溶液初始pH值等于2时,三种阴离子染料的去除率较高;而pH值高于4时,三种阳离子染料均能被有效去除;除BCB外,其他五种染料吸附率随染料浓度的增加而下降;六种染料的吸附率随吸附剂量的增加而增加;对所有染料而言,吸附剂颗粒越小染料吸附率越高;染料溶液的离子强度明显影响三种阴离子染料的吸附;六种染料的吸附等温线符合Langmuir或Freundlich方程,所有吸附过程都符合准一级反应动力学方程。吸附剂的化学修饰证明,羧基阻碍了阴离子染料的吸附,但羧基在阳离子染料的吸附过程中起着主要的作用。羟基是吸附离子型染料的重要官能团,而氨基的甲基化对离子型染料的吸附影响不大。
     本项研究结果表明,花生壳是良好的离子型染料吸附剂,是一种廉价的染料废水处理生物材料。
Dyes are the organic compounds which can bring bright and firm color to other substances. Today there are more than 10,000 dyes available commercially. Dyes can be classified into three categories: 1. anionic: direct, acid, and reactive dyes, etc; 2. cationic: basic dyes; and 3. non-ionic: disperse dyes. Dyes usually have a synthetic origin and complex aromatic molecular structures which possibly come from coal-tar based hydrocarbons such as benzene, naphthalene, anthracene, toluene, xylene, etc. The complex aromatic molecular structures of dyes make them more stable and more difficult to biodegrade. Synthetic dyes have been increasingly used in the textile, leather, paper, rubber, plastics, cosmetics, pharmaceutical and food industries. The extensive use of dyes often poses pollution problems in the form of colored wastewater discharged into environmental water bodies. For some dyes, the dye concentration of less than 1 ppm in receiving water bodies is highly visible,so that even small quantities of dyes can color large water bodies. This not only affects aesthetic merit but also reduces light penetration and hydrophyte photosynthesis. In addition, some dyes or their metabolites are either toxic or mutagenic and carcinogenic.
     The conventional physical-chemical methods for treating dye wastewater are coagulation and flocculation, oxidation or ozonation, membrane separation and activated carbon adsorption. These technologies do not show significant effectiveness or economic advantage. Activated carbon is the most popular and widely used dye sorbent, but its relatively high price, high operating costs and problems with regeneration hamper its largescale application. Activated carbon is expensive and the higher the quality the greater the cost, furthermore, regeneration using solutions produces a small additional effluent, while regeneration by refractory technique results in loss of sorbent and its uptake capacity. Therefore, there is a growing need in finding low cost, renewable, locally available materials as sorbent for the removal of dye colors.
     Some low cost botanic materials had directly been used as sorbent for dye adsorption from wastewater, which included apple pomace, wheat straw, orange peel, banana peel, maize cob, maize stalk, rice husk, barley husk, wood chip, palm fruit bunch, sawdust, bark, leaf, coir pith, banana pith, bagasse pith and aquatic plants. But in China, yet no any research work about using low cost botanic material as sorbent for removal of dyes from aqueous solution was done. China was the largest producer of synthetic dyes in the world. For a developing nation as China, new, economical and highly effective treatment technologies of dye wastewater were urgently needed.
     In this paper, the feasibility of granular peanut hull as sorbent for removal of ionic dyes from aqueous solution was investigated. The aim of this study was to search for a locally available, low cost and untried botanic material in China with high dye removal capacity in order to enhance the treatment of dye wastewater. To the best of our knowledge, up to now, there was no any report about peanut hull had been used as dye sorbent. Peanut hull is an agricultural waste residue and is widely available in large quantity in China. The exploitation and utilization of this bioresource must bring obvious economic and social benefit to us. The dyes selected as sorbate were three anionic dyes: amaranth (Am), sunset yellow (SY), fast green FCF (FG) and three cationic dyes: methylene blue (MB), brilliant cresyl blue (BCB), neutral red (NR). The effects of various experimental parameters (e.g. sorbent dosage, particle size, contact time, ion strength, initial dye concentration and pH etc.) were examined and optimal experimental conditions were decided. By chemical modification, action of some fuctional groups in dye adsorption was certified. The ion exchange mechanism of cationic dye adsorption was elucidate by ICP-AES.
     At the value of initial pH 2.0, the removal efficiencies of three anionic dyes studied were high and above the value of initial pH 4, three cationic dyes studied could be removed effectively. Except BCB, the adsorption percentages of other five dyes decreased with the increase of initial dye concentrations. The percentages of dyes sorbed increased as the sorbent dose was increased for all dyes studied. The smaller the sorbent particle size the higher the ratios of dyes sorbed for six dyes studied. The ion strength of dye solutions obviously affected adsorption of three anionic dyes. To all six ionic dyes, the isothermal data of adsorption followed the Langmuir or Freundlich models. The adsorption processes conformed the pseudo-first-order rate kinetics. By chemical modification of biomass, some conclusions could been drawn. Carboxyl groups inhibited the adsorption of anionic dyes but they were important in the adsorption of cationic dyes. Hydroxyl groups were important functional groups in the adsorption of ionic dyes. The effect of methylation of amino groups on ionic dye adsorption wasn’t significant.
     The results in this study indicated that granular peanut hull was a good ionic dye sorbent and a low cost biomaterial for dye wastewater treatment.
引文
[1] Nigam, P., Armour, G., Banat, I.M., Singh, D., Marchant, R., 2000. Physical removal of textile dyes from effluents and solid-state fermentation of dye-adsorbed agricultural residues. Bioresour. Technol. 72, 219-226.
    [2] Mishra, G., Tripathy, M., 1993. A critical review of the treatments for decolourization of textile effluent. Colourage 40, 35-38.
    [3] Kamilaki, A., 2000. The removal of reactive dyes from textile effluents - a bioreactor approach employing whole bacterial cells. PhD thesis, UK: University of Leeds.
    [4] Easton, J.R., 1995. The dye maker’s view. In: Cooper, P., editor. Colour in dyehouse effluent. Bradford. UK: Society of Dyers and Colourists. p. 11.
    [5] Greene, J.C., Baughman, G.l., 1996. Effects of 46 dyes on population growth of freshwater green alga Selenastrum capricornutum. Text. Chem. Color., 28, 23-30.
    [6] Clarke, A.E., Anliker, R., 1980. Organic dyes and pigments. In: Hutzinger, (Ed.), The handbook of enviromental chemistry. Berlin. Germany: Springer-Verlag.
    [7] Srivastava, S., Sinha, R., Roy, D., 2004. Toxicological effects of malachite green. Aquatic Toxicol. 66, 319-329.
    [8] Werth, G., 1958. Die erzeugung von storungen im erbgefuge und von tumoren durch experimentelle gewebsanoxie. Arzn. Forsch. 8, 725-744.
    [9] Rao, K.V.K., 1995. Inhibition of DNA synthesis in primary rat hepatocyte cultures by malachite green: a new liver tumor promoter. Toxicol. Lett. 81 (2-3), 107-113.
    [10] Rao, K.V.K., Fernandes, C.L., 1996. Progressive effects of malachite green at varying concentrations on the development of N-nitrosodiethylamine induced hepatic preneoplastic lesions in rats. Tumori 82 (3), 280-286.
    [11] Doerge, D.R., Chang, H.C., Divi, R.L., Churchewell, M.I., 1998. Mechanismfor inhibition of thyroid peroxidase by leucomalahchite green. Chem. Res. Toxicol. 11, 1098-1104.
    [12] Mahudawala, D.M., Redkar, A.A., Wagh, A., Gladstone, B., Rao, K.V., 1999. Malignant transformation of Syrian hamster embryo (SHE) cells in culture by malachite green: an agent of environmental importance. Indian J. Exp. Biol. 37 (9), 904-918.
    [13] Sundarrajan, M., Frenandis, A.Z., Subrahmanyam, G., Prabhudesai, S., Krishnamurthy, S.C., Rao, K.V., 2000. Overexpression of G1/S cyclins and PCNA and their relationship to tyrosine phosphorylation and dephosphorylation during tumor promotion by metanil yellow and malachite green. Toxicol. Lett. 116 (1-2), 119-130.
    [14] Allen, R.L.M., 1971. The chemistry of azo dyes. In: Colour Chemistry, Appleton-Century-Crofts, New York, p. 21.
    [15] Chung, K.T., Cerniglia, C.E., 1992. Mutagenicity of azo dyes: Structure-activity relationships. Mutat. Res. 277, 201-220.
    [16] Fewson, C.A., 1988. Biodegradation of xenobiotic and other persistent compounds: the causes of recalcitrance. Trends Biotechnol. 6, 148-153.
    [17] Seshadri, S., Bishop, P.L., Agha, A.M., 1994. Anaerobic/aerobic treatment of selected azo dyes in wastewater. Waste Manage. 15, 127-137.
    [18] Poots, V.J.P., McKay, G., Healy, J.J., 1976. The removal of acid dye from effluent using natural adsorbents - II Wood. Wat. Res. 10, 1067-1070.
    [19] McKay, G., 1979. Waste colour removal from textile effluents. Am. Dyestuff. Reporter 68, 29-36.
    [20] Slokar, Y.M., Le Marechal, A.M., 1997. Methods of decoloration of textile wastewaters. Dyes Pigments 37, 335-356.
    [21] Pak, D., Chang, W., 1999. Decolorizing dye wastewater with low temperature catalytic oxidation. Wat. Sci. Technol. 40, 115-121.
    [22] Lin, S.H., Lin, C.M., 1993. Treatment of textile waste effluents by ozonation and chemical coagulation. Wat. Res. 27, 1743-1748.
    [23] Xu, Y., Lebrun, R.E., 1999. Treatment of textile dye plant effluent bynanofiltration membrane. Separ. Sci. Technol. 34, 2501-2519.
    [24] Ince, N.H., Gonenc, D.T., 1997. Treatability of a textile azo dye by UV/H2O2. Environ. Technol. 18, 179-185.
    [25] Peralto-Zamora, P., Kunz, A., Gomez de Morales, S., Pelegrini, R., de Capos Moleiro, P., Reyes, J., Duran, N., 1999. Degradation of reactive dyes I. A comparative study of ozonation, enzymatic and photochemical processes. Chemosphere 38, 835-852.
    [26] Sarasa, J., Roche, M.P., Ormad, M.P., Gimeno, E., Puig, A., Ovelleiro, J.L., 1998. Treatment of a wastewater resulting from dyes manufacturing with ozone and chemical coagulation. Wat. Res. 32, 2721-2727.
    [27] Lopez, A., Ricco, G., Ciannarella, R., Rozzi, A., Di Pinto, A.C., Possino, R., 1999. Textile wastewater reuse: ozonation of membrane concentrated secondary effluent. Wat. Sci. Technol. 40, 99-105.
    [28] Yang, Y., Wyatt II, D.T., Bahorsky, M., 1998. Decolorization of dyes using UV/H2O2 photochemical oxidation. Text. Chem. Color. 30, 27-35.
    [29] Namboodri, C.G., Walsh, W.K., 1996. Ultraviolet light/hydrogen peroxide system for decolorizing spent reactive dye bath waste water. Am. Dyes. Rep. March, 15-25.
    [30] Tang, W.Z., An, H., 1995. UV/ TiO2, Photocatalytic oxidation of commercial dyes in aqueous solutions. Chemosphere. 31, 4157-4170.
    [31] Banat, I.M., McMullan, G., Meehan, C., Kirby, N., Nigam, P., Smyth, W.F., Marchant, R., 1999. Microbial decolorization of textile dyes present in textile industries effluent. In: Proceedings of the Industrial Waste Technical Conference, Indianapolis. USA. pp. 1-16.
    [32] Ogutveren, U.B., Kaparal, S., 1994. Colour removal from textile effluents by electrochemical destruction. J. Environ. Sci. Health A 29, 1-16.
    [33] Pelegrini, R., Peralto-Zamora, P., de Andrade, A.R., Reyers, J., Duran, N., 1999. Electrochemically assisted photocatalytic degradation of reactive dyes. App. Catal B-Environ. 22, 83-90.
    [34] Szpyrkowicz, L., Juzzolino, C., Kaul, S.N., 2001. A comparative study onoxidation of disperse dyes by electrochemical process, ozone, hypochlorite and Fenton reagent. Wat. Res. 35, 2129–2136.
    [35] Gahr, F., Hermanutz, F., Opperman, W., 1994. Ozonation - an important technique to comply with new German law for textile wastewater treatment. Wat. Sci. Technol. 30, 255-263.
    [36] Choy, K.K.H., McKay, G., Porter, J.F., 1999. Sorption of acid dyes from effluents using activated carbon. Resour. Conserv. Recy. 27, 57-71.
    [37] Kumar, M.N.V.R., Sridhari, T.R., Bhavani, K.D., Dutta, P.K., 1998. Trends in color removal from textile mill effluents. Colorage 40, 25-34.
    [38] Nasser, N.M., El-Geundi, M.S., 1991. Comparative cost of colour removal from textile effluents using natural adsorbents. J. Chem. Technol. Biotechnol. 50, 257-264.
    [39] Raghavacharya, C., 1997. Colour removal from industrial effluents - a comparative review of available technologies. Chem. Eng. World 32, 53-54.
    [40] Rao, K.L.L.N., Krishnaiah, K., Ashutush, 1994. Colour removal from a dye stuff industry effluent using activated carbon. Indian J. Chem. Technol. 1, 13-19.
    [41] Guo, Y.P., Yang, S.F., Fu, W.Y., Qi, J.R., Li, R.Z., Wang, Z.C., Xu, H.D., 2003, Adsorption of malachite green on micro- and mesoporous rice husk-based active carbon. Dyes Pigments 56, 219–229.
    [42] Namila, D., Mungoor, A., 1993. Dye adsorption by a new low cost material Congo red - 1. Indian J. Environ. 13, 496-503.
    [43] Rajeshwarisivaraj, Sivakumar, S., Senthikumar, P., Subburam, V., 2001. Carbon from Cassava peel, an agricultural waste, as an adsorbent in the removal of dyes and metal ions from aqueous solution. Bioresour. Technol. 80, 233-235.
    [44] Kadirvelu, K., Kavipriya, M., Karthika, C., Radhika, M., Vennilamani, N., Pattabhi, S., 2003. Utilization of various agricultural wastes for activated carbon preparation and application for the removal of dyes and metal ions from aqueous solutions. Bioresour. Technol. 87, 129-132.
    [45] Namasivayam, C., Kavitha, D., 2002. Removal of Congo Red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste. Dyes Pigments 54, 47–58.
    [46] Tsai, W.T., Chang, C.Y., Lin, M.C., Chien, S.F., Sun, H.F., Hsieh, M.F., 2001. Adsorption of acid dye onto activated carbons prepared from agricultural waste bagasse by ZnCl2 activation. Chemsphere 45, 51-58.
    [47] Wu, F.C., Tseng, R.L., Juang, R.S., 1999. Preparation of activated carbons from bamboo and their adsorption abilities for dyes and phenol. J. Environ. Sci. Heath A 34, 1753-1775.
    [48] Malik, P.K., 2003. Use of activated carbons prepared from sawdust and rice-husk for adsorption of acid dyes: a case study of Acid Yellow 36. Dyes Pigments 56, 239-249.
    [49] Balasubramanian, M.R., Muralisankar, I., 1987. Tea dust leaves have been tired as decolorizing agent in the treatment of dye effluents. Indian J. Technol. 29, 471–474.
    [50] Wu, F.C., Tseng, R.L., Juang, R.S., 1999. Pore structure and adsorption performance of the activated carbons prepared from plum kernels. J. Hazard. Mater. B 68, 287-302.
    [51] Poots, V.J.P., McKay, G., Healy, J.J., 1976. The removal of acid dye from effluent using natural adsorbents - I Peat. Wat. Res. 10, 1061-1066.
    [52] Gupta, G.S., Prasad, G., Singh, V.H., 1990. Removal of chrome dye from aqueous solutions by mixed adsorbents: fly ash and coal. Wat. Res. 24, 45-50.
    [53] Ramakrishna, K.R., Viraraghavan, T., 1997. Dye removal using low cost adsorbents. Wat. Sci. Technol. 36, 189-196.
    [54] McKay, G., Ramprasad, G., Pratapamowli, P., 1986. Equilibrium studies for the adsorption of dyestuffs from aqueous solution by low-cost materials. Water, Air, and Soil Poll. 29, 273-283.
    [55] Lin, S.H., 1993. Adsorption of disperse dye by various adsorbents. J. Chem. Technol. Biotechnol. 58, 159-163.
    [56] Bousher, A., Shen, X., Edyvean, R.G.J., 1997. Removal of coloured organicmatter by adsorption onto low-cost waste materials. Wat. Res. 31, 2084-2092.
    [57] Lambert, S.D., Graham, N.J.D., Sollars, C.J., Fowler, G.D., 1997. Evaluation of inorganic adsorbents for the removal of problematic textile dyes and pesticides. Wat. Sci. Technol. 36, 173-180.
    [58] Lee, C.K., Low, K.S., Chow, S.W., 1996. Chrome sludge as adsorbent for color removal. Environ. Technol. 17, 1023-1028.
    [59] Ramakrishna, K.R., Viraraghavan, T., 1998. Use of slag for dye removal. Waste Manage. 17, 483-488.
    [60] Walker, G.M., Hansen, L., Hanna, J.-A., Allen, S.J., 2003. Kinetics of a reactive dye adsorption onto dolomitic sorbents. Wat. Res. 37, 2081-2089.
    [61] Lazaridis, N.K., Karapantsios, T.D., Georgantas, D., 2003. Kinetic analysis for the removal of a reactive dye from aqueous solution onto hydrotalcite by adsorption. Wat. Res. 37, 3023-3033.
    [62] Choi, Y.S., Cho, J.H., 1996. Colour removal from dye wastewater using vermiculite.Environ. Technol. 17, 1169-1180.
    [63] Do?an, M., Alkan, M., 2003. Adsorption kinetics of methyl violet onto perlite. Chemosphere 50, 517-528.
    [64] Hosono, M., Arai, H., Aizawa, M., Yamamoto, I., Shimizu, K., Sugiyama, M., 1993. Decoloration and degradation of azo dye in aqueous solution of supersaturated with oxygen by irradiation of high-energy electron beams. Appl. Rad. Iso. 44, 1199-1203.
    [65] Barr, D.P., Aust, S.D., 1994. Mechanisms white rot fungi use to degrade pollutants. Environ. Sci. Technol. 28, 320-328.
    [66] Chao, W.L., Lee, S.L., 1994. Decoloration of azo dyes by three white rot fungi: influence of carbon source. World J. Microbiol. Biotechnol. 10, 556-559.
    [67] Reddy, C.A., 1995. The potential for white rot fungi in the treatment of pollutants. Curr. Opt. Biotechnol. 6, 320-328.
    [68] Kirby, N., 1999. Bioremediation of textile industry wastewater by white rot fungi. DPhil Thesis, University of Ulster, Coleraine, UK.
    [69] Davis, M.W., Glasser, J.A., Evans, J.W., Lamar, R.T., 1993. Field evaluation of the lignin-degrading fungus Phanerochaete sordida to treat creosote-contaminated soil. Environ. Sci. Technol. 27, 2572-2576.
    [70] Archibald, F., Roy, B., 1992. Production of marganic chelates by laccase from the lignin degrading fungus Trametes versicolor. Appl. Environ. Microbiol. 58, 1496-1499.
    [71] Thurston, C.F., 1994. The structure and function of fungal laccases. Microbiology 140, 19-26.
    [72] Schliephake, K., Lonergan, G.T., 1996. Laccase variation during dye decolourisation in a 200 L packed-bed bioreactor. Biotechnol. Lett. 18, 881-886.
    [73] Lonergan, G., 1992. White-rot-fungi - an environmental panacea? Environ. Biotechnol. 2, 214-217.
    [74] Paszcczynski, A., Crawford, R.C., 1995. Potential for bioremediation of xenobiotic compounds by the white-rot fungus Phanerochaete chrysosporium. Biotechnol. Prog. 11, 368-379.
    [75] Wong, Y., Yu, J., 1999. Laccase-catalyzed decolorization of synthetic dyes. Wat. Res. 33, 3512-3520.
    [76] Young, L., Yu, J., 1997. Ligninase-catalyzed decolorization of synthetic dyes. Wat. Res. 31, 1187-1193.
    [77] Knapp, J.S., Newby, P.S., 1999. The decolorisation of a chemical industry effluent by white-rot fungi. Wat. Res. 33, 575-577.
    [78] Knapp, J.S., Newby, P.S., Reece, L.P., 1995. Decolorization of dyes by wood-rotting basidiomycete fungi. Enzyme and Microbial Technol. 17, 664-668.
    [79] Yesilada, O., Fiskin, K., Yesilada, E., 1995. The use of white-rot fungus Funalia trogii (Malatya) for the decolourization and phenol removal from olive mill wastewater. Environ. Technol. 16, 95-100.
    [80] Fu, Y., Viraraghavan, T., 1999. Publications removal of Acid Blue 29 from an aqueous solution by fungus Aspergillus niger. In: Nikolaidis, N., Erkey, C.,Smets, B.F., (Eds.), Proceedings of the 31st Mid-Atlantic Industrial and Hazardous Waste Conference, Storrs, Conneticut, USA, pp. 510-519 (Published by Technomic Publishing Company, Inc, Lancaster, Pennsylvania, USA).
    [81] Fu, Y., Viraraghavan, T., 2000. Removal of a dye from an aqueous solution by fungus Aspergillus niger. Water Qual. Res. J. Canada 35(1), 95-111.
    [82] Sumathi, S., Phatak, V., 1999. Fungal treatment of bagasse based pulp and paper mill wastes. Environ. Technol. 19, 93-98.
    [83] Zhou, J.L., Banks, C.J., 1991. Removal of humic acid fraction by Rhizopus arrhizus: uptake and kenetic studies. Environ. Technol. 12, 859-869.
    [84] Zhou, J.L., Banks, C.J., 1993. Mechanism of humic acid colour removal from natural waters by fungal biomass biosorption. Chemosphere 27, 607-620.
    [85] Gallagher, K.A., Healy, M.G., Allen, S.J., 1997. Biosorption of synthetic dye and metal ions from aqueous effluents using fungal biomass. In: Wise, D.L., (Ed.), Global Environmental Biotechnology. Elsevier, UK, pp. 27-50.
    [86] Polman, J.K., Breckenridge, C.R., 1996. Biomass-mediated binding and recovery of textile dyes from waste effluents. Textile Chemist and Colorist 28(4), 31-35.
    [87] Corso, C.R., De Angelis, D.F., De Oliveira, J.E., Kiyan, C., 1981. Interaction between the diazo dye, ‘Vermelho Reanil’ P8B. and Neurospora crassa strain 74A. Eur. J. Appl. Microbiol. Biotechnol. 13, 64-66.
    [88] Brahimi-Horn, M.C., Lim, K.K., Liany, S.L., Mou, D.G., 1992. Binding of textile azo dyes by Myrothecum verrucaria-Orange II, 10B (blue) and RS (red) azo dye uptake for textile wastewater decolorization. J. Ind. Microbiol. 10, 31-36.
    [89] Raghukumar, C., Chandramohan, D., Michel Jr., F.C., Reddy, C.A., 1996. Degradation of lignin and decolorization of paper mill bleach plant effluent (BPE) by marine fungi. Biotechnol. Lett. 18, 105-106.
    [90] Michel Jr., F.C., Dass, S.B., Grulke, E.A., Reddy, C.A., 1991. Role of manganese peroxidases of Phanerochaete chrysosporium in the decolorizationof kraft bleach plant effluent. Appl. Environ. Microbiol. 57, 2368-2375.
    [91] Glenn, J.K., Gold, M.H., 1983. Decolorization of several polymeric dyes by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl. Environ. Microbiol. 45, 1741-1747.
    [92] Paszcczynski, A., Pasti-Grigsby, M.B., Goszczynski, S., Crawford, R.L., Crawford, D.L., 1992. Mineralization of sulfonated azo dyes and sulfanilic acid by Phanerochaete chrysosporium and Streptomyces chromofuscus. Appl. Environ. Microbiol. 58, 3598-3604.
    [93] Pasti-Grigsby, M.B., Paszcczynski, A., Goszczynski, S., Crawford, D.L., Crawford, R.L., 1992. Influence of aromatic substitution patterns on azo dye degradability by Streptomyces spp. and Phanerochaete chrysosporium. Appl. Environ. Microbiol. 58, 3605-3613.
    [94] Ollikka, P., Alhonmaki, K., Leppanen, V.M., Glumoff, T., Raijola, T., Suominen, I., 1993. Decolorization of azo, triphenyl methane, heterocyclic, and polymeric dyes by lignin peroxidase isoenzymes from Phanerochaete chrysosporium. Appl. Environ. Microbiol. 59, 4010-4016.
    [95] Zhang, F., Knapp, J.S., Tapley, K.N., 1999. Decolourisation of cotton bleaching effluent with wood rotting fungus.Wat. Res. 33, 919-928.
    [96] Mou, D.G., Lim, K.K., Shen, H.P., 1991. Microbial agents for decolourization of dye wastewater. Biotechnol. Adv. 9, 613-622.
    [97] Miranda, M.P., Benito, G.G., Cristobal, N.S., Nieto, C.H., 1996. Color elimination from molasses wastewater by Aspergillus niger. Bioresour. Technol. 57, 229-235.
    [98] Benito, G.G., Miranda, M.P., De Los Santos, D.R., 1997. Decolorization of wastewater from an alcoholic fermentation process with Trametes versicolor. Bioresour. Technol. 61, 33-37.
    [99] Gingell, R., Walker, R., 1971. Mechanisms of azo reduction by Streptococcus faeclis. II. The role of soluble flavins. Xenobiotica 1(3), 231-239.
    [100] Wuhrmann, K., Mechsner, K., Kappeler, T., 1980. Investigations on rate determining factors in the microbial reduction of azo dyes. Euro. J. Appl.Microbiol. 9, 325-338.
    [101] Horitsu, H., Takada, M., Idaka, E., Tomoyeda, M., Ogawa, T., 1977. Degradation of p-aminoazobenzene by Bacillus subtilis. Euro. J. Appl. Microbiol. 4, 217-224.
    [102] Chang, J.S., Kuo, T.S., 2000. Kinetics of bacterial decolorization of azo dye with Escherichia coli NO3. Bioresour. Technol. 75, 107-111.
    [103] Idaka, E., Ogawa, T., Horitsu, H., Tomoyeda, M., 1978. Degradation of azo compounds by Aeromonas hydrophilia var. 24B. J. Soc. Dyers and Colourists 94, 91-94.
    [104] Ogawa, T., Yatome, C., Idaka, E., Kamiya, H., 1986. Biodegradation of azo acid dyes by continuous cultivation of Pseudomonas cepacia 13NA. J. Soc. Dyers and Colourists 102, 12-14.
    [105] Hu, T.L., 2001. Kinetics of azoreductase and assessment of toxicity of metabolic products from azo dyes by Pseudomonas luteola. Wat. Sci. Technol. 43, 261-269.
    [106] Ogawa, T., Yatome, C., Idaka, E., 1981. Biodegradation of p-aminoazobenzene by continuous cultivation of Pseudomonas Pseudomallei 13NA. J. Soc. Dyers and Colourists 97, 435-437.
    [107] Semde, R., Pierre, D., Geuskens, G., Devleeschouwer, M., Moes, A.J., 1998. Study of some important factors involved in azo derivative reduction by Clostridium perfrigens. Internatio. J. Pharma. 161, 45-54.
    [108] Jinqi, L., Houtian, L., 1992. Degradation of azo dyes by algae. Environ. Poll. 75, 273-278.
    [109] Semple, K.T., Cain, R.B., Schmidt, S., 1999. Biodegradation of aromatic compounds by microalgae. FEMS Microbiol. Lett. 170, 291-300.
    [110] Luther, M., Soeder, C.J., 1987. Some naphthalenesulfonic acids as sulfur sources for the green microalga, Scenedesmus obliquus. Chemosphere 16, 1565-1578.
    [111] Luther, M., Soeder, C.J., 1991. 1-Naphthalenesulfonic acid and sulfate as sulfur sources for the green alga Scenedesmus obliquus. Wat. Res. 25,299-308.
    [112] Soeder, C.J., Hegewald, E., Kneifel, H., 1987. Green microalgae can use naphthalenesulfonic acids as sources of sulfur. Arch. Microbiol. 148, 260-263.
    [113] Robinson, T., Chandran, B., Nigam, P., 2002. Removal of dyes from a synthetic textile dye effluent by biosorption on apple pomace and wheat straw. Wat. Res. 36, 2824-2830.
    [114] Namasivayam, C., Muniasamy, N., Gayatri, K., Rani, M., Ranganathan, K., 1996. Removal of dyes from aqueous solutions by cellulosic waste orange peel. Bioresour. Technol. 57, 37-43.
    [115] Annadurai, G., Juang, R., Lee, D., 2002. Use of cellulose-based wastes for adsorption of dyes from aqueous solutions. J. Hazard. Mater. B92, 263-274.
    [116] Meyer, V., Carlsson, F.H.H., Oellermann, R.A., 1992. Decolourization of textile effluent using a low cost natural adsorbent material. Wat. Sci. Technol. 26, 1205-1211.
    [117] McKay, G., Ramprasad, G., Mowli, P., 1987. Desorption and regeneration of dye colours from low-cost materials. Wat. Res., 21, 375-377.
    [118] Robinson, T., Chandran, B., Nigam, P., 2002. Effect of pretreatments of three waste residues, wheat straw, corncobs and barley husks on dye adsorption. Bioresour. Technol. 85, 119-124.
    [119] Nassar, M.M., 1999. Intraparticle diffusion of basic red and basic yellow dyes on palm fruit bunch. Wat. Sci. Technol. 40, 133-139.
    [120] Abo-Elala, S.I., El-Dib, M.A., 1987. Color removal via adsorption on wood shavings. Sci. Total Environ., 66, 269-273.
    [121] Morais, L.C., Freitas, O.M., Goncalves, E.P., Vasconcelos, L.T., Beca, C.G.G., 1999. Reactive dyes removal from wastewaters by adsorption on eucalyptus bark: variables that define the process. Wat. Res. 33, 979-988.
    [122] Bhattacharyya, K.G., Sarma, A., 2003. Adsorption characteristics of the dye, Brilliant Green, on Neem leaf powder. Dyes Pigments. 57, 211-222.
    [123] Namasivayam, C., Kadirvelu, K., 1994. Coir pith, an agricultural waste by-product, for the treatment of dyeing wastewater. Bioresour. Technol. 48,79-81.
    [124] Namasivayam, C., Prabha, D., Kumutha, M., 1998. Removal of direct red and acid brilliant blue by adsorption on to banana pith. Bioresour. Technol. 64, 77-79.
    [125] McKay, G., El Geundi, E., Nassar, M.M., 1988. External mass transport processes during the adsorption of dyes onto bagasse pith. Wat. Res. 22, 1527-1533.
    [126] McKay, G., El Geundi, E., Nassar, M.M., 1996. Pore diffusion during the adsorption of dyes onto bagasse pith. Process Saf. Environ. 74, 487-502.
    [127] Low, K.S., Lee, C.K., Heng, L.L., 1993. Sorption of basic dyes by Hydrilla verticillata. Environ. Technol. 14, 115-124.
    [128] Low, K.S., Lee, C.K., Tan, K.K., 1995. Biosorption of basic dye by water hyacinth roots. Bioresour. Technol. 52, 79-83. .
    [1] Nigam, P., Armour, G., Banat, I.M., Singh, D., Marchant, R., 2000. Physical removal of textile dyes from effluents and solid-state fermentation of dye-adsorbed agricultural residues. Bioresour. Technol. 72, 219-226.
    [2] Kamilaki, A., 2000. The removal of reactive dyes from textile effluents - a bioreactor approach employing whole bacterial cells. PhD thesis, UK: University of Leeds.
    [3] Easton J.R., 1995. The dye maker’s view. In: Cooper, P., (Ed.), Colour in dyehouse effluent. Bradford, UK: Society of Dyers and Colourists. p. 11.
    [4] McMullan, G., Meehan, C., Conneely, A., Kirby, N., Robinson, T., Nigam, P., Banat, I.M., Marchant, R., Smyth, W.F., 2001. Microbial decolourisation and degradation of textile dyes. Appl. Microbiol. Biotechnol. 56, 81-87.
    [5] Chen, K.C., Wu, J.Y., Huang, C.C., Liang, Y.M., Hwang, S.C.J., 2003. Decolorization of azo dye using PVA-immobilized microorganisms. J. Biotechnol. 101, 241-252.
    [6] 杨智宽,1998.污染控制化学.武汉:武汉出版社.p. 96.
    [7] 马青山,1988.絮凝化学和絮凝剂.北京:中国环境科学出版社.p. 38.
    [8] Panswed, J., Wongchaisuwan. S., 1986. Mechanism of dye wastewater color removal by magnesium carbonate-hydrated basic. Wat. Sci. Technol. 18, 139-144.
    [9] Malik, P.K., Saha, S.K., 2003. Oxidation of direct dyes with hydrogen peroxide using ferrous ion as catalyst. Sep. Purif. Technol. 31, 241-250.
    [10] Koch, M., Yediler, A., Lienert, D., Insel, G., Kettrup, A., 2002. Ozonation of hydrolyzed azo dye reactive yellow 84 (CI). Chemosphere 46, 109-113.
    [11] Ciardelli, G., Corsi, L., Marucci, M., 2000. Membrane separation for wastewater reuse in the textile industry. Resour. Conser. Recycl. 31, 189-197.
    [12] Venkata, R.B., Sastray, C.A., 1987. Removal of dyes from water and wastewater by adsorption. Ind. J. Environ. Prot. 7, 363-376.
    [13] Guo, Y.P., Yang, S.F., Fu, W.Y., Qi, J.R., Li, R.Z., Wang, Z.C., Xu, H.D., 2003, Adsorption of malachite green on micro- and mesoporous rice husk-based active carbon. Dyes Pigments 56, 219–229.
    [14] Namila, D., Mungoor, A., 1993. Dye adsorption by a new low cost material Congo red - 1. Indian J. Environ. 13, 496-503.
    [15] Rajeshwarisivaraj, Sivakumar, S., Senthikumar, P., Subburam, V., 2001. Carbon from Cassava peel, an agricultural waste, as an adsorbent in the removal of dyes and metal ions from aqueous solution. Bioresour. Technol. 80, 233-235.
    [16] Kadirvelu, K., Kavipriya, M., Karthika, C., Radhika, M., Vennilamani, N., Pattabhi, S., 2003. Utilization of various agricultural wastes for activated carbon preparation and application for the removal of dyes and metal ions from aqueous solutions. Bioresour. Technol. 87, 129-132.
    [17] Namasivayam, C., Kavitha, D., 2002. Removal of Congo Red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste. Dyes Pigments 54, 47–58.
    [18] Tsai, W.T., Chang, C.Y., Lin, M.C., Chien, S.F., Sun, H.F., Hsieh, M.F., 2001. Adsorption of acid dye onto activated carbons prepared from agricultural waste bagasse by ZnCl2 activation. Chemsphere 45, 51-58.
    [19] Wu, F.C., Tseng, R.L., Juang, R.S., 1999. Preparation of activated carbons from bamboo and their adsorption abilities for dyes and phenol. J. Environ. Sci. Heath A 34, 1753-1775.
    [20] Malik, P.K., 2003. Use of activated carbons prepared from sawdust and rice-husk for adsorption of acid dyes: a case study of Acid Yellow 36. Dyes Pigments 56, 239-249.
    [21] Balasubramanian, M.R., Muralisankar, I., 1987. Tea dust leaves have been tired as decolorizing agent in the treatment of dye effluents. Indian J. Technol. 29, 471–474.
    [22] Wu, F.C., Tseng, R.L., Juang, R.S., 1999. Pore structure and adsorption performance of the activated carbons prepared from plum kernels. J. Hazard.Mater. B 68, 287-302.
    [23] Poots, V.J.P., McKay, G., Healy, J.J., 1976. The removal of acid dye from effluent using natural adsorbents - I Peat. Wat. Res. 10, 1061-1066.
    [24] Jano?, P., Buchtová, H., Ryznarová, M., 2003. Sorption of dyes from aqueous solutions onto fly ash. Wat. Res. 37, 4938-4944.
    [25] Ramakrishna, K.R., Viraraghavan, T., 1997. Dye removal using low cost adsorbents. Wat. Sci. Technol. 36, 189-196.
    [26] McKay, G., Ramprasad, G., Pratapamowli, P., 1986. Equilibrium studies for the adsorption of dyestuffs from aqueous solution by low-cost materials. Water, Air, and Soil Poll. 29, 273-283.
    [27] Nasser, N.M., El-Geundi, M.S., 1991. Comparative cost of colour removal from textile effluents using natural adsorbents. J. Chem. Technol. Biotechnol. 50, 257-264.
    [28] Lin, S.H., 1993. Adsorption of disperse dye by various adsorbents. J. Chem. Technol. Biotechnol. 58, 159-163.
    [29] Bousher, A., Shen, X., Edyvean, R.G.J., 1997. Removal of coloured organic matter by adsorption onto low-cost waste materials. Wat. Res., 31, 2084-2092.
    [30] Lambert, S.D., Graham, N.J.D., Sollars, C.J., Fowler, G.D., 1997. Evaluation of inorganic adsorbents for the removal of problematic textile dyes and pesticides. Wat. Sci. Technol. 36, 173-180.
    [31] Lee, C.K., Low, K.S., Chow, S.W., 1996. Chrome sludge as adsorbent for color removal. Environ. Technol. 17, 1023–1028.
    [32] Ramakrishna, K.R., Viraraghavan, T., 1998. Use of slag for dye removal. Waste Manage. 17, 483-488.
    [33] Walker, G.M., Hansen, L., Hanna, J.-A., Allen, S.J., 2003. Kinetics of a reactive dye adsorption onto dolomitic sorbents. Wat. Res. 37, 2081-2089.
    [34] Lazaridis, N.K., Karapantsios, T.D., Georgantas, D., 2003. Kinetic analysis for the removal of a reactive dye from aqueous solution onto hydrotalcite by adsorption. Wat. Res. 37, 3023-3033.
    [35] Choi, Y.S., Cho, J.H., 1996. Colour removal from dye wastewater usingvermiculite.Environ. Technol. 17, 1169-1180.
    [36] Do?an, M., Alkan, M., 2003. Adsorption kinetics of methyl violet onto perlite. Chemosphere 50, 517-528.
    [37] Robinson, T., Chandran, B., Nigam, P., 2002. Removal of dyes from a synthetic textile dye effluent by biosorption on apple pomace and wheat straw. Wat. Res. 36, 2824-2830.
    [38] Sivaraj, R., Namasivayam, C., Kadirvelu, K., 2001. Orange peel as an adsorbent in the removal of Acid violet 17(acid dye) from aqueous solutions. Waste Manage. 21, 105-110.
    [39] Annadurai, G., Juang, R., Lee, D., 2002. Use of cellulose-based wastes for adsorption of dyes from aqueous solutions. J. Hazard. Mater. B92, 263-274.
    [40] Robinson, T., Chandran, B., Nigam, P., 2002. Removal of dyes from an artificial textile dye effluent by two agricultural waste residues,corncob and barley husk. Environ. Interna. 28, 29-33.
    [41] Nawar, S.S., Doma, H.S.,1989. Removal of dyes from effluents using low-cost agricultural by-products. Sci. Total Environ. 79, 271-279.
    [42] Meyer, V., Carlsson, F.H.H., Oellermann, R.A., 1992. Decolourization of textile effluent using a low cost natural adsorbent material. Wat. Sci. Technol. 26, 1205-1211.
    [43] Poots, V.J., McKay, G., Heakt, J.J., 1976. The removal of acid dye from effluent using natural adsorbents - II Wood. Wat. Res. 10, 1067-1070.
    [44] Nassar, M.M., 1999. Intraparticle diffusion of basic red and basic yellow dyes on palm fruit bunch. Wat. Sci. Technol. 40, 133-139.
    [45] Nassar, M.M., Hamoda, M.F., Radwan, G.H.,1995. Adsorption equilibria of basic dyestuff onto palm-fruit bunch particles. Wat. Sci. Technol.32, 27-32.
    [46] Abo-Elala, S.I., El-Dib, M.A., 1987. Color removal via adsorption on wood shavings. Sci. Total Environ., 66, 269-273.
    [47] Khattri, S.D., Singh, M.K., 2000. Colour removal from synthetic dye wastewater using a bioadsorbent. Water, Air, and Soil Poll. 120, 283-294.
    [48] Morais, L.C., Freitas, O.M., Goncalves, E.P., Vasconcelos, L.T., Beca, C.G.G., 1999. Reactive dyes removal from wastewaters by adsorption on eucalyptus bark: variables that define the process. Wat. Res. 33, 979-988.
    [49] Bhattacharyya, K.G., Sarma, A., 2003. Adsorption characteristics of the dye, Brilliant Green, on Neem leaf powder. Dyes Pigments 57, 211-222.
    [50] Namasivayam, C., Kadirvelu, K., 1994. Coir pith, an agricultural waste by-product, for the treatment of dyeing wastewater. Bioresour. Technol. 48, 79-81.
    [51] Namasivayam, C., Prabha, D., Kumutha, M., 1998. Removal of direct red and acid brilliant blue by adsorption on to banana pith. Bioresour. Technol. 64, 77-79.
    [52] McKay, G., El Geundi, E., Nassar, M.M., 1988. External mass transport processes during the adsorption of dyes onto bagasse pith. Wat. Res. 22, 1527-1533.
    [53] McKay, G., El Geundi, E., Nassar, M.M., 1996. Pore diffusion during the adsorption of dyes onto bagasse pith. Process Saf. Environ. 74, 487-502.
    [54] Low, K.S., Lee, C.K., Heng, L.L., 1993. Sorption of basic dyes by Hydrilla verticillata. Environ. Technol. 14, 115-124.
    [55] Lee, C.K., Low, K.S., Chew, S.L., 1999. Removal of anionic dyes by water hyacinth roots. Advan. in Environ. Res. 3, 343-351.
    [56] Johnson, P.D., Watson, M.A., Brown, J., Jefcoat, I.A., 2002. Peanut hull pellets as a single use sorbent for the capture of Cu(II) from wastewater. Waste Manage. 22, 471-480.
    [57] Kapoor, A., Viraraghavan, T., 1997. Heavy metal biosorption sites in Aspergillus niger. Bioresour. Technol. 61, 221-227.
    [58] Fu, Y., Viraraghavan, T., 2002. Dye biosorption sites in Aspergillus niger. Bioresour. Technol. 82, 139-145.
    [59] Tiemann, K.J., Gamez, G., Dokken, K., Parsons, J.G., Gardea-Torresdey, J.L., 2002. Chemical modification and X-ray absorption studies for lead(II) binding by Medicago sativa (alfalfa) biomass. Microchem. J. 71, 287-293.
    [60] Bai, R.S., Abraham, T.E., 2002. Studies on enchancement Cr(VI) biosorption by chemically modified biomass of Rhizopus nigricans. Wat. Res. 36, 1224-1236.
    [61] Atalla RH. The structure of cellulose: Recent development. In: Soltes EJ, (Ed.), Wood and Agricultural Residues-Research on Use for Feed, Fuels, and Chemicals, Academic, New York, 1983. p. 59-77.
    [62] Namasivayam, C., Radhika, R., Suba, S., 2001. Uptake of dyes by a promising locally available agricultural solid waste: coir pith. Was. Manage. 21, 381-387.
    [63] Waranusantigul, P., Pokethitiyook, P., Kruatrachue, M., Upatham, E.S., 2003. Kinetics of basic dye (methylene blue) biosorption by giant duckweed (Spirodela polyrrhiza). Environ. Poll. 125, 385-392.
    [64] Low, K.S., Lee, C.K., Tan, K.K., 1995. Biosorption of basic dye by water hyacinth roots. Bioresour. Technol. 52, 79-83.
    [65] Nassar, M.M., Magdy, Y.H., 1997. Removal of different basic dyes from aqueous solutions by adsorption on palm-fruit bunch particles. Chem. Engine. J. 66, 223-226.
    [66] Robinson, T., Chandran, B., Nigam, P., 2002. Effect of pretreatments of three waste residues, wheat straw, corncobs and barley husks on dye adsorption. Bioresour. Technol. 85, 119-124.
    [67] Robinson, T., Chandran, B., Naidu, G.S., Nigam, P., 2002. Studies on the removal of dyes from a synthetic textile effluent using barley husk in static-batch mode and in a continuous flow, packed-bed, reactor. Bioresour. Technol. 85, 43-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700