中国11个山羊品种遗传多样性与起源分化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
家畜品种资源是畜牧业可持续发展的基础,在畜牧业中占据越来越重要的地位,对家畜遗传多样性的研究有助于品种资源的保护和开发利用。山羊是家畜品种中适应性最广泛的动物之一,在地球上分布范围很广。山羊在人类的日常生活中占有重要的作用,为人类提供肉、奶、皮和绒等产品,是发展中国家牧民的重要经济来源。但是,学者们对于山羊的遗传和进化研究较少,据报道家山羊在历史上有两个驯化地,近东的新月区和巴基斯坦,中国的学者一般认为家山羊有两个祖先:佩刀状角的角羊骨羊(Capra aegagrus)和旋角羊骨羊(Capra falconeri)。
     线粒体DNA(mtDNA)基因结构简单、稳定,但一级结构的碱基突变率却很高,在遗传过程中不发生重组,因而家畜一般能保持其祖先的类型不变。而且,mtDNA在遗传过程中遵守严格的母系遗传方式,因而一个个体的mtDNA类型就代表一个母系连锁群,这就大大减少了供试动物的数量。随着现代生物技术的发展,线粒体DNA测序是目前家畜分子进化和遗传多样性检测的最可靠和最常用分子标记之一。本试验测定了中国11个山羊品种(柴达木山羊、黄淮山羊、济宁青山羊、辽宁绒山羊、陇东黑山羊、南疆绒山羊、内蒙古绒山羊、西藏山羊、陕南白山羊和太行山羊)167个个体的线粒体DNA控制区HVI序列,结合GenBank上部分世界山羊品种资料进行分析,以期了解中国山羊的系统发育关系并以此作为品种资源保护、利用的客观依据。本研究所出结论如下:
     1.中国11个山羊品种167个个体mtDNA D-loop区HVI序列长度为481 bp或480 bp,有3条序列长度为480 bp,主要是由于在序列的第239碱基处有1个碱基缺失,涉及到2只内蒙古绒山羊和1只陇东黑山羊。
     2.中国山羊品种的167条mtDNA D-loop HVI序列共有126个多态位点,其中单一多态位点为27个,两碱基的简约信息位点为97个,三碱基的简约信息位点为2个,这表明中国山羊mtDNA D-loop HVI核苷酸变异丰富。
     3.中国山羊品种的167条mtDNA D-loop HVI序列中,A、C、T和G的平均含量分别为:30.86%、22.13%、30.89%和16.14%。供试山羊各品种间核苷酸含量有差异,但差异不显著。A+T含量为61.73%,G+C含量为38.27%,A+T含量明显高于G+C含量,说明中国山羊GC含量符合哺乳动物核苷酸的组成比例。
     4.中国山羊品种的167条mtDNA D-loop HVI序列共定义了121种单倍型,92种为品种特有单倍型,11种为品种间单倍型,18种为品种内单倍型。品种间和品种内单倍型的分布不平衡,H43、H68、H90和H107是较为古老的单倍型类型,中国山羊没有主流单倍型。
     5.中国山羊品种mtDNA D-loop HVI序列的121种单倍型共有颠换位点8个,转换位点118个,转换/颠换率为15:1,说明中国山羊具有很强的转换偏倚性。但是山羊各品种内没有颠换,只有转换。
     6.中国11个山羊品种的单倍型多样度范围为0.909~1.000,核苷酸的多样度范围为0.01 810~0.03 821,太行山羊不论是单倍型的多样度还是核苷酸的多样度,在供试山羊品种中数值都是最高的。山羊各品种间平均核苷酸差异数较大,变异范围为9.289~18.563,且品种间的Kimura双参数距离变异范围为0.021~0.047,说明中国山羊品种遗传多样性丰富。
     7.中国山羊的121种mtDNA D-loop HVI单倍型聚类成A、B、C、D和一个新支系。新支系位于支系D和支系B之间,是由长度为480 bp的单倍型聚类而成,这是本研究的新发现。中国山羊为多母系遗传,品种内分化水平较低,品种间没有明显的遗传地理结构。与国外山羊序列比较发现中国山羊与国外山羊有广泛的基因交流。
     8.根据mtDNA单倍型的系统发育分析和网络分析表明,中国山羊主要存在支系A和支系B两大母系起源,支系A和支系B在NJ树中出现的频率分别为86.78%和4.96%;支系C和支系D,出现的频率为3.31%,本试验新发现的新支系频率最低,为1.65%。
     9.中国山羊群体核苷酸不配对分布呈现出一条三峰的波浪型曲线,说明中国山羊群体经历了三次大的群体扩张,第一次波峰最大,发生在核苷酸差异数为10~11之间,第二次波峰发生在核苷酸差异数为27~28之间,第三次波峰发生在核苷酸差异数为39~40之间。且所有序列Tajima D中性检验结果不显著(P>0.10或0.05Breed resource is the basis of sustaining development of animal production industry. China is one of the countries in the world which has the richest goat breed resources. But we have little knowledge on the origin, migration, evolution and breeds genetic status of Chinese indigenous goat breeds. Goat, one of the most adaptive livestock species, is distributed widely in the world, goat products such as meat, milk, skin and fiber are the main income for farmers in the developing countries. The origin of goat has long been considered a valuable research field in animal evolution. Some studies reported that wild goats were domesticated mainly in two zones in history, one was in the Fertile Crescent region of the Near East and the other was in Pakistan. Many Chinese researchers have done much work on the origin of goat and suggested the domestic goat progenitors were Capra aegagrus and Capra falconeri.
     Mitochondrial DNA (mtDNA) is an important genetic marker because of its maternal inheritance without recombination and high mutation rate. Many mtDNA studies based on the D-loop control region analysis addressed questions of phylogeny and evolution. The research of livestock genetic diversity helps the conservation and utilization of animal breed resources. The sequencing of mtDNA is one of the most common and reliable molecular markers in detecting animal molecular evolution and genetic diversity.
     In this article, HVI of mitochondrial DNA(mtDNA) control region(CR, D-loop) was sequenced in 167 individuals from 11 domestic goat breeds/strains raised in China (Chaidamu, Huanghuai, Jining grey, Liaoning cashmere, Longdong Black, Nanjiang Cashmere, Inner Mongolia Cashmere, Tibetan, Shaannan White, Taihang),downloading sequences from goat breeds from GenBank were carried out. The results will provide scientific basis for resource protection and utilization. The conclusions are as follows in this study.
     1. The mtDNA D-loop HVI sequences, 480~481 bp in length were determined for 167 individual in 11 Chinese goat breeds, The variation was caused by the gaps of a pairwise in the 239 bp in the mtDNA D-loop HVI sequence . And only 3 samples was 480bp including 2 goats of Inner Mongolia Cashmere and 1 goat of Longdong Black.
     2. The 167 mtDNA D-loop HVI sequences contained 126 variable sites, among them, singleton variable sites was 27, parsimony informative sites of two variants was 97 and parsimony informative sites of three variants was 2. The results indicate that the pairwise diversity of Chinese goats is very rich.
     3. The average content of A, C, T and G was 30.86%, 22.13%, 30.89% and 16.14% respe- cttively. The nucleotide content of the experimental goat breeds was varient but was not significant. A+T and G+C of Chinese goat breeds was 61.73% and 38.27% respectively indicating the nucleotide content of Chinese goat was in accordance with the proportion of mammals.
     4. Chinese goat breeds had 121 haplotypes but no mainstream type. 92 haplotypes was unique haplotypes. 11 haplotypes were shared among breeds and 18 haplotypes were shared within breeds. The distributions and frequencies were unequilibrium either among breeds or within breeds. NJ tree showed four haplotypes (H43, H68, H90 and H107) were the oldest.
     5. The transition sites of mtDNA D-loop HVI sequences between the goat breeds were 8 and transversion sites were 118, the ratio of transitions to transversions was 15/1, suggesting Chinese goat has the high transition bias. But there were no transition within the goat breed.
     6. 121 haplotypes with from 167 samples of 11 Chinese goat breeds were determined. The haplotype diversity and nucleotide diversity in 11 Chinese goat breeds were 0.909~1.000 and 0.01 810~0.03 821, respectively. The haplotype and nucleotide diversity of Taihang goat was the highest (1.000, 0.03 821 respectively). The average number of nucleotide differences variation was 9.289~18.563, The Kimura 2-parameter distance between breeds varied from 0.021~0.047. The results indicate that the genetic diversity of Chinese goats is very abundant.
     7. NJ tree of Chinese goat analysis indicated there were 5 lineages including lineage A, B, C and D found before and a new lineage found in the article. The new lineage was clustered by the sequences of 480 bp. The new lineage was located between the lineage D and B. The result was first reported in Chinese goats. And there was no significant geographical structure in Chinese goat populations. Compared with the goats from the other nations, Chinese goats had a widely gene flow.
     8. Phylogenetic analysis and a reduced median network analysis revealed two highly divergent goat mtDNA lineages A and B mainly. The frequency of the lineage A and B was 86.78% and 4.96%, respectively. Two additional lineages C and D are present in China at low frequency (3.31%) respectively. And the frequency of the new lineage was 1.65%.
     9. The curve of nucleotide mismatch distributions in 11 domestic goat populations took on three unimodal. Pairwise differences ranged from 1 to 48. A major peak presented at 10~11 mutational differences, a secondary one at 27~28 differences and a third one at 39~40 differences. Lineage A showed unimodal distribution and undergo expansions. Lineage B showed near bimodal distribution and did not undergo expansion. Tajima's test of selective neutrality of Chinese goats was not significant (P>0.10 or 0.05
引文
[1] Devendra, C. and K. Nozawa. Goats in South East Asia-their status andproduction [J]. Sonderdruck aus Zeitschrift fur Tierzuchtung und Zuchtungsbiologie. 1976, 93:101-120.
    [2] 张翼汉等.我国山羊分布与环境条件关系的初步探讨[J].农业气象,1981,3:53-57.
    [3] 贾志海,富俊才. 如何协调绒山羊发展与生态环境矛盾[J].中国畜牧杂志,2001,4:3-4.
    [4] 蒋英,陶雍.中国山羊[M].西安:陕西科学技术出版社,1988,1-4.
    [5] 赵有璋.试论 21 世纪初叶我国养羊业的可持续发展问题.全国养羊生产与学术研讨会议论文集[C]. 中国草食动物,2001 年专辑,6-11.
    [6] 郑丕留.中国家畜品种及其生态特征[M].北京:农业出版社,1985.
    [7] 谢成侠.中国养牛羊史(附养鹿简史)[M].北京:农业出版社,1985.
    [8] 涂有仁等编著.中国羊品种志[M].上海:科学技术出版社,1988.
    [9] 魏怀方,葛文华.山羊及其产品加工[M].北京:科技出版社,1990,10-25.
    [10] 李志农主编.中国养羊学[M].北京:农业出版社,1993:1-24.
    [11] 陈秋雄.奶山羊饲养技术[M].台北:五洲出版社,1988,10-28.
    [12] Lauvergue, J. J. and Renieri, C. Description and classification of sheep and goats using genes with visible effects [J]. A. B. A. 1991, 60(2):115.
    [13] Devendra, C. and Coop, I. E. Ecology and distribution. World Animal Science. Sheep and goat production [M]. Elservier scientific publishing Co. S1. Amsterdam. 1976,1-14.
    [14] Mason, I. L. Goat production:Breeds[M]. Acadamic Press Inc. lid. London.1981,45-53.
    [15] Nozawa, K. Domestication and history of goat s [M]. Maijala, K. ed, Elsevier. 1991:391-404.
    [16] 张仲葛,朱先煌.中国畜牧史科集[M].北京:科学出版社,1986:168-173.
    [17] Herre, W. Abstammung und Domestication der Haustiere. Handbuch der Tierzuchtung.1958,1:1-58.
    [18] Harris, D. R. The distribution and ancestry of the domestic goat [M]. Proc. Linn. Soc. London. 1962, 173: 79-91.
    [19] Hideyuki Mannen, Yoshihiko Nagata, and Soichi Tsuji. 2001. Mitichondral DNA reveal that domec goat (Capra hircus) are genetically affected by two subspecies of Bezoar (Capra aegagurus) [J]. 2001,39:5-6.
    [20] 张逢旭,雷达享,田正雄.青海古代畜牧业(续)[J].农业考古,1989,1:350-365.
    [21] 盖志毅,盖山林.我国北方草原古代猪牧经济的岩画学观察[J].农业考古,1992,1:288-297.
    [22] 司代尔(Stall, A. B.)著,安家瑗译,西非的早期农业[J].农业考古,1991,3:34-37.
    [23] 徐朝龙.美赫奈尔——西亚次大陆最早的新石器农业[J]. 农业考古,1992,1:78-86.
    [24] 常洪主编. 家畜遗传资源学纲要[M]. 北京:中国农业出版社,1995.
    [25] 高腾云,孔庆友.中国山羊品种定量分类研究[J].家畜生态,2000, 21 (2),20-24.
    [26] 王杰,王永,欧阳熙,孙竹珑. 藏山羊种质特性研究[J].西南民族学院学报,1995, 21(3),272-283.
    [27] 李远超,朱海,张富全.绒山羊毛色遗传规律[M].见:中国山羊业的成就和进展,赵有璋主编.北京:中国农业出版社,1996,53-56.
    [28] Ricordeau G. In Genetic resources of pig, sheep and goat (edit by Maijala K.) [M]. Elsevier science publishers B.V., Amsterdam. 1991,471-474.
    [29] Eldridge F. E. Cytogenetics of livestock [M]. AVI publishing company, INC. 1985, 189-209.
    [30] 村松晋著,郭荣昌译.动物染色体[M].哈尔滨:黑龙江人民出版社,1988,116-169.
    [31] Arruga M.V. Cytogenetic studies in two samples of Spanish goat breeds [C]. 8th European Colloquium on Cytogenetics of Domestic Animals. 1988, 39-52.
    [32] ISCNDA. International system for cytogenetics nomenclature of domestic animals [J]. Cytogenet.Cell Genet. 1990, 53: 65-79.
    [33] Guillemot E., F. Gary H. M. Berland, V Durand, R. Darre and E. P. Cribiu. Cytogenetic investigationin Saanen and Alpine artificial insemination bucks. Identification of a Robertsonian translocation [J]. Genet. Set. Evol. 1991, 23: 449-454.
    [34] 钟金城,王杰,将明峰,晏兆莉,石敏.藏山羊二价染色体高分辨 G 带核型的研究[J].西南民族学院学报,1996, 22 (3):306-308.
    [35] 班兆候,王珊,刘若余.贵州山羊核型及 C 一带的多态性[J].贵州农业科学,1995,3: 23-25.
    [36] 叶绍辉,彭和禄,林世英,刘爱华.云南龙陵黄山羊的核型及 C 一带和 Ag-NORs 研究[J].云南农业大学学报,1996,11(2),96-99.
    [37] 叶绍辉,彭和禄,刘爱华,林世英.云南保种山羊的银染核仁组织区研究[J].中国养羊,1998,1:1-2.
    [38] 詹铁生,田玉山,锥鸣峰,刘景喜,王燕青,赵小初.西农萨能山羊间性遗传机制研究[J].遗传学报,1994,21(5):356-361.
    [39] Soller M., B. Padeh, M. Wysoki, and N.Ayalon. Cytogenetics of Saanen goats showing abnormal development of the reproductive tract associated with the dominant gene for polledness [J]. Cytogenetics. 1969,8:51-67.
    [40] ISCNDA International system for cytogenetics nomenclature of domestic animals. Cytogenet [J]. Cell Genet. 1989. 1990,53: 65-79.
    [41] Dove W.L. Physiology of horn growth[J]. J. Exp. Zool. 1935.,69: 347-404.
    [42] Asdell S.A. The genetic sex on intersexual goats and a probable linkage with the gene for hornlessness [J]. Science 1944, 99: 124.
    [43] Vaiman D., L. Schibler, A. Oustry-Vaiman, E. Pailhoux et al. High-resolution Human/Goat comparative map of the goat Polled/Intersex syndrome (PIS): The human homologue is contained in a human YAC from HSA3q23 [J]. Genomics1999, 56: 31-39.
    [44] Vaiman D., L. Schibler, F. Bourgeois, A. Oustry, Y . Amigues, et al. A genetic linkage map of the male goat genome [J]. Genetics.1996b, 144: 279-305.
    [45] Nesse L. L., Paulsen G., Syed M., and Ruff G.. A human major histocompatibility complex (MHC) DNA probe recognizes goat genes [J]. Acta Vet Scand, 1988, 29: 193-198.
    [46] Buvanendran V., Sooriyamoorthy T., Ogunsusi R. A. and Adu I. F. Haemoglobin polymorphism and resistance to helminths in Red Sokoto goats [J]. Trop Anim Health Prod, 1981, 13: 217-221.
    [47] Costa C. A., Vieira L. D., Berne M E., Silva M. U., Guidoni A. L., and Figueiredo E. A. Variability of resistance in goats infected with Haemonchus contortus in Brazil [J]. Vet Parasitol, 2000, 88:153-158.
    [48] 刘小林,常洪,任战军,耿社民,李相运.阿拉善盟内蒙古绒山羊血液蛋白位点及外貌表型检测[J].西北农业学报,1998,7: 20-24.
    [49] 耿社民,刘小林主编.中国家畜品种资源纲要[M].北京:中国农业出版社,2003,1-80,149-205.
    [50] 潘爱鉴,王杰,彭先文. 三个山羊群体血液蛋白多态性研究[J].中国畜牧杂志,2002,38(3):12-14.
    [51] 欧阳叙向.湖南地方山羊品种血液蛋白多态性研究[C].全国山羊生产与科技成果交流大会论文.郑州,1993.
    [52] 王永,王杰,郑玉才等.成都麻羊血液生化遗传标记的研究[J].西南民族学院学报,1983,6:293-299.
    [53] Angiolillo, A., Yahyaoui, M. H., Sanchez, A., Pilla, F., and Folch, J. M.. Short communication: characterization of a new genetic variant in the caprine kappa-casein gene [J]. J. Dairy Sci, 2002, 85: 2679-2680.
    [54] Leroux. C., Martin, P., Mahe M. F. I. Eveziel H., and Mercier J. C. Restriction fragment length polymorphism identification of goat alpha si-asein alleles: a potential tool in selection of inuiciduals carrying alleles associated with a high level protein synthesis [J]. Anint Genet, 1990, 21: 341-351.
    [55] 秦国庆,陈国宏,李建凡. 藏山羊 RAPD 及 RFLP 标记的初步研究[J].西北农业大学学报,1998,26 (1):17-20.
    [56] Kusiluka L. J., Ojeniyi B, Friis N. F., Kokotovic B. and Ahrens P. Molecular analysis of field strains of Mycoplasma capricolum subspecies capripneumoniae and Mycoplasma mycoides subspecies mycoides, small colony type isolated from goats in Tanzania [J]. Vet Microbiol, 2001, 82: 27-37.
    [57] Yahyaoui, M. H., Coll, A., Sanchez, A., and Folch, J. M. Genetic polymorphism of the caprine kappa casein gene[J]. J Dairy Res, 2001, 68: 209-216.
    [58] 陈世林,赵书红,李永军,李孟华,余梅,熊统安,李奎.辽宁绒山羊随机扩增多态 DNA 的研究[J].华中农业大学学报,2001,20(4):303-305.
    [59] 李样龙,田庆义,马国强,刘金福,冯敏山,牛一兵,孙乃权,马广星.波尔山羊杂交后代及其亲本随机扩增多态 DNA 研究.遗传,2000,22:75-77.
    [60] 李样龙,张亚平,陈圣偶,曾凡同,邱祥聘,刘相模.我国主要地方山羊品种随机扩增多态 DNA研究[J].畜牧兽医学报,2000,31(5):416-422.
    [61] Perez T., Albornoz J., Garcia-Vazquez E., and Dominguez A. Application of DNA fingerprinting to population study of chamois (Rupicapra rupicapra) [J]. Biochem Genet, 1996, 34, 313-320.
    [62] 王杰,沈富军,欧阳熙,王永,贾志红,余陆军,王同军,王世斌.DNA 指纹技术在马海毛山羊育种中的应用研究[J].西南民族学院学报,2001,27:197-201.
    [63] 晏兆莉.多位点 DNA 指纹技术及其在家畜育种中的应用[J].西南民族学院学报,1996,22(4): 457-461.
    [64] [0]Li Meng-hua, Zhao Shu-hong, Bian Ci, Wang Hai-Sheng, et al. Genetic relationships among twelve Chinese indigenous goat populations based on microsatellite analysis [J]. Genet. Sel. Evol. 2002, 34: 729-744.
    [65] Barker J S F, T. S. G., Moore S S, Mukherjee T K, Matheson J L, Selvaraj O S. Genetic variation within and relationships among populations of Asian goats [J]. J Anim Breed Genet, 2001, 118: 213-233.
    [66] Kim K S, Y. J. S., Lee J N, Kim J W Choi C B. Genetic diversity of goals from korea and China using microsatellite analysis [J]. Asian-Aust J Anim Sci, 2002, 15: 461-465.
    [67] Ganal N. A., and Yadav, B. R. Genetic variation within and among three Indian breeds of goat using heterologous microsatcllite markers [J]. Anim Biotechnol, 2001, 12: 121-136.
    [68] Saitbekova N., Gaillard C., Obexer-Ruff G., and Dolf G. Genetic diversity in Swiss goat breeds based on microsatellite analysis [J]. Anim Genet, 1999, 30: 36-41.
    [69] Yang L, Z. S. H., Li K, Peng Z Z, Montgomery G W. Determination of relationship among five indigenous Chinese goat breeds with six microsatellite markers [J]. Animal Genetcis, 1999, 30: 452-456.
    [70] Luikart G.Biju-Duval MP, Ertugrul O, Zagdsuren Y, Maudet C, Taberlet E Power of 22 microsatellite markers in fluorescent multiplexes for parentage testing in goats (Capra hircus) [J].Anim Genet., 1999, 30(6): 431-438.
    [71] Ca?ón J., García D., García-Atance M.A.,Obexer-Ruff G. et al. Geographical partitioning of goat diversity in Europe and the Middle East [J]. Animal Genetics. 2006, 37:327-334.
    [72] 郑丕留等.中国畜禽品种志[M].上海:科学技术出版社,1986-1989.
    [73] 冯维棋等.中国家养动物品种资源浅析[J].畜牧兽医学报,1997,28(4 ):300-303.
    [74] 陈幼春.家养动物(见《中国生物多样性国情研究报告》)[M].北京:中国环境科学出版社,1998,123-126
    [75] 马月辉.中国家养动物多样性概况[J].生物多样性,1999,5:394-399.
    [76] Anderson S, De Bruin MHL, Coulson A R et al. Complete sequence of bovine mitochondrial DNA. Conserved features of the mammalian mitochondrial genome [J]. J Mol Evol. 1982, 156: 683-717.
    [77] Hecht W. Studies on mitochondrial DNA in farm animals [A]. In: Genome analysis in domestic animals. 1990, 259-268.
    [78] Lin Chich-Sheng, Sun Yu-Lin, Liu Chang-Yeu et al. Complete nucleotide sequence of pig (Sus scrofa) mitochondrial genome and dating evolutionary divergence within Artiodactyla [J]. Genetics. 1999, 236, 107-114.
    [79] Bj?rn M. Uring, Ulfur Arnason. The complete mitochondrial DNA sequence of the pig (Sus scrofa) [J]. J Mol. Evol. 1998, 47: 302-306.
    [80] Hiendleder S, Lewalski H, Wassmuth R et al. The complete mitochondrial DNA sequence of the domestic sheep (Ovis aries) and comparison with the other major ovine haplotype[J]. J Mol Evol. 1998a, 47: 441-448.
    [81] Xu X, Amason U. The complete mitochondrial DNA sequence of the horse, Equus caballus; Extensive heteroplasmy of the control region [J]. Gene. 1994, 148: 357-362.
    [82] Pietro P, Maria F, Gianfranco G et al. The complete nucleotide sequence of goat (Capra hircus) mitochondrial genome [J]. DNA sequence. 2003, 14(3): 199-203.
    [83] Bibb M J, Van Etten R A, Wright C T et al. Sequence and gene organization of mouse mitochondrial DNA[J]. Cell. 1981, 26: 167-180.
    [84] Roe B A, Ma DP, Wilson RK et al. The complete nucleotide sequence of the Xenopus laevis mitochondrial genome [J]. J Biol. Chem. 1985, 260(17): 9759-9774.
    [85] Janke A, Xu Xiufeng, Arnason Ulfur. The complete mitochondrial genome of the wallaroo (Macropus robustus) and the phylogenetic relationship among Monotremata, Marsupialia, and Eutheria [J] . Proc. Natl. Acad. Sci. USA. 1997, 94: 1276-1281.
    [86] Crease T J. The complete sequence of the mitochondrial genome of Daphnia pulex (Cladocera: Crustacea) [J]. Gene. 1999, 233(1-2): 89-99.
    [87] Broughton R E, Milam J E, Roe B A. The complete sequence of the Zebrafish (Danio rerio) mitochondrial genome and evolutionary patterns in vertebrate mitochondrial DNA [J]. Genome Research. 2001, 11: 1958-1967.
    [88] Vivian W, Jaime V, Alvaro M et al. The complete sequence of the mitochondrial genome of the Chinook salmon, Oncorhynchus tshawytscha [J]. Biol. Res.. 2003, 36(2): 223-231.
    [89] Kutsyi M P, Gouliaeva N A, Kuznetsova E A et al. DNA-binding proteins of mammalian mitochondria[J]. Mitochondrion. 2005, 5(1): 35-44.
    [90] Taanman J W. The mitochondrial genome: Structure, transcription, translation and replication [J]. Biochim Biophys Acta. 1999, 1410: 103-123.
    [91] Altmann R. Die elementarorganismen und ihre beziehungen zu den zellen( Viet, Leipzig,1890): J. Sapp. Evolution by Association [M]. A history of Symbiosis. Oxford Univ. Press. New York. 1994.
    [92] Gray M W, Burger G and Lang B.F. Mitochondrial evolution [J]. Science. 1999, 283(5): 1476-1481.
    [93] Wolf C, Rentsch J, Hubner P. PCR-RFLP analysis of mitochondrial DNA: a reliable method for species identification [J]. J Agric Food Chem. 1999, 7(4): 1350-1355.
    [94] Gyllensten U, Wharton D, Josefsson A et al. Paternal inheritance of mitochondrial DNA in mice [J]. Nature. 1991, 352: 255-257.
    [95] Hutchison C A, Newbold J E, Potter S S et al. Maternal inheritance of mammalian mitochondrial DNA [J]. Nature. 1974, 251: 536-538.
    [96] Watanabe T, Masangkay J S, Wakana S et al. Mitochondrial DNA polymorphism in native Philippine cattle based on restriction endonuclease cleavage patterns [J]. Biochem. Genetics. 1989, 27: 431-438.
    [97] Lamb T and Avise J C. Directional introgression of mitochondrial DNA in a hybrid population of tree frogs: the influence of mating behavior [J]. Proc. Natl. Acad. Sci. USA. 1986, 83: 2526-2530.
    [98] Giles R E, Blance H, Cann H M et al. Maternal inheritance of human mitochondrial DNA [J]. Proc Natl Acad Sci USA. 1980, 77(11): 6715–6719.
    [99] Gyllensten U, Wharton D, Wilson A C. Maternal inheritance of mitochondrial DNA in mice [J]. J Hered. 1985, 76: 321-324.
    [100] Shitara H, Hayashi Jun-Ichi, Takahama S et al. Maternal inheritance of mouse in interspecific hybrids: Segregation of the leaked paternal mtDNA followed by the prevention of subsequent paternal leakage [J]. Genetics. 1998, 148: 851-858.
    [101] Kondo R., E. T. Matsuura, S. I. Chigusa. Further observation of paternal transmission of Drosophila mitochondrial DNA by PCR selective amplification method [J]. Genetic Research. 1992, 59: 81-84.
    [102] Schwartz M, Vissing J. Brief report: Paternal inheritance of mitochondrial DNA [J]. The new England Journal of Medicine. 2002, 347(8): 576-580.
    [103] Bromham L, Eyre-Walker Adam, Smith N H. et al. Mitochondrial steve: paternal inheritance of mitochondria in humans [J]. Trends in Ecology and Evolution. 2003, 18(1): 2-4.
    [104] Justin C. St. John and Gerald Schatten. Paternal Mitochondrial DNA Transmission During Nonhuman Primate Nuclear Transfer [J]. Genetics. 2004, 167, 897-905.
    [105] 赵兴波,储明星,李宁等. 绵羊线粒体 DNA 的父系遗传[J].中国科学(C 辑),2000,30(6):642-646.
    [106] Zhao X, Li N, Guo W et al. Further evidence for paternal inheritance of mitochondrial DNA in the sheep (Ovis aries) [J]. Heredity. 2004, 93(4): 399-403.
    [107] 齐晓岚,谢渊,单可人等. 贵州从江侗族 Y-DNA 及线粒体 DNA 序列多态性分析[J].遗传,2005, 27(1):030-034.
    [108] Kikkawa Y, Takada Sutopo T, Nomura K et al. Phylogenies using mtDNA and SRY provide evidence for male-mediated introgression in Asian domestic cattle [J]. Animal Genetics. 2003, 34: 96-101.
    [109] Cao Liqin, Kenchington Ellen and Zouros Eleftherios. Differential Segregation Patterns of Sperm Mitochondria in Embryos of the Blue Mussel (Mytilus edulis) [J]. Genetics. 2004, 166(2): 883-894.
    [110] Everett EM, Williams PJ, Gibson G et al. Mitochondrial DNA polymorphisms and sperm motility inMytilus edulis (Bivalvia: Mytilidae) [J]. J Exp Zoolog A Comp Exp Biol. 2004, 301(11): 906-910.
    [111] Schwartz M, Vissing J. New patterns of inheritance in mitochondrial disease [J]. Biochem Biophys Res Commun. 2003, 17(2): 247-251.
    [112] Schwartz M, Vissing J. No evidence for paternal inheritance of mtDNA in patients with sporadic mtDNA mutations [J]. J Neurol Sci. 2004, 218(1-2): 99-101.
    [113] Kennedy P, Nachman M W. Deleterious mutation at the mitochondrial ND3 gene in south American marsh rates (Holochilus) [J]. Genetics. 1998, 150(1): 359-368.
    [114] Hiendleder S. A low rate of replacement substitutions in two major Ovis aries mitochondrial genomes [J]. Animal Genetics. 1998b, 29, 116-122.
    [115] 陈玉林.中国绵羊的分子进化与遗传多样性研究[D].西北农林科技大学博士学位论文.杨凌, 2000.
    [116] Rand, D M. Endotherms, ectotherms, and mitochondrial genome-size variation [J]. J. Mol. Evol. 1993, 37: 281-295.
    [117] 兰蓉,洪琼花,高源汉等.云南绵羊线粒体 DNA 遗传多样性研究[J].遗传,1998,20(1):20-23.
    [118] 张四明,邓怀,汪登强等.中华鲟(Acipenser sinensis) mtDNA 个体间的长度变异与个体内的长度异质性[J].遗传学报,1999,26(5):489-496.
    [119] Brzuzan Pawel. Tandemly repeated sequences in meDNA control region of whitefish, Coregonus lavaretus [J]. Genome. 2000, 43(3): 584-587.
    [120] 王静波,胡长龙,徐宏发. 线粒体 DNA(mtDNA)多态性在动物保护生物学中的应用[J].生物多样性,2001,9(2):181-187.
    [121] Geldermann H. & Ellendorff F. Genome analysis in domestic animals [M]. VCH Verlagsgese Hschaft mbH. Weinheim. Germany. 2000.
    [122] 王昕.中国中西部 9 个地方绵羊品种 mtDN 遗传多样性与系统进化研究[D].西北农林科技大学论文.杨凌,2006.
    [123] Chen H and Leibenguth F. Restriction endonuclease analysis of mitochondrial DNA of three farm animal species: Cattle, sheep and goat [J]. Comp. BIochem. Physiol. Part B: Biochemical and molecular Biology. 1995, 111(4): 643-649.
    [124] 涂正超,张亚平,邱怀.中国牦牛线粒体 DNA 多态性及遗传分化[J].遗传学报,1998,25(3): 205-212.
    [125] 赵兴波,冯继东,李宁等.绵羊(Ovis aries)线粒体 DNA 的遗传变异类型研究[J].自然科学进展,2001,11(12):1326-1328.
    [126] Wong Lee-Jun C and Boles R G. Mitochondrial DNA analysis in clinical laboratory diagnostics [J]. Clinica Chimica Acta. 2005, 354(1-2): 1-20.
    [127] Irwin D M, Kocher T D, Wilson A C et al. Evolution of cytochrome b gene of mammals [J]. J. Mol. Evol. 1991 ,32 :128-144.
    [128] MacHugh, D.E., Bradley, D.G., Livestock genetic origins: goats buck the trend [J]. roc. Natl. Acad. Sci. USA 2001, 98, 5382–5384.
    [129] Upholt W.B. & David I.B. Mapping of mitochondrial DNA of individual sheep and goats: rapid evolution in the D-loop region [J]. Cell. 1977, 11, 571-583.
    [130] Adam Eyre-Walker, Philip Awadalla. Does human mtDNA recombine [J]. J Mol. Evol. 2001, 53: 430-435.
    [131] 黄原著.中国博士专著(农业领域):分子系统学——原理、方法及应用[M].北京:中国农业出版社,1998.
    [132] Xia Xuhua. The rate heterogeneity of nonsynonymous substitutions in mammalian mitochondrial genes [J]. Mol. Biol. Evol. 1998, 15(3): 336-344.
    [133] Brown W.M. Evolution of animal mitochondrial DNA, in: Nei M., Koehn R.K. (Eds.), Evolution of genes and proteins [A], Sinauer Associates, Sunderland, MA. 1983, 63-88.
    [134] Ingman M, Gyllensten U. Analysis of the complete human mtDNA genome: Methodology and inferences for human evolution [J]. Journal of Heredity. 2001, 92(6): 454-461.
    [135] Avise J. C. Mitochondrial DNA and evolutionary genetics of higher animals [M]. Philos. Trans.R. Soc. London, B 1986, 312: 328-334.
    [136] David Mitchell, Eske Willerslev and Anders Hansen. Damage and repair of ancient DNA. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis [J]. 2005, 571(1-2): 265-276.
    [137] 李祥龙,张亚平,陈圣偶等.山羊品种间线粒体 DNA 限制性片段长度多态性研究[J].动物学研究,1997,18(4):421-428.
    [138] 叶绍辉,王文.云南保种山羊线粒体 DNA 限制性酶切研究[J].中国畜牧杂志,1998,34(3):11-12.
    [139] 贾永红等.贵州四个山羊品种 mtDNA 多态性及起源分化[J].动物学研究,1999,20(2):88-92.
    [140] 张红平.采用 mtDNA 序列研究中国家养山的遗传多样性与起源分化[D].四川农业大学博士学位论文.雅安,2003.
    [141] Luikart G, Gielly L, Excoffier L et al. Multiple maternal origins and weak phylogeographic structure in domestic goats [J]. PANS. 2001, 98:5927-5932.
    [142] David E. MacHugh and Daniel G. Bradley. Livestock gengetic origins: Goats buck the trend [J]. Proc Natl Acid Sci USA. 2001, 98(10): 5382-5384.
    [143] Chen S Y., Su Y H., Wu S F., Sha T., Zhang Y P. Mitochondrail diversity and phylogeographic structure of Chinese domestic goats [J]. Molecular Phylogenetics and Evolution 2005, 37, 804-814.
    [144] Liu R. Y.,Yang G. S., & Lei C. Z. The genetic diversity of mtDNA D-loop and the origin of Chinese goats [J]. Acta Genetica Sinica 2006, 33, 420-428.
    [145] Liu R. Y., Lei C. Z., Liu S. H., Yang G. S.. Genetic Diversity and Origin of Chinese Domestic Goats Revealed by Complete mtDNA D-loop Sequence Variation. Asian-Aust [J]. J. Anim. Sci. 2007, 20(2): 178.
    [146] Bin Fan, Shi-Lin Chen, Jame H. Kijas. Bang Liu et al. Phylogenetic relationships among Chinese indigenous goat breeds inferred from mitochondrial control region sequence [J]. Small Rumin. Res. 2007, doi:10.1016/ j.smallrumres. 2006.12.007.
    [147] Wang J., Chen Y.L., Wang X.L., et al. The genetic diversity of seven indigenous Chinese goat breeds [J]. Small Ruminant Research. 2007.,doi:10.1016/j.smallrumres.2007.03.007.
    [148] Sultana S, Mannen H, Tsuji S. Mitochondrial DNA diversity of Pakistani goats [J]. Aniam Genet. 2003, 34: 417-421.
    [149] Joshi M.B., Rout P.K., Mandal A.K., Tyler-Smith C., Singh L. & Thangaraj K.. Phylogeography and origin of Indian domestic goats [J]. Molecular Biology and Evolution 2004, 21, 454–462.
    [150] Sardina M.T., Ballester M., Marmi J., Finocchiaro R., van Kaam J.B.C.H.M., Portolano B., & Folch J.M. Phylogenetic analysis of Sicilian goats reveals a new mtDNA lineage [J]. Animal Genetics 2006, 37, 376-378.
    [151] Azor P.J., Monteagudo L.V., Luque M.,Tejedor M.T., et al. Animal Genetics. 2005, 36: 423-425.
    [152] 冯维祺.我国古代绵羊品种形成初考[J].农业考古,1991, (3):338~345.
    [153] Ryder M L. Domestication history and breed evolution in sheep. In: Genetic resources of pig, sheep and goat [A]. Elsevier science publishers B.V.. 1991, 365-375.
    [154] Nedler C F, Lay D M, Hassinger J D. Cytogenetic analysis of wild sheep populations in northern Iran. Cytogenetics[J]. 1971, 10: 137-152.
    [155] Woronzow N N, Korobizgna K W, Nadler C F et al. Chromossomi dikich baranow i proisschojdjenije domaschnich owjez [J]. Lriroda. 1972, 3: 74-81.
    [156] 陈宏,F. Leibenguth,邱怀.家畜线粒体 DNA 的研究[J].黄牛杂志,1995,21(1):7-17.
    [157] Hiendleder S, Hecht W, Dzapo V et al. Ovine mitochondrial DNA: restriction enzyme analysis, mapping and sequencing data [J]. Animal Genetics. 1991, 23, 151-160.
    [158] Hiendleder S, Kaupe B, Wassmuth R et al. Molecular analysis of wild and domestic sheep questions current nomenclature and provides evidence for domestication from two different subspecies[J]. Proc. R. Soc. Lond. 2002, B269, 893-904.
    [159] Hiendleder S, Mainz K, Plante Y et al. Analysis of mitochondrial DNA indicates that domestic sheep are derived from two different ancestral maternal sources: no evidence for contributions from urial and argali sheep [J]. J Hered. 1998c, 89(2): 113-120.
    [160] Hiendleder S, Phua S H, Hecht W et al. A diagnostic assay discriminating between two major Ovis aries mitochondrial DNA haplogroups [J]. Animal Genetics. 1999, 30(3): 211-213.
    [161] 贾永红,简承松,朱文适等.贵州绵羊线粒体 DNA (mtDNA) 多态性研究[J].西南农业学报,1998,12(1):100-105.
    [162] 李祥龙,田庆义,刘铮铸等.几个绵羊品种线粒体 DNA 限制性片段长度多态性比较研究[J].畜牧兽医学报,2001,32(4):295-298.
    [163] 贾斌,陈杰,赵茹茜等.新疆 8 个绵羊品种遗传多样性和系统发生关系的微卫星分析[J].遗传学报,2003, 30(9):847-854.
    [164] 赵兴波,李宁,吴常信.动物线粒体核质基因互作的研究进展[J].遗传,2001,23(1):81-85.
    [165] 郭军.中国部分绵羊品种 mtNDA 多态性及其遗传分化的研究[D].中国农业科学院硕士学位论文,北京,2004.
    [166] Chen Shan-yuan, Duan Zi-yuan, Tao Sha, Xiangyu Jinggong. et al. Origin, genetic diversity, and population structure of Chinese domestic sheep [J]. Gene. 2006, 376: 216-223.
    [167] Ivankovi? A, Dov? P, Kavar T et al. Genetic cha2racterisation of the Pag island sheep breed based on microsatellite and mtDNA data [J]. Small Ruminant Research. 2005, 57(2-3): 167-174.
    [168] Paiva S.R., Faria D.A., Silvério V.C.; McManus C., et al. Phylogenetic relationships among Brazilian sheep breeds [J]. The Role of Biotechnology. 2005, 3:197-198.
    [169] Boyce W M, Ramey R R, Rodwell T C et al. Population subdivision among desert bighorn sheep (Ovis Canadensis) ewes revealed by mitochondrial DNA analysis [J]. Molecular Evoution. 1999, 8: 99-106.
    [170] Tu Z C, Qiu H, Zhang Y P. Polymorphism in mitochondrial DNA (mtDNA) of Yak (Bos grunniens) [J]. Biochemical Genetics. 2002, 40(5-6): 187-193.
    [171] 雷初朝,陈宏,杨公社等.中国部分黄牛品种 mtDNA 遗传多态性研究[J].遗传学报,2004,31(1):57-62.
    [172] Lei C. Z., Chen H., Zhang H. C., Cai X. et al. Origin and phylogeographical structure of Chinese cattle [J]. Animal Gnetic, 2006, 37, 579–582.
    [173] Lei Chu-Zhao, Zhang Wei, Chen Hong, Lu Fan. et al. Two Maternal Lineages Revealed by Mitochondrial DNA D-loop Sequences in Chinese Native Water Buffaloes (Bubalus bubalis) [J]. 2007, 20(04): 411-416.
    [174] Loftus R.T, MacHugh D E, Bradley D G et al. Evidence for two independent domestications of cattle [J]. Pro. Natl. Acad. Sci.. 1994a, 91: 2757-2761.
    [175] Loftus R T, MacHugh D E, Ngere L O et al. Mitochondrial genetic variation in European, African and Indian cattle populations [J]. Animal Genetics. 1994b, 25,265-271.
    [176] 蒙世杰, 王静, 刘佩等.羚牛细胞色素 b 基因序列分析和系统进化研究[J].西北大学学报(自然科学版),2001, 31(4):347-354.
    [177] 兰宏,王文,施立明.西南地区家猪和野猪 mtDNA 遗传多样性研究[J].遗传学报,1995,22(1): 28-32.
    [178] 黄勇富,张亚平,邱祥聘等.猪线粒体 DNA 多态性与中国地方猪种起源分化的关系[J].遗传学报,1998, 25(4):322-329.
    [179] 段子渊.从 mtDNA 序列分析中国家猪的起源进化与遗传多样性[D].西北农林科技大学.杨凌,2000
    [180] Yang J, Wang J, Kijas J. Genetic diversity present within the near-complete mtDNA genome of 17 breeds of indigenous Chinese pigs [J]. Journal of Heredity, 2003, 94(5): 381-385.
    [181] Kijas J M H, Anderson L. A phylogenetic study of the origin of the domestic pig estimated from the near-complete mtDNA genome [J]. J Mol Evol. 2001, 52: 302-308.
    [182] 蒋思文, Giuffra Elisabetta, Andersson Leif. 6 个中国猪地方品种和 3 个瑞典猪 DNA 分子系统发育相关关系[J].遗传学报,2001, 28(12):1120-1128.
    [183] Larson Greger, Dobney Keith, Albarella Umberto, Fang Meiying, et al. 2005. Worldwide phylogeography of wild boar reveals multiple centers of pig domestication [J]. Science. 307:1618-1621.
    [184] Vila` C, Savolainen P, Maldonado J E et al. Multiple and ancient origins of the domestic dog [J]. Science. 1997, 276(13): 1687-1689.
    [185] 罗理杨.现代家犬的起源----线粒体 DNA 的研究.西北农林科技大学博士学位论文[D].杨凌,2003.
    [186] Savolainen Peter, Zhang ya-ping, Luo Jing,Lundeberg Joakim. et al. Genetis evidence for an east Asion origin of domestic dogs [J]. Science. 2002, 298: 1610-1613.
    [187] 权洁霞,张亚平,韩建林等.家养双峰驼线粒体 DNA 遗传多样性的研究[J].遗传学报,2000, 27(5):383-390.
    [188] 宿兵,P.Kressirer, K.Monda 等.中国黑冠长臂猿的遗传多样性及其分子系统学研究—非损伤取样 DNA 序列分析[J].中国科学(C 辑),1996,26(5):414-419.
    [189] Thai B T, Burridge C P, Pham T A et al. Using mitochondrial nucleotide sequences to investigate diversity and genealogical relationships within common carp (Cyprinus Carpio L.) [J]. Animal Genetics. 2004, 36, 23-28.
    [190] Vila C, Leonard J A, Gotherstrom A et al. Widespread origins of domestic horse lineages [J]. Science. 2001, 291(5503): 474-477.
    [191] Jansen T, Forster P, Levine M A et al. Mitochondrial DNA and the origins of the domestic horse [J]. Proc Natl Acad Sci USA. 2002, 99(16): 10905-10910.
    [192] Lopes M.S., Mendon?a D., Cymbron T., Valera M., et al. The Lusitano horse maternal lineage based on mitochondrial D-loop sequence variation [J]. Animal Genetics. 2005, 36: 196-202.
    [193] Maria Cristina Cozzi, Maria Giuseppina Strillacci, Paolo Valiati, et al. Mitochondrial D-loop sequence variation among Italian breeds [J]. Genet. Sel. Evol. 2004, 36: 663-672.
    [194] Keyser-Tracqui C., Blandin-Frappin P., Francfort H.-P., Ricaut F.-X., et al. Mitochondrial DNA analysis of horses recovered from a frozen tomb (Berel site, Kazakhstan, 3rd century BC) [J]. Animal Genetics. 2005, 36, 203-209.
    [195] McGahern A., Bower M.A.M., Edwards C.J. Brophy P.O., et al. Evidence for biogeographic patterning of mitochondrial DNA sequence in Eastern horse populations [J]. Animal Genetics. 2006, 37, 494-497.
    [196] McGahern A.M., Edwards C.J., Bower M.A., Heffernan A., et al. Mitochondrial DNA sequencediversity in extant Irish horse populations and in ancient horses [J]. Animal Genetics. 2006, 37, 498-502.
    [197] Iwańczyk Ewa, Juras Rytis, Cholewiński Grzegorz, Gus Cothran E. Genetic structure and phylogenetic relationships of the Polish Heavy horse [J]. J. Appl. Genet. 2006, 47(4): 353-359.
    [198] 雷初朝,陈宏,杨公社,孙维斌等.中国家驴线粒体 DNA D-loop 多态性研究[J].遗传学报,2005,32(5):481-486.
    [199] Lei Chu-zhao, Ge Qing-lan, Zhang Hu-cai, Liu Ruo-yu et al. African maternal origin and genetic diversity of Chinese domestic doneys. Asian-Aust [J]. J. Anim. Sci. 2007, 20(5): 645-652.
    [200] Feng J, Lajia C, Taylor D J et al. Genetic distinctiveness of endangered dwarf blue sheep(Pseudios nayaur schaeferi): evidence from mitochondrial region and Y-linked ZFY intron sequences [J]. J. Hered. 2001, 92(1): 9-15.
    [201] Banerjee J, Trivedi R and Kashyap V K. Mitochondrial DNA control region sequence polymorphism in four indigenous tribes of Chotanagpur plateau [J], India. Forensic Science International. 2005, 149(2-3): 271-274.
    [202] Kouch T D, Thomas W K A, Meyer S V et al. Dynamics of mitochondrial DNA evolution in animal : amplification and sequencing with conserved primers [J]. Proc Acad Sci USA. 1989, 86: 6190-6200.
    [203] Vladimir O A, Poltoraus L A, Zhivotovsky V. Mitochondrial DNA sequence diversity in Russians [M]. Federation of European Biochemical Societies Letter. 1999, 197-201.
    [204] Irwin D M, Kocher T D, Wilson A C et al. Evolution of cytochrome b gene of mammals [J]. J. Mol. Evol. 1991 ,32: 128-144.
    [205] Victor Guryev, Irina Makarevitch, Alexander Blinov et al. Phylogeny of the Genus Chironomus (Diptera) Inferred from DNA Sequences of Mitochondrial Cytochrome b and Cytochrome oxidase I [J]. Molecular Phylogenetics and Evolution. 2001, 19(1): 9-21.
    [206] 曹丽荣,王小明,方盛国.从细胞色素 b 基因序列差异分析岩羊和矮岩羊的系统进化关系[J].动物学报,2003,49(2):198-204.
    [207] Alves E, Ovilo C, Rodriguez M C et al. Mitochondrial DNA sequence variation and phylogenetic relationships among Iberian pigs and other domestic and wild pig populations [J]. Animal Genetics. 2003a, 34: 319-324.
    [208] Alves P C, Ferrand N, Suchentrunk F et al. Ancient introgression of Lepus timidus mtDNA into L. granatensis and L. europaeus in the Iberian Peninsula [J]. Molecular Phylogenetics and Evolution. 2003b, 27: 70-80.
    [209] 张传生,耿立英,杜立新.山东主要绵羊品种线粒体细胞色素 b 的多态性研究[J].山东农业大学学报(自然科学版),2004,35(4):481-484.
    [210] 张明海,肖朝庭,Koh Hungsun. 从分子水平探讨中国东北狍的分类地位[J].兽类学报,2005, 25(1): 14-19.
    [211] Wang Hsien-Chi, Lee Shu-Hwae, Chang Tien-Jye et al. Examination of Meat Components in Commercial Dog and Cat Feed by Using Polymerase Chain Reaction-Restriction Fragment Length Polymorphisms (PCR-RFLPs) Technique [J]. Journal of Veterinary Medical Science. 2004, 66(7): 855-859.
    [212] Yan Peng, Wu Xiao-Bing, Shi Yan et al. Identification of Chinese alligators (Alligator sinensis) meat by diagnostic PCR of the mitochondrial cytochrome b gene [J]. Biological Conservation. 2005, 121(1): 45-51.
    [213] 吕宝忠,钟扬,高莉萍等译.分子进化与系统发育[D].高等教育出版社,2002.
    [214] 谭远德.重建系统演化树的一种新方法[J].动物学报,2000,46(4): 448-456.
    [215] 徐云碧,王志宁,俞志华.遗传学数据分析[M].中国农业出版社,1996,1-428.
    [216] Page R. M, Holme E.D. Molecular Evolution[M]. Blackwell Science Ltd. 1998, 1-346.
    [217] Bandelt H.J, Forster P, Sykes B.C. Mitochondrial portraits of human populations using median networks [J]. Genetics, 1995, 141: 743-755.
    [218] 姚永刚,张亚平.线粒体 DNA 和人类进化[J].动物学研究,2000,21(5): 392-406.
    [219] Bandelt H.J, Forster P, Rohl A. Median-joining network for inferring intraspecific phylogenies [J]. Mol. Biol. Evol. , 1999, 16(1): 37-48.
    [220] Bandelt H. J, Macaulay V, Richards M. Median networks: speedy construction and greedy reduction, one simulation, and two case studies from human mtDNA [J]. Mol. Phylogent. Evol. 2000,16(1): 8-28.
    [221] Bandelt H. J, Lahermo P, Richards M, et al. Detecting errors in mtDNA data by phylogenetic analysis [J]. Int. J. Legl. Med, 2001, 115: 64-69.
    [222] Chandrasekharan,U. M., S. Sanker, M. J. Glynias, S.S. Karnik and A. Husain. Angiotensin II-forming activity in a reconstructed ancestral chymase [J]. Science. 1996, 271: 502-505.
    [223] Dayhoff, M. O., R. M. Schwartz and B. C. Orcutt. A model of evolutionary change in proteins. In Atlas of protein sequence and structure (M. O. Dayhoff, ed.) [J], National Biomedical Research Foundation, Silver Spring, MD. 1978. pp: 345-352.
    [224] Nei, M., X. Gu and T. Sitnikova. Evolution by the birth-and-death process in multigene families of the vertebrate immune system [J]. Proc. Natl. Acad. Sci. USA. 1997a, 94: 7799-7806.
    [225] Zhang, J. and X. Gu. Correlation between the substitution rate and rate variation among sites in protein evolution [J]. Genetics. 1968, 149: 1615-1625.
    [226] Saitou N. and M. Nei. The neighbor-joining method: A new method for reconstructing phylogenetic trees [J]. Mol. Biol. Evol. , 1987, 4: 406-425.
    [227] Studier J. A. and K. J. Keppler. A note on the neighbor-joining algorithm of Saitou and Nei [J]. Mol. Biol. Evol. 1988, 5: 729-731.
    [228] Edwards A. W. F. and L. L. Cavalli-Sforza. The reconstruction of evolution. Heredity, 1963, 18: 553.
    [229] Rzhetsky A. and M. Nei. Theoretical foundation of the minimum-evolution method of phylogenetic inference [J]. Mol. Biol. Evol. 1993, 10: 1073-1095.
    [230] Sitnikova, T., A. Rzhetsky and M. Nei. Interior-branch and bootstrap tests of phylogenetic trees [J]. Mol. Biol. Evol. 1995, 12: 319-333.
    [231] Rzhetsky A. and M. Nei. A simple method for estimating and testing minimum-evolution trees [J]. Mol. Biol. Evol., 1992, 9: 945-967.
    [232] Eck R. V. and M. O. Dayhoff. Atlas of protein sequence and structure [J]. National Biomedical Research Roundation, Silver Springs, MD. 1966.
    [233] Fitch W. M. Toward defining the course of evolution: Minimum change for a specific tree topology [J]. Syst. Zool. ,1971, 20: 406-416.
    [234] Hartigan J.A. Minimum evolution fits to a given tree [J]. Biometrics, 1973, 29: 53-65.
    [235] Felsenstein J. Evolutionary trees from DNA sequences: A maximum likelihood approach [J]. J. Mol. Evol. 1981, 17: 368-376.
    [236] Kishino H. , T. Miyata and M. Hasegawa. Maximum likelihood inference of protein phylogeny and the origin of chloroplasts [J]. J. Mol. Evol. 1990, 31: 151-160.
    [237] Dayhoff, M. O., R. M. Schwartz and B.C.Orcutt. A model of evolutionary change in proteins [M]. In Atlas of protein sequence and structure (M. O. Day), 1978.
    [238] Cavalli-Sforza L. L. and A. W. F. Edwards. Phylogenetic analysis: Models and estimation procedures [J]. Am. J. Hum. Genet., 1967, 19: 233-257.
    [239] 廖顺尧,鲁成.动物线粒体基因组研究进展[J].生物化学与生物物理进展,2000,27(5):508-512.
    [240] 牛屹东,李明, 魏辅文等.线粒体 DNA 用作分子标记的可靠性和研究前景[J].遗传,2001,23(6):593~598.
    [241] Gustincich S., G.Manfioletti, G.Del Sal, C.Schneider, and P. Carnichi. A fast method for high quality genomic DNA extraction from whole human blood [J]. Biotechniques 1991, 11: 298-301.
    [242] Thompson J. D., Gibson T.J., Plewniak F., Jeanmougin F., and Higgins D. G. The Clustal X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools [J]. Nucl Acids Res 1997, 24: 4867-4882.
    [243] Thompson, J. D.. Higgins,D. G,,and Gibson,T.J. Clustal W:Improving the sensitivity of progressive multiple alignment through sequence weighting [J]. Nucl. Acids Res 1994, 22: 4673-4680.
    [244] Kumar S., Tamura K., & Nei M. MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment [M]. Briefings in Bioinformatics. 2004, 5, 150-160.
    [245] Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences [J]. J. Mol. Evol. , 1980, 16: 111-120.
    [246] Sudhir Kumar, Koichiro Tamura, Ingrid B. Jakobsen, and Masatoshi Nei . MEGA2: Molecular Evolutionary Genetics Analysis software [M], Arizona State University, Tempe, Arizona, USA. 2001.
    [247] Felsenstein J. Confidence limits on phylogenies : An approach using the bootstrap. Evolution[J], 1985, 39: 783-791.
    [248] Rogers A R, Harpending H. Population growth makes waves in the distribution of pairwise genetic differences [J]. Mol Biol Evol , 1992, 9: 552-569.
    [249] Rogers A R. Genetic evidence for a Pleistocene population expansion. Evolution, 1995, 49:608-615.
    [250] Fu Y X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection [J]. Genetics, 1997, 147: 915-925.
    [251] Excoffier L, Smouse P E and Quattor J M. Analysis if molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data [J]. Genetics, 2000, 136: 343-359.
    [252] Schneider, S., ExcoYer, L., Estimation of past demographic parameters from the distribution of pairwise diVerences when the mutation rates vary among sites: application to human mitochondrial DNA [J]. Genetics 1999, 152, 1079–1089.
    [253] R?hl A, Brinkmann B, Forster L, Forster P. An annotated mtDNA database [J]. Int J Legal Med, 2001, 115: 29-39.
    [254] Li Wen-Hsiung, D.an Graur. Foundamentals of molecular evolution [M].[0] Sinauer Associates, Inc. Sunderland, Massachusetts. 1991.
    [255] Nei M. Molecular Evolutionary Genetics [M]. Columbia University Press. New York. 1987.
    [256] Rogers A R, Harpending H. Population growth makes waves in the distribution of pairwise genetic differences [J]. Mol Biol Evol. 1992, 9: 552-569.
    [257] Rogers A R. Genetic evidence for a Pleistocene population expansion [J]. Evolution, 1995, 49: 608-615.
    [258] Fu Y X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection [J]. Genetics, 1997, 147: 915-925.
    [259] Anderson S., A. T. Bankier, B. G. Barell, M. H. de Bruijn, A. R. Coulson et al. Sequence and organization of the human mitochondriat genome. Nature 1981, 290: 457-465.
    [260] 李祥龙, 张亚平,陈圣偶等.山羊 mtDNA 多态性及其起源分化研究. 畜牧兽医学报,1999,30(4):313-319.
    [261] Lan H and Shi L M. The origin and genetic differentiation of native breeds of pigs in southwest China :An appproach from mitochondrial DNA polymorphism [J]. Biochemical Genetics , 1993 , 31: 51-60
    [262] 季维置,宿兵主编.遗传多样性研究的原理和方法[M].浙江:科学技术出版社,1998.
    [263] 李传永,李恬.中国历史上的人口迁移[J].四川师范学院学报(哲学社会科学版),1997,5:13-18.
    [264] Wang Y. A study on the migration policy in ancient China [J]. Chin J Popul Sci. 1995, 7: 27-38.
    [265] 曹艳英,余元子.我国历史上北方游牧人口的南移和西迁.人口学刊,1997,2: 50-52, 22
    [266] Felsenstein J. Confidence limits on phylogenies: An approach using the bootstrap [J]. Evolution I985, 22: 521-565.
    [267] Sitnikova T. ,A. Rzhetsky and M .Nei. Interior-branch and bootstrap tests of phylogenetic trees [J]. Mol.Biol.Evol. 1995, 12: 319-333
    [268] Hutchinson C. A. Maternal inheritance of mammalian mitochondrial DNA [J]. Nature, 1980, 251: 536-538.
    [269] 刘若余.中国山羊、黄牛线粒体 DNA 遗传多样性与起源进化[D].西北农林科技大学论文.杨凌,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700