紫色土丘陵区土壤及养分流失机制与预测模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤及养分流失机制与预测模型研究是当前土壤侵蚀和非点源污染研究领域的核心内容,也是多学科目前共同关注的焦点。紫色土是主要分布于我国且集中分布于长江中上游地区的一种侵蚀型的高生产力岩性土,该区域是我国重要的粮食基地,但强烈的水土及养分流失不仅导致该地区土地生产力退化,而且给下游水体带来了日趋严重的泥沙和化学污染等环境问题,同时为长江防洪安全及水利设施安全埋下了隐患。
    本研究结合中欧合作项目,以川中紫色土丘陵区三个具有不同集水面积、物理特征和土地利用方式的典型小流域为研究对象,通过对流域三年间野外降雨、径流、土壤及养分流失等过程连续的全方位的观测,结合流域土地利用的变化,从流域尺度揭示了紫色土丘陵区径流产生机制,阐明了土壤及养分流失对不同雨型、空间尺度、土地利用和流域种植模式变化等的响应特征,分析了其主要影响因子,并提出了相应的预测模型,旨在为紫色土丘陵区小流域水土及养分流失治理和非点源污染的管理、评价与调控提供科学依据。
    通过研究,取得的主要结论及创新点如下:
    1. 紫色土丘陵区小流域降雨产流机制为典型的蓄满产流机制,径流成分包括地表径流、壤中流和地下径流。次降雨径流过程表现为与高强度降雨过程相对应的大流量短历时的单峰形地表径流与滞后于地表径流低流量长历时的壤中流和地下径流过程的复合形式,壤中流和地下径流的各单峰以24 小时为周期出现。
    2. 通过对0~2.5 cm,0~5 cm,0~10 cm土层土壤养分含量的测定与对比,论证了监测紫色土丘陵区小流域地表径流过程土壤养分流失时的土样采集深度。监测林地利用为主小流域地表径流过程土壤养分流失时的土样采集深度以小于2.5 cm为佳;对于其他土地利用类型的流域而言,除土壤磷素流失监测时要求与林地的相似外,其他种类养分的监测可选用0~5 cm的采样深度。
    3. 紫色土丘陵区小流域次降雨径流过程含沙量变化表现为锯齿状平缓下降形、对数递减形和峰状起伏形三种形式;间歇型降雨侵蚀过程中径流含沙量最高(9.58±10.90
Mechanism and simulation of soil and nutrient losses have been an interdisciplinary focus with evolvement of soil erosion and expansion of non-point source pollution in recent years. Purple soil is a lithologic soil with high productivity but characterized by severe erosion. It is mostly distributed in upper stream region of Yangtze River. The region is an important food bases in China, however, unreasonable reclamation and land use methods have accelerated soil erosion process and losses of soil nutrient. This had not only caused the irreversible loss of soil resources and thus limited the increase of land productivity, but also threaten downstream water environmental quality and water conservancy.
    Three small agro-watersheds with different catchments area, physical characteristic and land use type were employed to investigate mechanism of soil and nutrient losses in purple soil region in the middle of Sichuan province combining closely with Euro-Chi cooperation projects. Three-year natural rainfall events, corresponding runoff process, soil, and nutrient loss process together with change of planting pattern were sequentially observed. The mechanisms of runoff generation were discovered from watersheds scale. The characteristics of soil and nutrient losses in response to rainfall type, spatial scale variability, land use change and planting pattern were set out. Based on the response and the key influential factors, the forecasting model was put forward. The objectives were to serve for reducing, controlling soil, and nutrient loss and evaluating the status of non-point source pollution in agro-watersheds of this region.
    The main conclusions and innovations were following.
    1. The mechanisms of runoff generation in purple hilly area could be characterized by saturation-excess with the components of surface runoff, subsurface runoff and base flow. The process of runoff behaved a compound type of single-peak-shape hydrograph of surface runoff with higher flow rate and shorter duration, which response the high intense rainfall process, and the following multi-peak-shape hydrograph of subsurface runoff and base flow with lower flow rate and longer duration. The peak period during the processes of subsurface runoff and base flow was 24 hour. 2. The reasonable depth for soil sampling during forecasting the loss of soil nutrient by surface runoff was demonstrated through the measurement and analysis of nutrient content among 0~2.5 cm, 0~5 cm and 0~10 cm soil layers. The depth of 2.5 cm below was proved to be reasonable for taking soil sample to forecast the loss of soil nutrient by surface runoff in woodland-dominated watershed, while 0~5 cm was feasible for other watersheds but to forecast soil phosphorus loss, which should be 2.5 cm below. 3. Sediment concentration behaved three types as indention and descending trend, logarithm-decreasing trend and peak-shape undulation trend in purple soil watersheds. The sediment concentration was highest (9.58±10.90 g.l-1) under the erosion of IM-type rainfalls (the duration is discontinuous, having obvious segmentation phenomenon during rainfall process). While the lowest sediment concentration (1.13±0.58 g.l-1) was found during the erosion of PP-type rainfalls (the high-intensity-rainfall duration appeared in the prophase of rainfall process). The peak flow rate was proved to be the main influential factors of soil loss in woodland-dominated watersheds. While the main factors are rainfall erosivity factor in other watersheds. Based on the flow rate, power function was put forward to forecast sediment concentration in surface runoff during erosion of a rainfall event. 4. Nitrate nitrogen was the main form of N loss, which accounting above 80 percent of N loss by surface runoff. The peak flow rate was proved to be the main influential factors of nitrate nitrogen losses in woodland-dominated watersheds, while the main factors in other watersheds are total runoff amount. Based on the flow rate, Logarithm-decreasing function was put forward to forecast nitrate nitrogen concentration in surface runoff during erosion of a rainfall event. The loss of soil ammonium nitrogen was strongly affected by the change of planting
    pattern and vegetation cover degree. The concentration of ammonium nitrogen in surface runoff in interplant pattern was much higher than that of in monoculture pattern. With the increase of vegetation cover degree, the loss of soil ammonium nitrogen increased in woodland-dominated watershed but decreased in farmland-dominated watershed. The average concentration of nitrogen in surface runoff in farmland-dominated watershed and the average concentration of water-solute phosphorus in watersheds with various landscape structures were remarkable high, which exceeded 10 to 24 times than nitrogen critical value of eutrophication and 2 to 19 times than phosphorus critical value of eutrophication, respectively. 5. Relationships of the concentrations of ammonium nitrogen and water-solute phosphorus in surface runoff and flow rate both took on power function decreasing in woodland-dominated watersheds, while they showed logarithm decreasing and power function increasing relationship with sediment concentration in farmland-dominated watersheds, respectively. During the erosion of two rainfalls with a short interval period (less than 5 days), the concentration of sediment and water solute phosphorus in surface runoff during erosion of the latter rainfall were lower than that of the former. In farmland-dominated watershed, the concentration of nitrate nitrogen in surface runoff of the latter rainfall was significantly higher than that of the former. No significant difference was found for the loss of ammonium nitrogen in the two rainfalls.
引文
[1] 唐克丽主编. 中国水土保持[M]. 北京:科学出版社,2003,261~277.
    [2] 刘秉正,吴发启编著. 土壤侵蚀[M]. 西安:陕西人民出版社,1997,136~151.
    [3] 王礼先主编. 水土保持学[M]. 北京:中国林业出版社,1997,3~9.
    [4] 傅伯杰,陈利顶,王军等. 土地利用结构与生态过程[J]. 第四纪研究,2003,23(3):247~255
    [5] Burt, T. P. & Johnes, P. J. Managing water quality in agricultural catchments[J].Transactions of the Institute of British Geographers, 1997, 21, 1, 61~68 .
    [6] Carruthers, I., Rosegrant, M.W., Seckler, D. Irrigation and food security in the 21st century [J]. Irrigation and Drainage Systems, 1997, 11(2), 83~101.
    [7] Foy RH, Kirk M. Agriculture and Water Quality: A Regional Study [J]. J.C.I.W.E.M. (Journal of the Chartered Institution of Water and Environmental Management), 1995, 9(3):247~256.
    [8] Jayal, N. D. Destruction of water resources: the most critical ecological crisis of East Asia [J]. Ambio, 1985, 14, 95~98.
    [9] 陈利顶,傅伯杰. 农田生态系统管理与非点源污染控制[J]. 环境科学,2000,21(2):98~100.
    [10] 董维红. 我国农村水环境非点源污染研究进展[J]. 世界地质,2002,21(3):57~62.
    [11] 何萍,王家骥. 非点源污染控制与管理研究的现状,困境与挑战[J]. 农业环境保护,1999,18(5):234~237.
    [12] Bouraoui F. Development of a continuous, physically based, distributed parameter, nonpoint source model [D]. Blacksburg, VA.: Virginia Water Resources Research Center, Virginia Polytechnic Institute and State University, 1994.
    [13] Foster GR, Meyer LD, Onstad CA. A runoff erosivity factor and variable slope length exponents for soil loss estimates [J]. Transactions of the ASAE, 1977, 20(4): 683~687.
    [14] Curt Forsberg. The large-scale flux of nutrients from land to water and the eutrophication of lakes and marine waters [J]. Marine Pollution Bulletin, 1994, 29(6):409~413.
    [15] 贺缠生. 非点源污染管理与控制[J]. 环境科学,1998,19(5):87~91.
    [16] 张乃明. 我国农业非点源污染研究概况与展望[J]. 土壤与环境,2002,11(1):101~103.
    [17] 郑一,王学军. 非点源污染研究的进展与展望[J]. 水科学进展,2002,13(1):105~111.
    [18] Yen B.C., Wenzel H.G. Dynamic equations for steady spatially varied flow [J]. Journal of the Hydraulics Division, ASAE, 1970, 96, 801~814.
    [19] Todini, E. Rainfall-runoff modeling: past, present and future, J. Hydrology, 1988, 100:341~ 352.
    [20] Spolia SK, Chander S. Modeling of surface runoff systems by an ARMA model [J]. Journal of Hydrology, 1974, 22(3~4): 317~332.
    [21] Shulttleworth, W.J., Macro-hydrology-the new challenge for process hydrology [J]. J. Hydrology, 1988, 100:239~268.
    [22] Youngs, E.G. Soil physics and hydrology [J]. J. Hydrology, 1988, 100(1~3):411~433.
    [23] Strebel, O., Duynisveld, W. H. M., B?ttcher, J. Nitrate pollution of groundwater in Western Europe [J]. Agriculture, Ecosystems & Environment, 1989, 26(3): 189~214.
    [24] Power, J. F., Schepers, J. S. Nitrate contamination of groundwater in North America [J]. Agriculture, Ecosystems & Environment, 1989, 26(3): 165~187.
    [25] Johnes, P. J. and Butterfield, D. Landscape, regional and global estimates of N flux form land to ocean: errors and uncertainties [J]. Biogeochemistry, 2002, 57/58, 429~476.
    [26] Kuylenstierna, J. L., Bjorklund, G. and Najlis, P. Sustainable water future with global implications: everyone’s responsibility [J]. Natural Resources Forum, 1997, 21(3), 181~190.
    [27] Owens, L.B., Edwards, W.M., Van Keuren, R.W. Base flow and storm flow transport of nutrients from mixed agricultural watersheds [J]. J. Environ. Qual., 1991, 20, 407~414.
    [28] 张建云.非点源污染模型研究[J]. 水科学进展,2002,13(5):547~551.
    [29] Knisel WG CREAMS: A field scale model for Chemicals, Runoff, and Erosion from Agricultural Management Systems[R]. Conservation Research Report No. 26. US Department of Agriculture, Washington DC, 1980.
    [30] Lane, L.J. and Foster, G.M... Concentrated flow relationships [A]. In: Knisel, W.(Ed.),CREAMS: A field-scale model for Chemicals, Runoff and Erosion from Agricultural Management Systems, U.S. Department of Agriculture, Conservation Research Report, 1980, 26, 474~485.
    [31] Pionke HB, Gbrek WJ, Sharpley AN. Critical area controls on water quality in an agricultural watershed located in the Chesapeake basin[J]. Ecology Engineering, 2000, 14:325~335.
    [32] Young, RA, Onstad CA, Bosch DD et al. AGNPS, Agricultural Non-Point Source Pollution Model: a watershed analysis tool[R]. US Department of Agriculture, conservation Research Report, 1987, 35, 80.
    [33] Young, RA, Onstad CA, Bosch DD et al. AGNPS, Agricultural Non-Point Source Pollution Model for evaluating agricultural watersheds [J]. J. Soil Water Conservation, 1989, 44:168~173.
    [34] De Roo APJ, offermans RJE, Cremers NHDT. LISEM: a single event physically based hydrologic and soil erosion model for drainage basin. II: Sensitivity analysis, validation and application [J]. Hydrology Process, 1996, 10: 1119~1126.
    [35] De Roo APJ, Wesseling CG, Ritsema CJ. LISEM: a single event physically based hydrologic and soil erosion model for drainage basin. I: Theory input and output [J]. Hydrology Process 1996, 10:1107~1117.
    [36] Karen A, Poiani et al (卿太明译).建立在GIS 上德湿润地区非点源污染模型[J].水土保持科技情报,1997,1: 34~37.
    [37] Lenzi MA, Di Luzio M. Surface runoff, soil erosion and water quality modeling in the Alpone watershed using AGNPS integrated with a GIS [J]. European Journal Agronomy, 2001, 6:1~14.
    [38] Ascough, J.C.Ⅱ, Baffaut, C., Nearing, M.A. The WEPP watershed model: Ⅰ.Hydrology and erosion [J]. Transactions of the ASAE, 1996, 40(4): 921~933.
    [39] Baffaut, C, Nearing, MA, Ascough, JCⅡ. The WEPP watershed model: ⅡSensitivity analysis and discretization on small watershed [J]. Transactions of the ASAE, 1996, 40(4):935~943.
    [40] Laflen J M, Leonard J L, Foster G R. WEPP a new generation of erosion prediction technology J of Soil and Water Cons[J]. 1991, 46 (1): 34-38.
    [41] Lucy O’Shea. Schreiber An economic approach to reducing water pollution: point and diffuse sources [J]. The Science of the Total Environment, 2002, 282/283, 49~63.
    [42] 温灼如,苏逸深,刘子靖等. 苏州水网城市暴雨径流污染的研究[J]. 环境科学,1991,(3):75~79.
    [43] 夏青,庄大邦,宁洁等. 计算非点源污染负荷的流域模型[J]. 中国环境科学,1985,4:23~30.
    [44] 赵晓光. 黄土塬区坡面水蚀作用过程[D].中国科学院水利部水土保持研究所博士学位论文,1999.
    [45] 赵鸿雁. 水土流失系统与能量交换途径的探讨[J]. 水土保持学报,1993,7(1):61~68.
    [46] 贺宝根,周乃晟,高效江等. 农田非点源污染研究中的降雨径流关系—SCS 法的修正[J]. 环境科学研究,2001,14(3):49~51.
    [47] 李勇,徐晓琴,朱显谟等. 植物根系与土壤抗冲性[J]. 水土保持学报,1993,7(3):11~18.
    [48] 李勇,朱显谟,田积莹等. 黄土高原土壤抗冲性机理初步研究[J]. 科学通报,199(04):390~393.
    [49] 吕喜玺,沈荣明. 土壤可蚀性因子K 值的初步研究[J]. 水土保持学报,1992,6(1):63~70.
    [50] 唐克丽等. 杏子河流域坡耕地水土流失及其防治[J]. 水土保持通报,1983, 3(5):43~48.
    [51] 赵人俊. 流域水文模拟—新安江模型与陕北模型[J]. 水利出版社,1984.
    [52] 张兴昌,邵明安. 坡地土壤氮素与降雨径流的相互作用机理及模型[J]. 地理科学进展,2000,19(2):128~136.
    [53] 李怀恩,沈晋,刘玉生. 流域非点源污染模型的建立与应用实例[J]. 环境科学学报,1997,17(2):141~147.
    [54] 李怀恩. 透水性流域非点源产污模型的初步研究[J]. 水利学报,1998,2:16~19.
    [55] 田均良,周佩华,刘普灵等,土壤侵蚀REE 示踪法研究初报[J]. 水土保持学报,1992,6(4):23~27.
    [56] 芮孝芳. 关于降雨产流机制的几个问题的讨论[J]. 水利学报,1996,9,22~26.
    [57] 中国科学院成都分院土壤研究室. 中国紫色土(上篇)[M]. 北京:科学出版社,1991, 1~10 .
    [58] 全国土壤普查办公室编. 中国土壤[M]. 北京:中国农业出版社,1996,534~550.
    [59] 钟祥浩. 紫色土研究的回顾与展望[J]. 山地研究,1996,14(增):1~2.
    [60] 朱波,陈实,游祥等. 紫色土退化旱地的肥力恢复与重建[J]. 土壤学报,2002,39(5):743~749.
    [61] 赵燮京,刘定辉. 四川紫色丘陵区旱作农业的土壤管理与水土保持[J]. 水土保持学报,2002,16(5):6~10.
    [62] 余剑如,刘载生. 长江上游的水土流失与河流泥沙[J]. 水土保持学报, 1988,2(1):1~15.
    [63] 陈一兵,Kim T. 紫色土渗透性的对比研究[J]. 水土保持通报,1997,17(2):11~14.
    [64] 蔡崇法,丁树文,张光远等. 三峡库区紫色土坡地养分状况及养分流失[J]. 地理研究,1996,15(3):78~85.
    [65] 蔡强国,吴淑安. 紫色土陡坡地不同土地利用对水土流失过程的影响[J]. 水土保持通报,1998,18(2):1~8.
    [66] 何毓蓉,宫阿都,雷加容. 紫色土的粘土矿物组成与粘粒活性[J]. 西南农业学报,1999,12,52~55.
    [67] 雷加容,何毓蓉,余敖. 紫色土有机胶体与肥力关系[J]. 西南农业学报,2003,16(4):85~89.
    [68] 骆东奇,侯春霞,魏朝富等. 紫色土团聚体抗蚀特征研究[J]. 水土保持学报,2003,17(2):20~23.
    [69] 刘刚才,罗志平,张先婉. 川中丘陵区土壤侵蚀及其P 值得确定[J]. 水土保持学报,1993,7(2):40~44.
    [70] 李勉,李占斌,刘普灵. 川中紫色丘陵区土壤侵蚀研究进展[J]. 水土保持学报,2002,16(1):72~75.
    [71] 何长高,尹忠东. 紫色土区土壤侵蚀对土地生产潜力的影响研究[J]. 水土保持学报,2001, 15(4):110~114.
    [72] 何毓蓉张丹宫阿都. 长江上游退耕还林区的土壤退化与肥力建设[J]. 山地学报,2000,18(6):526~529.
    [73] 林超文,陈一兵. 四川盆地遂宁组(J35)母质发育紫色土的平衡施肥与水土保持[J].西南农业学报,2001,14(增刊):26~28.
    [74] 张奇,林超文,杨文元等. 川中丘陵小流域流失特征与调控研究[J]. 水土保持学报,1997,3(3):38~45.
    [75] 何毓蓉主编. 中国紫色土(下)[M]. 北京:科学出版社,2003.
    [76] 史德明. 长江流域水土流失及其防治[J]. 长江流域资源与环境,1992,1(1):62~70.
    [77] 朱仲麟,罗晓川. 紫色土丘陵农区土壤保护试验站建设,水土流失动态监测和防治技术[J]. 土壤农化通报,1992,7(1,2):1~17.
    [78] 吕甚悟,陈谦,袁绍良等. 紫色土坡耕地水土流失试验分析[J]. 山地学报,2000,18(6):520~525.
    [79] 张奇. 川中丘陵区降雨特性与土壤流失量关系探讨[J]. 土壤农化通报,1992,7(1,2):35~40.
    [80] 杨文元,张奇,张建华等. 紫色丘陵区土壤抗蚀性研究[J]. 水土保持研究,1997,3(2):22~28.
    [81] 姜万勤. 川中丘陵区旱坡地水土流失规律分析[J]. 人民长江,1996,27(6):34~35.
    [82] 李宪文. 四川紫色土区小流域产流产沙和养分流失特征及其动态模拟[R]. 南京:中国科学院南京土壤研究所博士后报告. 2000,51~61..
    [83] 李宪文,史学正,Ritema C. 四川紫色土区土壤养分径流和泥沙流失特征研究[J]. 资源科学,2002,24(6):22~28.
    [84] 朱益玲,刘洪斌,江希流. 江津市紫色土中N、P 养分元素区域空间变异性研究[J].环境科学2004,25(1):138~143.
    [85] 许峰,蔡强国,吴淑安等. 坡地等高植物篱带间距对土壤表土养分流失的影响[J]. 土壤侵蚀与水土保持学报, 1999,5(2):23~29.
    [86] 许峰,蔡强国,吴淑安等. 等高植物篱控制紫色土坡耕地侵蚀的特点[J]. 土壤学报. 2002,39(1):71~80.
    [87] 朱波,高美荣,刘刚才. 紫色泥页岩的风化侵蚀与工程建设增沙[J]. 山地学报,2001,19(增):50~55.
    [88] 朱波,彭奎,高美荣等. 川中丘陵区土地利用变化的生态环境效应——以中国科学院盐亭紫色土农业生态试验站集水区为例[J]. 山地学报,2001,19(增):14~19.
    [89] 陈晓燕,何丙辉,缪驰远等. WEPP 模型在紫色土坡面侵蚀预测中的应用研究[J].水土保持学报,2003,17(3):1~8.
    [90] Zhang Bao-Hua, He Yu-Rong, Zhou Hong-Yi, Zhu Bo. Erosion and sediment production in small watershed in purple hilly areas and prevention techniques [J]. Wu’han University Journal of Natural Sciences, 2003, 8(3b):1041~1046.
    [91] 崔灵周,丁文峰,李占斌. 紫色土丘陵区农用地土壤水分动态变化规律研究[J]. 土壤与环境,2000,9(3):207~209.
    [92] 何毓蓉,张保华,周红艺等. 紫色土的水土保持与持续农业环境[J]. 水土保持学报,2002,16(5):11~14.
    [93] 黄义瑞,田积莹,雍绍萍. 土壤内在性质对侵蚀影响的研究[J]. 水土保持学报,1989, 3(3):9~14.
    [94] 罗治平. 聚土免耕耕作法的水土保持效益研究[J]. 土壤农化通报,1990(5):1~2.
    [95] 荣德明,查知南. 坡薄地改土垄作栽培水土保持效益研究[J]. 土壤农化通报,1994,9(3):41~46.
    [96] 史东梅,刘立志. 紫色土坡耕地生产潜力及水土流失治理[J]. 西南农业大学学报,2004.26(2):132~136.
    [97] 肖萍. 四川植物篱及植物护埂技术调查研究[J]. 土壤农化通报,1998,13(4):108~110.
    [98] 尹澄清,毛战坡. 用生态工程技术控制农村非点源水污染[J]. 应用生态学报,2002,13(2):229~232.
    [99] 吕家珑. 土壤磷素运移及根区土壤磷形态变化特征的研究[D]. 杨凌:西北农林科技大学博士论文,1996.
    [100] 李定强,王继增,万洪富等. 广东省东江流域典型小流域非点源污染物流失规律研究[J]. 土壤侵蚀与水土保持学报,1998,4(3):12~18.
    [101] Takanobu Inoue, Senichi Ebise. Runoff characteristics of COD, BOD, C, N and P loadings from rivers to enclosed coastal seas [J]. Marine Pollution Bulletin, 1991, 23, 11~14.
    [102] Ahti Lepistij. Increased leaching of nitrate at two forested catchments in Finland over a period of 25 years [J]. Journal of Hydrology, 1995, 171,103-123.
    [103] Albert SB, Adolfo Cb, Artemi Cb. Influences of micro-relief patterns and plant cover on runoff related processes in badlands from Tabernas (SE Spain) [J]. Catena, 1997, 31, 23-38.
    [104] Wahl M.H., McKellar H.N., Williams T.M. Patterns of nutrient loading in forested and urbanized coastal streams [J]. Journal of Experimental Marine Biology and Ecology, 1997, 213 (2): l~131.
    [105] 黄丽,丁树文,董舟等. 三峡库区紫色土养分流失的试验研究[J]. 土壤侵蚀与水土保持学报,1998,4(1):8~15.
    [106] 黄丽,丁树文,张光远等. 三峡库区紫色土坡地的耕作利用方式与水土流失初探[J]. 华中农业大学学报,1998,17(1):45~49.
    [107] 余贵芳,毛知耘,周则芳. 氯素在紫色土中的移动和淋失特点[J]. 土壤,1999,4214~216.
    [108] 余贵芬,毛知耘,石孝均等. 氮素在紫色土中的移动和淋失研究[J]. 南农业大学学报,1999,21(3):228~232.
    [109] 晏维金,尹澄清,孙濮等. 磷氮在水田湿地中的迁移转化及径流流失过程[J]. 应用生态学报,1999,10(3):312~ 316.
    [110] Heathwaite AL, Johnes, P. J. Contribution of nitrogen species and phosphorus fractions to stream water quality in agricultural catchments [J]. Hydrological Processes, 1996, 10, 971~983.
    [111] Heathwaite LO, Sharpley AN. Evaluating measures to control the impact of agricultural phosphorous on water quality [J]. Water Science Technology, 1999, 39 (12): 149~155.
    [112] Heathwaitea AL, Dils URM. Characterizing phosphorus loss in surface and subsurface hydrological pathways [J]. The Science of the Total Environment, 2000, 251/252, 523~538.
    [113] Heathwaite, A. L., Johnes, P. J., Fraser, A., Lord, E., Hutchins, M. and Butterfield, D. The Phosphorus Indicators Tool: a simple model of diffuse P loss from agricultural land to water [J]. Soil Use & Management, 2003, 19, 1~11.
    [114] Keith ES, Calvin FW. Contribution of base flow to nonpoint source pollution loads in an agricultural watershed [J]. Ground Water, 2001, 39(1): 49~58.
    [115] Schreiber JD, Rebich RA, Cooper CM. Dynamics of diffuse pollution from US southern watersheds [J]. Water Res. 2001, 35(10): 2534~2542.
    [116] 王洪杰,李宪文,史学正等. 不同土地利用下土壤养分的分布及其与土壤颗粒组成的关系[J]. 水土保持学报,2003,17(2):44~46.
    [117] 陈克亮,方琳,朱波等. 川中丘陵区小流域非点源氮污染特征——以中国科学院盐亭紫色土农业生态试验站小流域为例[J]. 西南农业学报,2003,16(增):116~121.
    [118] Sta°lnackea P, Grimvallb A., Libisellerb C., Laznikc M., Kokorite I. Trends in nutrient concentrations in Latvian rivers and the response to the dramatic change in agriculture[J]. Journal of Hydrology, 2003, 283, 184~205.
    [119] 傅涛,倪九派,魏朝富等. 不同雨强和坡度条件下紫色土养分流失规律研究[J]. 植物营养与肥料学报,2003,9(1):71~74.
    [120] Mario Tiscareno-Lopez, Miguel Velasquez-Valle, Jaime Salinas-Garcia, Alma Del. Nitrogen and organic matter losses in no-tilled corn cropping system[J]. Journal of the American Water Resources Association, 2004, 40(2): 401~408.
    [121] Markku Puustinen, Jari Koskiaho, Kimmo Peltonen. Influence of cultivation methods on suspended solids and phosphorus concentrations in surface runoff on clayey-sloped fields in boreal climate [J]. Agriculture, Ecosystems and Environment, 2004, 2, 1~15.
    [122] Vijay P, Singh F, David A, et al. Mathematical modeling of watershed hydrology [J]. Journey of Hydrologic Engineering, 2002, 7(4):270~292.
    [123] Brent JD, Prasanna HG, David JM. Modeling sediment and phosphorous losses in an agricultural watershed to meet TMDLs [J]. Journal of the American Water Resources Association, 2004, 40(2):533~543.
    [124] Gburek WJ and Sharpley AN. Hydrologic control on phosphorous loss from upland agricultural watersheds [J]. J. Environment Quality, 1998, 27:267~277.
    [125] Beasley DB, Huggins LF, Monke EJ. ANSWERS: A model for watershed planning [J]. Transaction of the ASAE, 1980, 23(4): 938~944.
    [126] Boardman J. Soil erosion on the South Downs: a review [A]. In: Boardman J, Foster IDL, Dearing JA Eds., Soil erosion on agricultural land. John Wiley & Sons, Chichester, 1990, 87~105.
    [127] Elliot W.J., Laflen, J.M.A process-based rill erosion model [J]. Trans. ASAE, 1993, 36(1), 65~72.
    [128] FitzHugha TW, Mackay DS. Impacts of input parameter spatial aggregation on an agricultural nonpoint source pollution model [J]. Journal of Hydrology 2000, 236, 35~53.
    [129] Govers Gerard, Poesen, J.W.A., Assessment of Interrill and Rill Contribution to Total Soil from an Upland Field Plot [J]. Geomorphology, 1988, 1343~1345.
    [130] Guy, B.T., Dickison, W.T., Rudra, R.P. The Roles of Rainfall and Runoff in the Sediment Transport Capacity of Interrill Flow [J]. Transactions of the ASAE. 1987, 30: 1378~1386.
    [131] Julien, P.Y. and Simon, D.B... Sediment transport capacity of overland flow [J]. Transactions of the ASAE, 1985, 28,755~762.
    [132] Nearing M.A., Forster G.R., Lane L.J., Finkner S.C., and A process based erosion model for USDA-water erosion prediction project technology [J]. Transactions of the ASAE, 1989, 32(5): 1587~1593.
    [133] Nearing, M.A., Bradford, J.M., Single Water drop Splash Detachment and Mechanical Properties of Soils [J]. Soil. Sci. Soc. Am. J, 1985, 49:547~552.
    [134] Sharma, P.P., Gupta, S.C., and Foster, G.R. Raindrop-induced Soil Detachment and Sediment Transport from Interrill Areas [J]. Soil Sci. Soc. Am, J. 1995, 59:727~734.
    [135] Wall GJ, Bos AW, Marshall AH (赵永宏译).安大略流域磷与悬移质泥沙的关系[J].水土保持科技情报,1998, 2: 22~24.
    [136] Whitehead, P. G., Johnes, P. J. and Butterfield, D. Steady state and dynamic modeling of nitrogen in the River Kennet: impacts of land use change since the 1930s[J]. Sci. Tot. Environ. 2002, 282, 417~434.
    [137] 王玉. 土壤离子吸附交换和运移相关因素定量关系研究[D]. 杨凌:西北农林科技大学博士论文,1999.
    [138] 王少平,陈满荣,俞立中等. GIS 在农业非点源污染研究中的应用[J]. 农业环境保护,2000,19(5):289~292.
    [139] 陈西平. 计算降雨及农田污染负荷的三峡库区模型[J].中国环境科学,1992,1,48~52.
    [140] 万洪富,王继增,卓慕宁等. 珠海市非点源污染负荷研究方法探讨[J]. 土壤与环境. 2002,11(4):401~404.
    [141] 陈克平,宁大同. 基于GIS 非点源污染模型的地形因子分析[J]. 北京师范大学学报(自然科学版),1997,33(2): 281~284.
    [142] 庄咏涛,李怀恩. 农业非点源污染模型浅析[J].西北水资源与水工程,2001,12(4):12~16.
    [143] Blo¨schl, G., Sivapalan, M. Scale issues in hydrological modeling: a review [J]. Hydrological Processes, 1995, 9, 251~290.
    [144] Braud, I., Vich, V.I.J., Zuluaga, J., Fornero, L.et al. Vegetation influence on runoff and sediment yield in the Andes region: observation and modeling [J]. Journal of hydrology, 2001, 254, 124~144.
    [145] Grunwald S, Frede H.G. Using the modified agricultural non-point source pollution model in German watersheds [J]. Catena, 1999, 37: 319~328.
    [146] Grunwald S, Norton LD. Calibration and validation of a non-point source pollution model [J]. Agricultural Water Management, 2000, 45:17~39.
    [147] Yi Yuan, Ken Hall, Carolynold H. A preliminary model for predicting heavy metal contaminant loading from an urban catchment [J]. The Science of the Total Environment, 2001, 266:299~307.
    [148] Erik L.H. Cammeraat. Scale dependent thresholds in hydrological and erosion response of a semi-arid catchment in southeast Spain [J]. Agriculture, Ecosystems and Environment, 2004, 104: 317~332.
    [149] Kimmege, K. Small-scale irrigation initiatives in Nigeria, the problem of equity and sustainability [J]. Applied Geography, 1991, 11, 5~20.
    [150] Leonard, J. Lane, Mariano Hernandez, Mary Nichols. Process controlling sediment yield from watersheds as functions of spatial scale [J]. Environmental Modeling & Software, 1997, 12 (4): 355~369.
    [151] Refsgaard, J. C., Thorsen, M., Jensen, J. B., Kleeschulte, S. Hansen, S. Large-scale modeling of groundwater contamination from nitrate leaching [J]. Journal of Hydrology, 1999, 221(3):117~140.
    [152] Thorsena M, Refsgaarda, JC, Hansenb S, Pebesmac E, Jensena JB, Kleeschulted S. Assessment of uncertainty in simulation of nitrate leaching to aquifers at catchment scale[J]. Journal of Hydrology, 2001, 242, 210~227.
    [153] Tietema, A., Emmett, B.A., Boxman, A.D., Bredemeier, M., Moldan, F., Gundersen, P., Kjenaas, J.O., Schleppi, P., Wright, R.F. NITREX ecosystem-scale experiments: the effects of atmospheric deposition in conifer stands [J]. Environmental Pollution, 1998, 102 (SL), 433~437.
    [154] Vachaud G, Tao Chen. Sensitivity of a large-scale hydrologic model to quality of input data obtained at different scales: distributed versus stochastic non-distributed modeling [J]. J. Hydrology, 2002, 264(2): 101~112.
    [155] 曹文志,洪华生,张玉珍等. AGNPS 在我国东南亚热带地区的检验[J]. 环境科学学报,2002,22(4):537~541.
    [156] 陈欣,郭新波. 采用AGNPS 模型预测小流域磷素流失的分析[J]. 农业工程学报,2000,16(5): 44~47.
    [157] 胡雪涛,陈吉宁,张天柱. 非点源污染模型研究[J]. 环境科学,2002,23(3):124~128.
    [158] 马蔚纯,陈立民,李建忠等. 水环境非点源污染数学模型研究进展[J]. 地球科学进展,2003,18(3):358~367.
    [159] 王飞儿,陈英旭,吕唤春. 基于GIS 的非点源污染模型的类型,组成及其发展方向[J]. 水土保持科技情报,2002,3:4~7.
    [160] 王秀英,曹文洪. 坡面土壤侵蚀产沙机理及数学模拟研究综述[J].土壤侵蚀与水土保持学报,1999(3):87~92.
    [161] 张光辉. 土壤侵蚀模型研究现状与展望[J]. 水科学进展,2002,13(3):389~397.
    [162] 赵刚,张天柱,陈吉宁. 用AGNPS 模型对农田侵蚀控制方案的模拟[J]. 清华大学学报(自然科学版),2002,42(5):705~707.
    [163] Wolte made CJ(潘德成译).恢复湿地可降低农业排水中氮磷浓度[J]. 水土保持科技情报,2001,5:10~11, 16.
    [164] Worralla F, Burtb, T P. Inter-annual controls on nitrate export from an agricultural catchment-how much land-use change is safe [J]. Journal of Hydrology, 2001, 243: 228~241.
    [165] Backstorm M. Sediment transport in grassed swales during simulated runoff events [J]. Water Sci. Techno., 2002, 45(7): 41~49.
    [166] Braskerud BC. Factors affecting nitrogen retention in small constructed wetlands treating agricultural non-point source pollution [J]. Ecological Engineering. 2002, 18:351~370.
    [167] Burch G J, Bath RK, Moore ID, O'Loughlin EM. Comparative hydrological behavior of forested and cleared catchments in southeastern Australia [J]. Journal of Hydrology, 1987, 90(1~2):19~42.
    [168] Bruno Merza, Andra′s Ba′rdossyb. Effects of spatial variability on the rainfall runoff process in a small loess catchment [J]. Journal of Hydrology, 1998, 212–213, 304–317.
    [169] Burt, T. P., Heathwaite, A. L. and Johnes, P. J. Stream water quality and nutrient export in the Slapton catchments [J]. Field Studies, 1996, 8, 613~627.
    [170] Dendy, F.E. and Bolton, G.C. Sediment yield-runoff drainage area relationships in the United States [J]. J. Soil and Water Cons., 1976, 31:264~266.
    [171] Tapia-Vargas M, Tiscareno-Lopez M, Oropeza-Mota JL et al. Runoff and sediment yields simulation under five-soil management practices [J]. Agrochemicals, 2000, 34(6): 663~675.
    [172] Tapia-Vargas M, Tiscareno-Lopez M, Oropeza-Mota JL et al. Tillage system effects on runoff and sediment yield in hill slope agriculture [J]. Field Crops Research, 2001, 69, 173~182.
    [173] Uncles, R. J., Fraser, A. I., Butterfield, D., Johnes, P.J., Harrod, T.R. The Prediction of Nutrients into Estuaries and Their Subsequent Behavior [J]. Hydrobiology. 2002, 475/476, 239~250.
    [174] UNEP. The Aral Sea: Diagnostic study for the development of An Action Plan for the conservation of the Aral Sea[R]. Nairobi, 1993.
    [175] Unver I. H. O. Water resources development in a holistic socio-economic context-the Turkish experience [J]. Water Resources Development, 1997, 13(4), 437~581.
    [176] Wade, A. J., Jarvie, H., Neal, C., Prior, H., Whitehead P. & Johnes, P. J. Nutrient Monitoring, Simulation and Management within a Major Lowland UK River System: The Kennet [J]. Proceeding of the MODSIM conference, Australia 2001.
    [177] Willis, G.H., Southwick, L.M., Fouss, J.L., Carter, C.E., Rogers, J.S. Nitrate losses in runoff and subsurface drain effluent from controlled-water-table plots [J]. J. Environmental Contamination and Toxicology, 1997, 58:566~573.
    [178] Wolf AT. International water conflict resolution: lessons from comparative analysis [J]. Water Resources Development, 1997, 13(3):333~365.
    [179] Johnes PJ. Evaluation and management of the impact of land use change on the nitrogen and phosphorous load delivered to [J]. Journal of Hydrology, 1996, 183: 323~349.
    [180] Johnes, P. J. & Hodgkinson, R. A. Phosphorus loss from catchments: pathways and implications for management [J]. Soil Use and Management, 1998, 14, 175~185.
    [181] Leonard RA, knisel WG, Still DA. GLEAMS: Ground-water Loading Effects of Agricultural Management Systems [J]. Transaction of the ASAE, 1987, 30(5): 1403~1418.
    [182] Lopes TJ, Bender DA. Non-point source of Volatile organics compounds in urban areas-relative importance of land surface and air [J]. Environmental pollution, 1998, (2):221~230.
    [183] McCuen RH.A guide to hydrologic analysis using SCS methods [M]. New Jersey: Prentice Hall Inc, 1982.
    [184] 阎伍玖,鲍祥.巢湖流域农业活动与非点源污染的初步研究[J]. 水土保持学报.2001,15(4):129~132.
    [185] Philip, J.R. Field heterogeneity: some basic issues [J]. Water Resource Res., 1980, 16 (2): 443~448.
    [186] Rauws G. Laboratory experiments on resistance to overland flow due to composite roughness [J]. Journal of Hydrology, 1988, 103:37~52.
    [187] Renard KG et al. RUSLE: Revised universal soil loss equation [J]. J. Soil and Water Conservation, 1991, 30~33.
    [188] Sharma, P.P., Gupta, S.C., Rawl, W.J., Soil Detachment by Single Raindrops of Varying Knit Energy[J] .Soil Sci. Soc. Am, J. 1991, 55:301~307.
    [189] Meyer, L.D. Effect of Flow rate and Canopy on Rill Erosion [J].Transactions of the ASAE, 1975, 18(5):1472~1475.
    [190] Moore ID, Buech GJ. Physical basis of the length-slope factor in the Universal Soil Loss Equation [J]. SSSA J., 1986, 50: 1294~1298.
    [191] Fraser AI, Harrod TR, Haygarth PM. The effect of rainfall on soil erosion and particulate phosphorus transfer from arable soils [J]. Water Sci. Techno., 1999, 39, 48~54.
    [192] 张科利,蔡永明,刘宝元等. 土壤可蚀性动态变化规律研究[J]. 地理学报,2001,56(6):673~681.
    [193] 符素华,刘宝元. 土壤侵蚀量预报模型研究进展. 地球科学进展[J],2002,17(1):78~85.
    [194] Liu BY, Nearing MA, Risse LM. Slope gradient effects on soil loss for steep slope [J]. Transactions of the ASAE, 1994, 37(6): 1835~1840.
    [195] Liu BY, Nearing MA, Shi PJ et al. Slope length effects on soil loss for steep slope [J]. Soil Sci. Soc. Of Am. J., 2000, 64 (5): 1759~1763.
    [196] Liu, B.Y., Nearing, M.A, Ascough Ⅱ, J.C, baffaut, C., the WEPP watershed model: I Comparisons to measured data from small watershed [J]. Transactions of the ASAE, 1996, 40(4):945~952.
    [197] 文安邦,张信宝,王玉宽等. 长江上游紫色土坡耕地土壤侵蚀137CS示踪法研究[J]. 山地学报,2001,19(增):56~59.
    [198] 杨玉盛. 不同利用方式下紫色土可蚀性的研究[J]. 水土保持学报,1992,6(3):52~57.
    [199] 李青云,孙厚才,蒋顺清.紫色土丘陵区小流域泥沙输移比的分形特征及输移比模型[J]. 长江科学院院报,1995,12(2):31~37.
    [200] 谭钦文,尹黎明,卢玉东等. 三峡库区紫色土陡坡耕地土壤侵蚀量预测模型研究[J].国土与自然资源研究,2004,1,19~21.
    [201] 郑粉莉,唐克丽,周佩华. 坡耕地细沟侵蚀影响因素的研究[J]. 土壤学报,1989,26(2):109~116.
    [202] 郑粉莉. 黄土高原坡耕地的细沟侵蚀及防治途径[C]. 中国科学院西北水土保持研究所集刊,第七集,1988,19~25.
    [203] 郑粉莉等. 坡耕地细沟侵蚀的发生,发展和防治途径的探讨[J]. 水土保持学报,1987,1(1):36~48.
    [204] 周佩华,田均良,刘普灵等. 黄土高原土壤侵蚀与稀土元素示踪研究[J]. 水土保持研究,1997,4(2):2~9.
    [205] Ana Deletic. Sediment transport in urban runoff over grassed areas [J]. Journal of hydrology, 2004, 6:1~15.
    [206] 单保庆,尹澄清,白颖等. 小流域磷污染物非点源输出的人工降雨模拟研究[J]. 环境科学学报,2000,17(3):1~4.
    [207] 何毓蓉,张保华,徐佩等. 四川盆地紫色丘陵区小流域侵蚀产沙研究[J]. 水土保持学报,2003,17(6):6~8.
    [208] 张淑荣,陈利顶,傅伯杰. 农业区非点源污染敏感性评价的一种方法[J]. 水土保持学报,2001,15(2):56~59.
    [209] 徐明岗,姚其华,吕家珑. 土壤养分运移[M]. 中国农业出版社,北京,1999.
    [210] 陈利顶,傅伯杰,张淑荣等. 异质景观中非点源污染动态变化比较研究[J]. 生态学报,2002,22(6):808~816.
    [211] 傅伯杰,陈利顶,马克明. 黄土高原羊圈沟流域土地利用变化对生态环境的影响[J]. 地理学报,1999,54(3):241 ~246.
    [212] 傅伯杰,马克明,周华峰等. 黄土丘陵区土地利用结构对土壤养分分布的影响[J].科学通报,1998,43(22):2444~ 2447.
    [213] 傅伯杰,邱扬,王军等. 黄土丘陵小流域土地利用变化对水土流失的影响[J]. 地理学报,2002,57(6):717~722.
    [214] 杨金玲,张甘霖,张华等. 亚热带丘陵区流域不同土地利用系统磷素径流输出特征[J]. 环境科学,2002,23(5):36~41.
    [215] 邱扬,傅伯杰,王军. 黄土丘陵小流域土壤水分时空变异与环境关系的数量分析[J].生态学报,2000,20(5):741~747.
    [216] 李俊然,陈利顶,郭旭东等. 土地利用结构对非点源污染的影响[J]. 中国环境科学,2000,20(6):506~510.
    [217] 张卓如,王国英. 四川省三种紫色土壤持水性研究[J]. 西南农业大学学报,1989,11(1):1~6.
    [218] 朱显谟,田积莹. 强化黄土高原土壤渗透性及抗冲性的研究[J]. 水土保持学报,1993,7(3):1~10.
    [219] 朱益玲,刘洪斌. 江津紫色土壤养分空间变异性研究——地统计学方法[J]. 西南农业大学学报,2002,24(3):207~210.
    [220] Jain CK. A hydro-chemical study of a mountainous watershed: the Ganga, India [J]. Water Research, 2002, 36, 1262–1274.
    [221] James AE, William HE. Nutrient content and extractability in riparian soils forests and grasslands [J]. Applied Soil Ecology, 1996, 4, 119~124.
    [222] Janne K, Ame S, Magne H. Effects of weekly nitrogen additions on N cycling in a coniferous forest catchment, Gbdsjijn, Sweden[J]. Forest Ecology and Management, 1998, 101, 227-249.
    [223] Roels, J.M. Flows resistance in concentrated overland flow on rough slope surface [J]. Earth surface process and landforms 1984, 9,541~551.
    [224] Sharma, KD. Runoff behavior of water harvesting micro catchments [J]. Agricultural Water Management, 1986, 11(2): 137~144.
    [225] 南京农业大学编. 土壤农化分析[M].北京:农业出版社,1994.
    [226] D.希勒尔主编(尉庆丰,荆家海,王益权等译).土壤物理学概论[M]. 西安:陕西教育出版社,1988,132~138.
    [227] Onstad CA, Foster GR. Erosion modeling on a watershed [J]. Transactions of the ASAE, 1975, 18(2): 288~292.
    [228] 李庆逵,朱兆良,于天仁. 中国农业持续发展中的肥料问题[M]. 南昌:江西科学技术出版社,1998.
    [229] 彭奎,朱波. 试论农业养分的非点源污染与管理[J]. 法制与管理,2001,1:15~17.
    [230] Jun-Jing. Rural resettlement: past lessons for the Three Gorges project [J]. China Journal, 1997, 38, 65~92.
    [231] Miller, K. A., Rhodes, S. L. and MacDonnell, L. J. Global change in microcosm: the case of US Water Institutions [J]. Policy-Sciences, 1996/1997, 29(4), 271~290.
    [232] Nakayama, Mikiyasu. Successes and Failures of International Organizations in Dealing with International Waters [J]. Water Resources Development, 1997, 13(3), 367~382.
    [233] Penny Firth, The importance of water resources education for the next century [J]. Journal of the American Water Resources Association, 1999, 35(3): 487~492.
    [234] 王洪杰,李宪文,史学正等. 四川紫色土区小流域土壤养分流失初步研究[J]. 土壤通报,2002,33(6):441~444.
    [235] Johnes PJ, Heathwaite AL. Modeling the impact on water quality of land use changes in agricultural catchments [J]. Hydrological Processes, 1997, 11: 269~286.
    [236] 刘刚才,高美荣. 川中丘陵区典型耕作制下紫色土坡耕地的土壤侵蚀特征[J]. 山地学报, 2001,19(增):65~70.
    [237] 刘刚才,朱波,代华龙等. 四川低山丘陵区紫色土不同土地利用类型的水蚀特征[J]. 水土保持学报,2001,15(6):96~99.
    [238] 刘刚才,高美荣,林三益等. 紫色土两种耕作制的产流产沙过程与水土流失观测准确性分析[J]. 水土保持学报,2002,16(4):108~111.
    [239] 刘刚才,林三益,刘淑珍. 四川丘陵区常规耕作制下紫色土径流发生特征及其表面流数值模拟[J]. 水利学报,2002,12,101~108.
    [240] 张志强,王礼先,余新晓. 森林植被影响径流形成机制研究进展[J]. 自然资源学报,2001,16(1 ):79~84.
    [241] Sharpley AN, Smith SJ. Wheat tillage and water quality in the southern plains [J]. Soil Tillage Research, 1994, 30: 33~38.
    [242] Sivanappan, R. K. Soil and Water Management in the dry lands of India [J]. Land Use Policy, 1995, 12(2), 165~175.
    [243] Pathak, P., Wani, S.P., Singh, P. et al. Sediment flow behavior from small agricultural watersheds [J]. Agricultural water management, 2004, 67(2):105~117.
    [244] Hamlett, J.M., Kimes, S.C., Baker, J.M., Johnson, H.P. Runoff and sediment transport within and from a small agricultural watershed [J]. Trans. ASAE 27(6), 1984, 1355-1363, and 1369.
    [245] Hamlett, J.M., Baker, J.M., Johnson, H.P. Size distribution of sediment transport within and from small agricultural watersheds [J]. Trans. ASAE 1988, 30(4), 998-1004.
    [246] Dendy, FE and Bolton, GC. Sediment yield-runoff drainage area relationships in the United States [J]. J. Soil and Water Cons., 1976, 31:264-266.
    [247] 张宗祜. 黄土高原土壤侵蚀基本规律[J]. 第四纪研究,1993,1:34~40.
    [248] Nisbet TR. The role of forest management in controlling diffuse pollution in UK forestry [J]. Forest Ecology and Management, 2001, 143: 215~226.
    [249] Roderick MR, Robert HH. Economic and environmental evaluation of alternative pollution-reducing nitrogen management practices in central Illinois [J]. Agriculture, Ecosystems and Environment, 1999, 75, 41~53.
    [250] Mariet MH, Jeroen JM, Klein. Nitrogen removal in buffer strips along a lowland stream in the Netherlands: a pilot study [J]. Environmental Pollution 1998, 102, 521~526.
    [251] Novotny V, Chester G. Handbook of non-point pollution source and management [M]. New York: No strand Reinhold Company, 1981, 81~103.
    [252] Prior, H. and Johnes, P. J. Regulations of surface water quality in a Chalk catchment, UK: an assessment of the relative importance of in stream and wetland processes [J]. Sci. Tot. Environ. 2002, 282/283, 159~174.
    [253] 朱祖祥主编. 土壤学[M].北京:农业出版社,1993,161~169.
    [254] Groffman M P, Tiedje M J. Denitrification hysteretic during wetting and drying cycles in soil [J]. Soil Sci. Soc. Am. J., 1988, 62:1626~1629.
    [255] 王小治,曹志洪,盛海君等. 太湖地区溶育性水稻土径流中磷组分的研究[J]. 土壤学报,2004,41(2):278~284.
    [256] Louise Heathwaite and Andrew Sharpley. Evaluating measures to control the impact of agricultural phosphorous on water quality [J]. Water Science Technology, 1999, 39 (12): 149~155.
    [257] Machito Mihara. Nitrogen and phosphorus losses due to soil erosion during a Typhoon, Japan. J. agric [J]. Engineering Res., 2001, 78 (2): 209~216.
    [258] Newman S., Pietro K. Phosphorus storage and release in response to flooding: implications for Everglades storm water treatment areas [J]. Ecological Engineering, 2001, 18, 23–38.
    [259] Sharpley AN, Chapra SC, Wodepohl R, Sims JT, Daniel, TC. Managing agricultural phosphorus for protection of surface waters: issues and options [J]. J. Environ. Qual., 1994, 23: 437~451.
    [260] 黄宇,汪思龙,冯宗炜等. 不同人工林生态系统林地土壤质量评价[J]. 应用生态学报,2004,15(12):2199~2205.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700