蛋白质配体结合位点柔性的系统分析及分子柔性对接方法的发展和应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在药物靶标确定和三维结构已知的情况下,基于受体结构的虚拟数据库筛选方法利用分子对接技术自动地匹配受体结合腔穴和化合物数据库中的小分子三维结构,然后利用基于分子力场的能量函数或者经验性函数对分子对接的模式进行打分,进而选择与受体相互作用最好的一组化合物进行生物活性测试,从而大大节省了寻找先导化合物的费用和难度。尽管分子对接在先导化合物的寻找方面有许多成功的应用,但仍然存在很大的问题,其中忽略蛋白柔性常常是导致失败的重要原因。由于蛋白质受体和配体小分子在分子识别过程中,配体结合位点会发生不同程度的构象变化,如何通过计算化学的方法去评估和预测配体结合位点残基的构象柔性,缩小构象搜索的空间,一直是这个研究领域中具有挑战性的一个重要问题。幸运的是,随着结构生物学的发展,大量晶体结构的解析,为我们更好的理解分子识别和改进分子对接方法,提供了重要的资源和基础。因此,我们建立了一个专门用于研究配体结合位点柔性的关系型数据库Flex-Site DB (http://flexsi.te.huanglab.org.cn/flexsite),包括5,525个配体小分子结合位点,每个结合位点都包含多套蛋白晶体结构数据描述不同的蛋白构象,总共30,313套晶体结构数据。Flex-Site DB提供的信息有助于研究蛋白质配体结合位点的构象变化和蛋白质与配体之间的相互作用,以及两者之间的关系。同时,Flex-Site DB提供了配体结合位点的多个不同三维构象,结合位点残基的物理和化学的性质,以及蛋白质和配体相互作用的描述符。通过蛋白质晶体结构构象变化的统计分析和多重时间尺度蒙特卡洛构象搜索的方法,我们系统研究了配体结合位点残基的柔性状况。大部分的配体结合位点在结合了相似结构的化合物时,构象变化较小;在结合了结构差异较大的化合物时,有显著的构象变化,但主要是在残基的侧链水平。对于配体结合位点同一类型的极性残基,能够通过侧链与配体小分子形成氢键的残基,同侧链不与配体形成氢键的残基相比,更加刚性,突变率也更低。能与配体形成氢键相互作用的蛋白质残基侧链刚性较强的原因可能是,在与配体结合过程中,这类残基不发生较大构象变化,从而减少熵的损失。我们的结果显示,在先导化合物的发现和优化过程中,在大多数情况下只需要对少数几个柔性较强的残基进行侧链的构象搜索。并且,我们通过多重时间尺度蒙特卡洛构象搜索的方法预测配体结合位点的柔性残基的策略以及通过Flex-Site DB中鉴定到的柔性残基,能直接促进我们对于柔性对接方法的发展。
     除了利用Flex-Site DB中残基侧链柔性的信息,我们使用多重时间尺度的蒙特卡洛算法在没有配体结合的情况下,对结合位点的残基进行构象搜索,然后将搜索到的多个残基构象整合到D0CK3.5.54的柔性对接算法中来模拟“构象选择”的过程。此方法在10个不同的蛋白上进行了测试,总共做了20个对接。其中11个对接中都获得较好的结果,而刚性对接只有6个得到较好的结果。我们挑选了PIM1(proviral integration site in Moloney)激酶作为我们应用柔性对接方法来虚拟筛选的实例。PIM1激酶是与白血病和前列腺癌紧密相关的重要的药物靶点蛋白。柔性对接不仅较好地重现PIM1激酶配体小分子的结合模式,而且还能提高阳性化合物的富集率。柔性对接在PIM1激酶上虚拟筛选了小规模的LOPAC小分子化合物库,发现一个与PIM1形成很好相互作用的小分子硫利达嗪,是多巴胺受体D1/D2的选择性拮抗剂,并通过测定半数抑制率确认了它是PIM1和PIM3微摩尔级别的结构新颖的抑制剂。另外,基于“诱导契合”学说,我们改进了柔性对接策略,在柔性对接生成的蛋白质配体复合物中,对柔性残基侧链进行进一步的构象搜索和能量最小化。结果显示,残基侧链构象搜索和能量最小化,能够更好地重现复合物晶体结构中配体的结合模式,并且阳性化合物富集能力也有所提升。因此,基于我们对LOPAC化合物库筛选的经验以及对柔性对接方法的进一步提高,我们在PIM1激酶上筛选了更大规模的化合物库。最终我们挑选了70个具有较好结合模式的化合物,并在接下来的工作中会测试它们的生物学活性。
Receptor-based virtual screening utilizes molecular docking method to place small molecular compounds into the receptor binding site, and rank the compounds according to their scores computed in force field-based or empirical-based scoring functions. Despite the successful applications of molecular docking, there still exists big challenges. Neglecting protein flexibility is known to cause errors in structure-based drug design. Treating binding-site flexibility in molecular docking is critical in certain cases, but not yet realized in rigorous fashion. Since protein-ligand binding will cause multiple levels of conformational change, computationally assessing ligand binding-site flexibility and reducing the sampling space are critical issues in structure-based drug design. Fortunately, the advance of the structural biology provides an opportunity for better understanding molecular recognition and improving the performance of docking programs. Here, we assembled a comprehensive, yet specialized relationship database, Flex-Site DB (free available at http://flexsite. huanglab. org. cn/flexsite), containing5,525unique ligand binding-site conformational ensembles derived from a total of30,313protein crystal structures. Flex-Site DB provides the community a rich resource for systematically investigating protein binding-site flexibility and protein-ligand interaction, including but not limited to binding-site conformational ensembles, the structural properties of binding-site residues and variety of descriptors of protein-ligand interaction. We mainly investigated the magnitude of protein conformational change at residue level via structure statistical analysis and Monte Carlo sampling method. Interestingly, many ligand binding pockets do not embody significant conformational rearrangement, especially among holo structures bound with structurally similar ligands. Remarkably, for the same residue type comparison, the binding-site residues forming hydrogen bond interaction with ligand can confer structural rigidity and low mutation propensity. It is likely that the specific protein-ligand interaction intends to be pre-organized to minimize the entropic loss upon ligand binding. Our analysis suggests that sampling a few predetermined binding-site residues may be adequate in majority of lead discovery and lead optimization applications. Nevertheless, the generated protein binding-site conformational ensembles and identified flexible residues in present study can directly facilitate our development of flexible-receptor docking algorithm.
     Besides exploring the residue flexibility information in Flex-Site DB to identify flexible residue in binding-site, we used the multiple "time step" Monte Carlo algorithm to sampling residue side chain conformational change without ligand and then used modified version of DOCK3.5.54for flexible molecular docking, based on "conformational selection" model. We benchmarked this method against10different proteins,20docking test cases.11out of20perform well in flexible docking while only6out of20perform well in rigid docking. We applied this method to screen the LOPAC database against PIM1(proviral integration site in Moloney) kinase, a drug target related with leukemia and prostate cancer. Interestingly, among the top ranked docking poses, a dopamine D1/D2receptor antagonist, Thioridazine, was identified to form favorable interactions with binding site residues. Subsequently, we experimentally validated Thioridazine as low micromolar inhibitor of PIM1kinase. One drug can simultaneously interact with G-protein coupled receptor and protein kinase, expanding our knowledge on drug off-target effect. In addition, we further improved our flexible docking protocol by sampling and minimizating the side chains along with the docked ligand based on "induced fit" theory. Encouragingly, after further side chain sampling and minimization, both docking poses and docking enrichment were improved. Therefore, we screened our in-house database containing200,000compounds against PIM1kinase using our improved flexible docking strategy. Finally, we selected70diverse compounds with good docking poses and will test their bioactivity.
引文
[1]Ashburn TT, Thor KB. Drug repositioning:identifying and developing new uses for existing drugs [J]. Nat Rev Drug Discov.2004 Aug;3(8):673-83.
    [2]Fishman MC, Porter JA. Pharmaceuticals:a new grammar for drug discovery [J]. Nature.2005 Sep 22;437(7058):491-3.
    [3]Chen X, Ji ZL, Chen YZ. TTD:Therapeutic Target Database [J]. Nucleic Acids Res.2002 Jan 1;30(1):412-5.
    [4]Knox C, Law V, Jewison T, Liu P, Ly S, Frolkis A, et al. DrugBank 3.0:a comprehensive resource for 'omics'research on drugs [J]. Nucleic Acids Res.2011 Jan;39(Database issue):D1035-41.
    [5]Pratt J, Winchester C, Dawson N, Morris B. Advancing schizophrenia drug discovery:optimizing rodent models to bridge the translational gap [J]. Nat Rev Drug Discov.2012 Jul;11(7):560-79.
    [6]Quon K, Kassner PD. RNA interference screening for the discovery of oncology targets [J]. Expert opinion on therapeutic targets.2009 Sep;13(9):1027-35.
    [7]Hong-Geller E, Micheva-Viteva SN. Functional gene discovery using RNA interference-based genomic screens to combat pathogen infection [J]. Curr Drug Discov Technol.2010 Jun;7(2):86-94.
    [8]Jorgensen WL Efficient drug lead discovery and optimization [J]. Acc Chem Res.2009 Jun 16;42(6):724-33.
    [9]Sun C, Petros AM, Hajduk PJ. Fragment-based lead discovery:challenges and opportunities [J]. J Comput Aided Mol Des.2011 Jul;25(7):607-10.
    [10]Shoichet BK, McGovern SL, Wei B, Irwin JJ. Lead discovery using molecular docking [J]. Curr Opin Chem Biol.2002 Aug;6(4):439-46.
    [11]Hartshorn MJ, Murray CW, Cleasby A, Frederickson M, Tickle IJ, Jhoti H. Fragment-based lead discovery using X-ray crystallography [J]. J Med Chem.2005 Jan 27;48(2):403-13.
    [12]Bhattachar SN, Deschenes LA, Wesley JA. Solubility:it's not just for physical chemists [J]. Drug discovery today.2006 Nov;11(21-22):1012-8.
    [13]Bahl A, Barton P, Bowers K, Caffrey MV, Denton R, Gilmour P, et al. Scaffold-hopping with zwitterionic CCR3 antagonists:Identification and optimisation of a series with good potency and pharmacokinetics leading to the discovery of AZ12436092 [J]. Bioorg Med Chem Lett.2012 Sep 11.
    [14]Goldstein DM, Gray NS, Zarrinkar PP. High-throughput kinase profiling as a platform for drug discovery [J]. Nat Rev Drug Discov.2008 May;7(5):391-7.
    [15]Hertzberg RP, Pope AJ. High-throughput screening:new technology for the 21st century [J]. Curr Opin Chem Biol.2000 Aug;4(4):445-51.
    [16]Broach JR TJ. High-throughput screening for drug discovery [J]. Nature.1996 Nov 7;384(6604 Suppl):14-6.
    [17]Hann MM, Oprea T1. Pursuing the leadlikeness concept in pharmaceutical research [J]. Curr Opin Chem Biol.2004 Jun;8(3):255-63.
    [18]Peng H, Huang N, Oi J, Xie P, Xu C, Wang J, et al. Identification of novel inhibitors of BCR-ABL tyrosine kinase via virtual screening [J]. Bioorg Med Chem Lett.2003 Nov 3;13(21):3693-9.
    [19]Ghosh S, NieA, An J, Huang Z. Structure-based virtual screening of chemical libraries for drug discovery [J]. Curr Opin Chem Biol.2006 Jun;10(3):194-202.
    [20]Shoichet BK. Virtual screening of chemical libraries [J]. Nature.2004 Dec 16;432(7019):862-5.
    [21]Shoichet BK BD, Kuntz ID. Molecular docking using shape descriptors [J]. J Comput Chem. 1992;13:380-97.
    [22]Jorgensen WLM, David S.; Tirado-Rives, Julian. Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids [J]. J Am Chem Soc. 1996;118(45):11225-36.
    [23]Sotriffer CA, Sanschagrin P, Matter H, Klebe G. SFCscore:scoring functions for affinity prediction of protein-ligand complexes [J]. Proteins.2008 Nov 1;73(2):395-419.
    [24]Powers RA, Morandi F, Shoichet BK. Structure-based discovery of a novel, noncovalent inhibitor of AmpC beta-lactamase [J]. Structure.2002 Jul;10(7):1013-23.
    [25]Huang N, Nagarsekar A, Xia G, Hayashi J, MacKerell AD, Jr. Identification of non-phosphate-containing small molecular weight inhibitors of the tyrosine kinase p56 LckSH2 domain via in silico screening against the pY+ 3 binding site [J]. J Med Chem.2004 Jul 1;47(14):3502-11.
    [26]Cao R, Liu M, Yin M, Liu Q, Wang Y, Huang N. Discovery of Novel Tubulin Inhibitors via Structure-Based Hierarchical Virtual Screening [J]. J Chem Inf Model.2012 Oct 2.
    [27]Doman TN, McGovern SL, Witherbee BJ, Kasten TP, Kurumbai! R, Stallings WC, et al. Molecular docking and high-throughput screening for novel inhibitors of protein tyrosine phosphatase-1B [J]. J Med Chem.2002 May 23;45(11):2213-21.
    [28]Kuntz ID, Blaney JM, Oatley SJ, Langridge R, Ferrin TE. A geometric approach to macromolecule-ligand interactions [J]. J Mol Biol.1982 Oct 25;161(2):269-88.
    [29]Taylor RD, Jewsbury PJ, Essex JW. A review of protein-small molecule docking methods [J]. J Comput Aided Mol Des.2002 Mar;16(3):151-66.
    [30]Meng EC SB, Kuntz ID. Automated docking with grid-based energy evaluation [J]. J Comput Chem. 1992;13:505-24.
    [31]Rarey M, Kramer B, Lengauer T, Klebe G. A fast flexible docking method using an incremental construction algorithm [J]. J Mol Biol.1996 Aug 23;261(3):470-89.
    [32]Jones G, Willett P, Glen RC, Leach AR, Taylor R. Development and validation of a genetic algorithm for flexible docking [J]. J Mol Biol.1997 Apr 4;267(3):727-48.
    [33]Morris GMG, D. S.; Halliday, R. S.; Huey, R.; Hart, W. E.; Belew, R. K.; Olson, A. J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function [J]. J Comput Chem. 1998;19:1639-62.
    [34]Friesner RA, Banks JL, Murphy RB, Halgren TA, KlicicJJ, Mainz DT, et al. Glide:a new approach for rapid, accurate docking and scoring.1. Method and assessment of docking accuracy [J]. J Med Chem.2004 Mar25;47(7):1739-49.
    [35]Sousa SF, Fernandes PA, Ramos MJ. Protein-ligand docking:current status and future challenges [J]. Proteins.2006 Oct 1;65(1):15-26.
    [36]Lorber DM, Shoichet BK. Flexible ligand docking using conformational ensembles [J]. Protein Sci. 1998 Apr;7(4):938-50.
    [37]Lorber DM, Shoichet BK. Hierarchical docking of databases of multiple ligand conformations [J]. Current topics in medicinal chemistry.2005;5(8):739-49.
    [38]Fischer E. Einfluss der Configuration auf die Wirkung der Enzyme. [J]. Ber Dtsch Chem Ges. 1894;27:2985-93.
    [39]Jain AN. Scoring functions for protein-ligand docking [J]. Curr Protein Pept Sci.2006 Oct;7(5):407-20.
    [40]Brooijmans N, Kuntz ID. Molecular recognition and docking algorithms [J]. Annu Rev Biophys Biomol Struct.2003;32:335-73.
    [41]Ewing TJ, Makino S, Skillman AG, Kuntz ID. DOCK 4.0:search strategies for automated molecular docking of flexible molecule databases [J]. J Comput Aided Mol Des.2001 May;15(5):411-28.
    [42]Goodsell DS, Olson AJ. Automated docking of substrates to proteins by simulated annealing [J]. Proteins.1990;8(3):195-202.
    [43]McMartin C, Bohacek RS. QXP:powerful, rapid computer algorithms for structure-based drug design [J]. J Comput Aided Mol Des.1997 Jul;11(4):333-44.
    [44]Cozzini P, Kellogg GE, Spyrakis F, Abraham DJ, Costantino G, Emerson A, et al. Target flexibility:an emerging consideration in drug discovery and design [J]. J Med Chem.2008 Oct 23;51(20):6237-55.
    [45]Murray CW, Baxter CA, Frenkel AD. The sensitivity of the results of molecular docking to induced fit effects:application to thrombin, thermolysin and neuraminidase [J]. J Comput Aided Mol Des.1999 Nov;13(6):547-62.
    [46]Lill MA. Efficient incorporation of protein flexibility and dynamics into molecular docking simulations [J]. Biochemistry (Mosc).2011 Jul 19;50(28):6157-69.
    [47]Knegtel RM, Kuntz ID, Oshiro CM. Molecular docking to ensembles of protein structures [J]. J Mol Biol. 1997 Feb 21;266(2):424-40.
    [48]Claussen H, Buning C, Rarey M, Lengauer T. FlexE:efficient molecular docking considering protein structure variations [J]. J Mol Biol.2001 Apr 27;308(2):377-95.
    [49]Damm KL, Carlson HA. Exploring experimental sources of multiple protein conformations in structure-based drug design [J]. J Am Chem Soc.2007 Jul 4;129(26):8225-35.
    [50]Bottegoni G, Kufareva I, Totrov M, Abagyan R. Four-dimensional docking:a fast and accurate account of discrete receptor flexibility in ligand docking [J]. J Med Chem.2009 Jan 22;52(2):397-406.
    [51]Carlson HA, Masukawa KM, Rubins K, Bushman FD, Jorgensen WL, Lins RD, et al. Developing a dynamic pharmacophore model for HIV-1 integrase [J]. J Med Chem.2000 Jun 1;43(11):2100-14.
    [52]Amaro RE, Baron R, McCammon JA. An improved relaxed complex scheme for receptor flexibility in computer-aided drug design [J]. J Comput Aided Mol Des.2008 Sep;22(9):693-705.
    [53]Ferrari AM, Wei BQ, Costantino L, Shoichet BK. Soft docking and multiple receptor conformations in virtual screening [J]. J Med Chem.2004 Oct 7;47(21):5076-84.
    [54]Jiang F, Kim SH. "Soft docking":matching of molecular surface cubes [J]. J Mol Biol.1991 May 5;219(1):79-102.
    [55]Dunbrack RL, Jr., Karplus M. Backbone-dependent rotamer library for proteins. Application to side-chain prediction [J]. J Mol Biol.1993 Mar 20;230(2):543-74.
    [56]Dunbrack RL, Jr., Cohen FE. Bayesian statistical analysis of protein side-chain rotamer preferences [J]. Protein Sci.1997 Aug;6(8):1661-81.
    [57]Sherman W, Day T, Jacobson MP, Friesner RA, Farid R. Novel procedure for modeling ligand/receptor induced fit effects [J]. J Med Chem.2006 Jan 26;49(2):534-53.
    [58]Sherman W, Beard HS, Farid R. Use of an induced fit receptor structure in virtual screening [J]. Chemical biology & drug design.2006 Jan;67(1):83-4.
    [59]Wei BQ, Weaver LH, Ferrari AM, Matthews BW, Shoichet BK. Testing a flexible-receptor docking algorithm in a model binding site [J]. J Mol Biol.2004 Apr 9;337(5):1161-82.
    [60]Kitchen DB, Decomez H, Furr JR, Bajorath J. Docking and scoring in virtual screening for drug discovery, methods and applications [J]. Nat Rev Drug Discov.2004 Nov;3(11):935-49.
    [61]Brooks BR, Brooks CL,3rd, Mackerell AD, Jr., Nilsson L, Petrella RJ, Roux B, et al. CHARMM:the biomolecular simulation program [J]. J Comput Chem.2009 Jul 30;30(10):1545-614.
    [62]Eldridge MD, Murray CW, Auton TR, Paolini GV, Mee RP. Empirical scoring functions:I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes [J]. J Comput Aided Mol Des.1997 Sep;11(5):425-45.
    [63]Muegge I, Martin YC. A general and fast scoring function for protein-ligand interactions:a simplified potential approach [J]. J Med Chem.1999 Mar 11;42(5):791-804.
    [64]Halperin I, Ma B, Wolfson H, Nussinov R. Principles of docking:An overview of search algorithms and a guide to scoring functions [J]. Proteins.2002 Jun 1;47(4):409-43.
    [65]Feher M. Consensus scoring for protein-ligand interactions [J]. Drug Discov Today.2006 May;11(9-10):421-8.
    [66]Baber JC, Shirley WA, Gao Y, Feher M. The use of consensus scoring in ligand-based virtual screening [J]. J Chem Inf Model.2006 Jan-Feb;46(1):277-88.
    [67]Clark RD, Strizhev A, Leonard JM, Blake JF, Matthew JB. Consensus scoring for ligand/protein interactions [J]. J Mol Graph Model.2002 Jan;20(4):281-95.
    [68]Xing L, Hodgkin E, Liu Q, Sedlock D. Evaluation and application of multiple scoring functions for a virtual screening experiment [J]. J Comput Aided Mol Des.2004 May;18(5):333-44.
    [69]Berman H, Henrick K, Nakamura H, Markley JL. The worldwide Protein Data Bank (wwPDB):ensuring a single, uniform archive of PDB data [J]. Nucleic Acids Res.2007 Jan;35(Database issue):D301-3.
    [70]Teague SJ. Implications of protein flexibility for drug discovery [J]. Nat Rev Drug Discov.2003 Jul;2(7):527-41.
    [71]Laskowski RA, Thornton JM, Humblet C, Singh J. X-SITE:use of empirically derived atomic packing preferences to identify favourable interaction regions in the binding sites of proteins [J]. J Mol Biol.1996 May 31;259(1):175-201.
    [72]Leiros HK, McSweeney SM, Smalas AO. Atomic resolution structures of trypsin provide insight into structural radiation damage [J]. Acta Crystallogr D Biol Crystallogr.2001 Apr;57(Pt 4):488-97.
    [73]Liu S, Lu Z, Han Y, Jia Y, Howard A, Dunaway-Mariano D, et al. Conformational flexibility of PEP mutase [J]. Biochemistry.2004 Apr 20;43(15):4447-53.
    [74]Gajiwala KS, Pinko C. Structural rearrangement accompanying NAD+synthesis within a bacterial DNA ligase crystal [J]. Structure.2004 Aug;12(8):1449-59.
    [75]Koshland DE. Application of a Theory of Enzyme Specificity to Protein Synthesis [J]. Proc Natl Acad Sci USA.1958 Feb;44(2):98-104.
    [76]Monod J, Wyman J, Changeux JP. On the Nature of Allosteric Transitions:a Plausible Model [J]. J Mol Biol.1965 May;12:88-118.
    [77]Kumar S, Ma B, Tsai CJ, Sinha N, Nussinov R. Folding and binding cascades:dynamic landscapes and population shifts [J]. Protein Sci.2000 Jan;9(1):10-9.
    [78]Carlson HA. Protein flexibility is an important component of structure-based drug discovery [J]. Curr Pharm Des.2002;8(17):1571-8.
    [79]Fritz TA, Tondi D, Finer-Moore JS, Costi MP, Stroud RM. Predicting and harnessing protein flexibility in the design of species-specific inhibitors of thymidylate synthase [J]. Chem Biol.2001 Oct;8(10):981-95.
    [80]Carlson HA, McCammon JA. Accommodating protein flexibility in computational drug design [J]. Mol Pharmacol.2000 Feb;57(2):213-8.
    [81]Adcock SA, McCammon JA. Molecular dynamics:survey of methods for simulating the activity of proteins [J]. Chem Rev.2006 May;106(5):1589-615.
    [82]Najmanovich R, Kuttner J, Sobolev V, Edelman M. Side-chain flexibility in proteins upon ligand binding [J]. Proteins.2000 May 15;39(3):261-8.
    [83]Nabuurs SB, Wagener M, de Vlieg J. A flexible approach to induced fit docking [J]. J Med Chem.2007 Dec 27;50(26):6507-18.
    [84]Alberts IL, Todorov NP, Dean PM. Receptor flexibility in de novo ligand design and docking [J]. J Med Chem.2005 Oct 20;48(21):6585-96.
    [85]Cavasotto CN, Abagyan RA. Protein flexibility in ligand docking and virtual screening to protein kinases [J]. J Mol Biol.2004 Mar 12;337(1):209-25.
    [86]Borhani DW, Shaw DE. The future of molecular dynamics simulations in drug discovery [J]. J Comput Aided Mol Des.2012 Jan;26(1):15-26.
    [87]Xiang Z, Honig B. Extending the accuracy limits of prediction for side-chain conformations [J]. J Mol Biol.2001 Aug 10;311(2):421-30.
    [88]Jacobson MP, Friesner RA, Xiang Z, Honig B. On the role of the crystal environment in determining protein side-chain conformations [J]. J Mol Biol.2002 Jul 12;320(3):597-608.
    [89]Matthew P. Jacobson, + George A. Kaminski, and Richard A. Friesner. Force Field Validation Using Protein Side Chain Prediction [J]. J Phys Chem B.2002.
    [90]Xiang Z, Steinbach PJ, Jacobson MP, Friesner RA, Honig B. Prediction of side-chain conformations on protein surfaces [J]. Proteins.2007 Mar 1;66(4):814-23.
    [91]Kaminski GAF, Richard A.; Tirado-Rives, Julian; Jorgensen, William L. Evaluation and Reparametrization of the OPLS-AA Force Field for Proteins via Comparison with Accurate Quantum Chemical Calculations on Peptides [J]. Journal of Physical Chemistry B.2001;105(28):6474-87.
    [92]Ghosh AR, Chaya Sendrovic; Friesner, Richard A. Generalized Born Model Based on a Surface Integral Formulation [J]. Journal of Physical Chemistry B.1998;102(52):10983-90.
    [93]Gallicchio E, Zhang LY, Levy RM. The SGB/NP hydration free energy model based on the surface generalized born solvent reaction field and novel nonpolar hydration free energy estimators [J]. J Comput Chem.2002 Apr 15;23(5):517-29.
    [94]Nilmeier J, Jacobson M. Multiscale Monte Carlo Sampling of Protein Sidechains:Application to Binding Pocket Flexibility [J]. J Chem Theory Comput.2008 May;4(5):835-46.
    [95]Yang AY, Kallblad P, Mancera RL. Molecular modelling prediction of ligand binding site flexibility [J]. J Comput Aided Mol Des.2004 Apr;18(4):235-50.
    [96]Weigelt J. Structural genomics-impact on biomedicine and drug discovery [J]. Exp Cell Res.2010 May 1;316(8):1332-8.
    [97]Baker D, Sali A. Protein structure prediction and structural genomics [J]. Science.2001 Oct 5;294(5540):93-6.
    [98]Henrick K, Feng Z, Bluhm WF, Dimitropoulos D, Doreleijers JF, Dutta S, et al. Remediation of the protein data bank archive [J]. Nucleic Acids Res.2008 Jan;36(Database issue):D426-33.
    [99]Dessailly BH, Lensink MF, Orengo CA, Wodak SJ. LigASite--a database of biologically relevant binding sites in proteins with known apo-structures [J]. Nucleic Acids Res.2008 Jan;36(Database issue):D667-73.
    [100]Kellenberger E, Muller P, Schalon C, Bret G, Foata N, Rognan D. sc-PDB:an annotated database of druggable binding sites from the Protein Data Bank [J]. J Chem Inf Model.2006 Mar-Apr;46(2):717-27.
    [101]Ivanisenko VA, Pintus SS, Grigorovich DA, Kolchanov NA. PDBSite:a database of the 3D structure of protein functional sites [J]. Nucleic Acids Res.2005 Jan 1;33(Database issue):D183-7.
    [102]Lopez G, Valencia A, Tress M. FireDB--a database of functionally important residues from proteins of known structure [J]. Nucleic Acids Res.2007 Jan;35(Database issue):D219-23.
    [103]Flores S, Echols N, Milburn D, Hespenheide B, Keating K, Lu J, et al. The Database of Macromolecular Motions:new features added at the decade mark [J]. Nucleic Acids Res.2006 Jan 1;34(Database issue):D296-301.
    [104]Krebs WG, Gerstein M. The morph server:a standardized system for analyzing and visualizing macromolecular motions in a database framework [J]. Nucleic Acids Res.2000 Apr 15;28(8):1665-75.
    [105]Lee RA, Razaz M, Hayward S. The DynDom database of protein domain motions [J]. Bioinformatics.2003 Jul 1;19(10):1290-1.
    [106]Juritz El, Alberti SF, Parisi GD. PCDB:a database of protein conformational diversity [J]. Nucleic Acids Res.2011 Jan;39(Database issue):D475-9.
    [107]Kufareva I, Ilatovskiy AV, Abagyan R. Pocketome:an encyclopedia of small-molecule binding sites in 4D [J]. Nucleic Acids Res.2012 Jan;40(1):D535-40.
    [108]Cuypers HT, Selten G, Quint W, Zijlstra M, Maandag ER, Boelens W, et al. Murine leukemia virus-induced T-cell lymphomagenesis:integration of proviruses in a distinct chromosomal region [J]. Cell. 1984 May;37(1):141-50.
    [109]Nawijn MC, Alendar A, Berns A. For better or for worse:the role of Pim oncogenes in tumorigenesis [J]. Nature reviews.2011 Jan;11(1):23-34.
    [110]Xie Y, Xu K, Dai B, Guo Z, Jiang T, Chen H, et al. The 44 kDa Pim-1 kinase directly interacts with tyrosine kinase Etk/BMX and protects human prostate cancer cells from apoptosis induced by chemotherapeutic drugs [J]. Oncogene.2006 Jan 5;25(1):70-8.
    [111]van Lohuizen M, Verbeek S, Krimpenfort P, Domen J, Saris C, Radaszkiewicz T, et al. Predisposition to lymphomagenesis in pim-1 transgenic mice:cooperation with c-myc and N-myc in murine leukemia virus-induced tumors [J]. Cell.1989 Feb 24;56(4):673-82.
    [112]Selten G, Cuypers HT, Zijlstra M, Melief C, Berns A. Involvement of c-myc in MuLV-induced T cell lymphomas in mice:frequency and mechanisms of activation [J]. EMBO J.1984 Dec 20;3(13):3215-22.
    [113]Verbeek S, van Lohuizen M, van der Valk M, Domen J, Kraal G, Berns A. Mice bearing the E mu-myc and E mu-pim-1 transgenes develop pre-B-cell leukemia prenatally [J]. Mol Cell Biol.1991 Feb;11(2):1176-9.
    [114]Mikkers H, Allen J, Knipscheer P, Romeijn L, Hart A, Vink E, et al. High-throughput retroviral tagging to identify components of specific signaling pathways in cancer [J]. Nat Genet.2002 Sep;32(1):153-9.
    [115]van der Lugt NM, Domen J, Verhoeven E, Linders K, van der Gulden H, Allen J, et al. Proviral tagging in E mu-myc transgenic mice lacking the Pim-1 proto-oncogene leads to compensatory activation of Pim-2 [J]. EMBO J.1995 Jun 1;14(11):2536-44.
    [116]Dhanasekaran SM, Barrette TR, Ghosh D, Shah R, Varambally S, Kurachi K, et al. Delineation of prognostic biomarkers in prostate cancer [J]. Nature.2001 Aug 23;412(6849):822-6.
    [117]Chen WW, Chan DC, Donald C, Lilly MB, Kraft AS. Pim family kinases enhance tumor growth of prostate cancer cells [J]. Mol Cancer Res.2005 Aug;3(8):443-51.
    [118]Fox a, Hammerman PS, Cinalli RM, Master SR, Chodosh LA, Thompson CB. The serine/threonine kinase Pim-2 is a transcriptionally regulated apoptotic inhibitor [J]. Genes Dev.2003 Aug 1;17(15):1841-54.
    [119]Qian KC, Wang L, Hickey ER, Studts J, Barringer K, Peng C, et al. Structural basis of constitutive activity and a unique nucleotide binding mode of human Pim-1 kinase [J]. J Biol Chem.2005 Feb 18;280(7):6130-7.
    [120]Chen J, Kobayashi M, Darmanin S, Qiao Y, Gully C, Zhao R, et al. Pim-1 plays a pivotal role in hypoxia-induced chemoresistance [J]. Oncogene.2009 Jul 16;28(28):2581-92.
    [121]Zhao Y, Hamza MS, Leong HS, Lim CB, Pan YF, Cheung E, et al. Kruppel-like factor 5 modulates p53-independent apoptosis through Piml survival kinase in cancer cells [J]. Oncogene.2008 Jan 3;27(1):1-8.
    [122]Domen J, Von Lindern M, Hermans A, Breuer M, Grosveld G, Berns A. Comparison of the human and mouse PIM-1 cDNAs:nucleotide sequence and immunological identification of the in vitro synthesized PIM-1 protein [J]. Oncogene Res.1987 Jun;1(1):103-12.
    [123]Hoover DS, Wingett DG, Zhang J, Reeves R, Magnuson NS. Pim-1 protein expression is regulated by its 5'-untranslated region and translation initiation factor elF-4E [J]. Cell Growth Differ.1997 Dec;8(12):1371-80.
    [124]Kim O, Jiang T, Xie Y, Guo Z, Chen H, Qiu Y. Synergism of cytoplasmic kinases in IL6-induced ligand-independent activation of androgen receptor in prostate cancer cells [J]. Oncogene.2004 Mar 11;23(10):1838-44.
    [125]Losman JA, Chen XP, Vuong BQ, Fay S, Rothman PB. Protein phosphatase 2A regulates the stability of Pim protein kinases [J]. J Biol Chem.2003 Feb 14;278(7):4800-5.
    [126]Shay KP, Wang Z, Xing PX, McKenzie IF, Magnuson NS. Pim-1 kinase stability is regulated by heat shock proteins and the ubiquitin-proteasome pathway [J]. Mol Cancer Res.2005 Mar;3(3):170-81.
    [127]Winn LM, Lei W, Ness SA. Pim-1 phosphorylates the DNA binding domain of c-Myb [J]. Cell cycle (Georgetown, Tex.2003 May-Jun;2(3):258-62.
    [128]Yan B, Zemskova M, Holder S, Chin V, Kraft A, Koskinen PJ, et al. The PIM-2 kinase phosphorylates BAD on serine 112 and reverses BAD-induced cell death [J]. J Biol Chem.2003 Nov 14;278(46):45358-67.
    [129]Aho TL, Sandholm J, Peltola KJ, Mankonen HP, Lilly M, Koskinen PJ. Pim-1 kinase promotes inactivation of the pro-apoptotic Bad protein by phosphorylating it on the Ser112 gatekeeper site [J]. FEBS Lett.2004 Jul 30;571(1-3):43-9.
    [130]Chen XP, Losman JA, Cowan S, Donahue E, Fay S, Vuong BQ, et al. Pim serine/threonine kinases regulate the stability of Socs-1 protein [J]. Proc Natl Acad Sci U S A.2002 Feb 19;99(4):2175-80.
    [131]Mochizuki T, Kitanaka C, Noguchi K, Muramatsu T, Asai A, Kuchino Y. Physical and functional interactions between Pim-1 kinase and Cdc25A phosphatase. Implications for the Pim-1-mediated activation of the c-Myc signaling pathway [J]. J Biol Chem.1999 Jun 25;274(26):18659-66.
    [132]Koike N, Maita H, Taira T, Ariga H, Iguchi-Ariga SM. Identification of heterochromatin protein 1 (HP1) as a phosphorylation target by Pim-1 kinase and the effect of phosphorylation on the transcriptional repression function of HP1(1) [J]. FEBS Lett.2000 Feb 4;467(1):17-21.
    [133]Maita H, Harada Y, Nagakubo D, Kitaura H, Ikeda M, Tamai K, et al. PAP-1, a novel target protein of phosphorylation by pim-1 kinase [J]. Eur J Biochem.2000 Aug;267(16):5168-78.
    [134]Macdonald A, Campbell DG, Toth R, McLauchlan H, Hastie G, Arthur JS. Pim kinases phosphorylate multiple sites on Bad and promote 14-3-3 binding and dissociation from Bcl-XL [J]. BMC cell biology.2006;7:1.
    [135]Schenone S, Tintori C, Botta M. Using insights into Piml structure to design new anticancer drugs [J]. Curr Pharm Des.2010;16(35):3964-78.
    [136]Owen DJ, Noble ME, Garman EF, Papageorgiou AC, Johnson LN. Two structures of the catalytic domain of phosphorylase kinase:an active protein kinase complexed with substrate analogue and product [J]. Structure.1995 May 15;3(5):467-82.
    [137]Thaimattam R; Banerjee R, Miglani R, Iqbal J. Protein kinase inhibitors:structural insights into selectivity [J]. Curr Pharm Des.2007;13(27):2751-65.
    [138]Anastassiadis T, Deacon SW, Devarajan K, Ma H, Peterson JR. Comprehensive assay of kinase catalytic activity reveals features of kinase inhibitor selectivity [J]. Nat Biotechnol.2011 Nov;29(11):1039-45.
    [139]Mikkers H, Nawijn M, Allen J, Brouwers C, Verhoeven E, Jonkers J, et al. Mice deficient for all PIM kinases display reduced body size and impaired responses to hematopoietic growth factors [J]. Mol Cell Biol.2004 Jul;24(13):6104-15.
    [140]Isaac M, Siu A, Jongstra J. The oncogenic PIM kinase family regulates drug resistance through multiple mechanisms [J]. Drug Resist Updat.2011 May 19.
    [141]Chang M, Kanwar N, Feng E, Siu A, Liu X, Ma D, et al. PIM kinase inhibitors downregulate STAT3(Tyr705) phosphorylation [J]. Molecular cancer therapeutics.2010 Sep;9(9):2478-87.
    [142]Chen LS, Redkar S, Bearss D, Wierda WG, Gandhi V. Pim kinase inhibitor, SGI-1776, induces apoptosis in chronic lymphocytic leukemia cells [J]. Blood.2009 Nov 5;114(19):4150-7.
    [143]Grey R, Pierce AC, Bemis GW, Jacobs MD, Moody CS, Jajoo R, et al. Structure-based design of 3-aryl-6-amino-triazolo[4,3-b]pyridazine inhibitors of Pim-1 kinase [J]. Bioorg Med Chem Lett.2009 Jun 1;19(11):3019-22.
    [144]Blanco-Aparicio C, Collazo AM, Oyarzabal J, Leal JF, Albaran M1, Lima FR, et al. Pim 1 kinase inhibitor ETP-45299 suppresses cellular proliferation and synergizes with PI3K inhibition [J]. Cancer Lett. 2011 Jan 28;300(2):145-53.
    [145]Tao ZF, Hasvold LA, Leverson JD, Han EK, Guan R, Johnson EF, et al. Discovery of 3H-benzo[4,5]thieno[3,2-d]pyrimidin-4-ones as potent, highly selective, and orally bioavailable inhibitors of the human protooncogene proviral insertion site in moloney murine leukemia virus (PIM) kinases [J]. J Med Chem.2009 Nov 12;52(21):6621-36.
    [146]Qian K, Wang L, Cywin CL, Farmer BT,2nd, Hickey E, Homon C, et al. Hit to lead account of the discovery of a new class of inhibitors of Pim kinases and crystallographic studies revealing an unusual kinase binding mode [J]. J Med Chem.2009 Apr 9;52(7):1814-27.
    [147]Schulz MN, Fanghanel J, Schafer M, Badock V, Briem H, Boemer U, et al. A crystallographic fragment screen identifies cinnamic acid derivatives as starting points for potent Pim-1 inhibitors [J]. Acta Crystallogr D Biol Crystallogr.2011 Mar;67(Pt 3):156-66.
    [148]Beharry Z, Zemskova M, Mahajan S, Zhang F, Ma J, Xia Z, et al. Novel benzylidene-thiazolidine-2,4-diones inhibit Pim protein kinase activity and induce cell cycle arrest in leukemia and prostate cancer cells [J]. Molecular cancer therapeutics.2009 Jun;8(6):1473-83.
    [149]Xia Z, Knaak C, Ma J, Beharry ZM, Mclnnes C, Wang W, et al. Synthesis and evaluation of novel inhibitors of Pim-1 and Pim-2 protein kinases [J]. J Med Chem.2009 Jan 8;52(1):74-86.
    [150]Morwick T. Pim kinase inhibitors:a survey of the patent literature [J]. Expert Opin Ther Pat. 2010 Feb;20(2):193-212.
    [151]Ogawa N, Yuki H, Tanaka A. Insights from Piml structure for anti-cancer drug design [J]. Expert opinion on drug discovery.2012 Sep 25.
    [152]Li W, Godzik A. Cd-hit:a fast program for clustering and comparing large sets of protein or nucleotide sequences [J]. Bioinformatics.2006 Jul 1;22(13):1658-9.
    [153]Gregg KJ, Finn R, Abbott DW, Boraston AB. Divergent modes of glycan recognition by a new family of carbohydrate-binding modules [J]. J Biol Chem.2008 May 2;283(18):12604-13.
    [154]Ferrin TE, Huang,C. C., Jarvis, L. E., Langridge, R. The MIDAS display system [J]. J Mol Graphics. 1988;6:13-27.
    [155]Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et at. UCSF Chimera--a visualization system for exploratory research and analysis [J]. J Comput Chem.2004 Oct;25(13):1605-12.
    [156]Zemla A. LGA:A method for finding 3D similarities in protein structures [J]. Nucleic Acids Res. 2003 Jul 1;31(13):3370-4.
    [157]Kelley LA, Gardner SP, Sutcliffe MJ. An automated approach for clustering an ensemble of NMR-derived protein structures into conformationally related subfamilies [J]. Protein Eng.1996 Nov;9(11):1063-5.
    [158]Cummings L, Riley L, Black L, Souvorov A, Resenchuk S, Dondoshansky I, et al. Genomic BLAST: custom-defined virtual databases for complete and unfinished genomes [J]. FEMS Microbiol Lett.2002 Nov 5;216(2):133-8.
    [159]Parthasarathy S, Murthy MR. Analysis of temperature factor distribution in high-resolution protein structures [J]. Protein Sci.1997 Dec;6(12):2561-7.
    [160]Wampler JE. Distribution analysis of the variation of B-factors of X-ray crystal structures; temperature and structural variations in lysozyme [J]. J Chem Inf Comput Sci.1997 Nov-Dec;37(6):1171-80.
    [161]Hawkins PC, Warren GL, Skillman AG, Nicholls A. How to do an evaluation:pitfalls and traps [J]. J Comput Aided Mol Des.2008 Mar-Apr;22(3-4):179-90.
    [162]Parthasarathy S, Murthy MR. Protein thermal stability:insights from atomic displacement parameters (B values) [J]. Protein Eng.2000 Jan;13(1):9-13.
    [163]Richards FM. Areas, volumes, packing and protein structure [J]. Annu Rev Biophys Bioeng. 1977)6:151-76.
    [164]Lee B, Richards FM. The interpretation of protein structures:estimation of static accessibility [J]. J Mol Biol.1971 Feb 14;55(3):379-400.
    [165]Ahmad S, Gromiha MM, Sarai A. Real value prediction of solvent accessibility from amino acid sequence [J]. Proteins.2003 Mar 1;50(4):629-35.
    [166]Chelli R, Gervasio FL, Procacci P, Schettino V. Inter-residue and solvent-residue interactions in proteins:a statistical study on experimental structures [J]. Proteins.2004 Apr 1;55(1):139-51.
    [167]Zhou MVaH-X. Prediction of Residue-Residue Pair Frequencies in Proteins [J]. J Phys Chem B. 2000;104(41):9755-64.
    [168]Lu M, Dousis AD, Ma J. OPUS-PSP:an orientation-dependent statistical all-atom potential derived from side-chain packing [J]. J Mol Biol.2008 Feb 8;376(1):288-301.
    [169]Cohen M, Potapov V, Schreiber G. Four distances between pairs of amino acids provide a precise description of their interaction [J]. PLoS computational biology.2009 Aug;5(8):e1000470.
    [170]Panigrahi SK, Desiraju GR. Strong and weak hydrogen bonds in the protein-ligand interface [J]. Proteins.2007 Apr 1;67(1):128-41.
    [171]McDonald IK, Thornton JM. Satisfying hydrogen bonding potential in proteins [J]. J Mol Biol. 1994 May 20;238(5):777-93.
    [172]Wallace AC, Laskowski RA, Thornton JM. LIGPLOT:a program to generate schematic diagrams of protein-ligand interactions [J]. Protein Eng.1995 Feb;8(2):127-34.
    [173]W. D. Ihlenfeldt YT, H. Abe, S. Sasaki. Computation and Management of Chemical Properties in CACTVS:An Extensible Networked Approach toward Modularity and Compatibility [J]. J Chem Inf Comp Sci. 1994;34:109-16.
    [174]Voigt JH, Bienfait B, Wang S, Nicklaus MC. Comparison of the NCI open database with seven large chemical structural databases [J]. J Chem Inf Comput Sci.2001 May-Jun;41(3):702-12.
    [175]Huang N, Shoichet BK, Irwin JJ. Benchmarking sets for molecular docking [J]. J Med Chem.2006 Nov 16;49(23):6789-801.
    [176]Bernacki K, Hetenyi B, Berne BJ. Multiple "time step" Monte Carlo simulations:application to charged systems with Ewald summation [J]. J Chem Phys.2004 Jul 1;121(1):44-50.
    [177]Pearl FM, Bennett CF, Bray JE, Harrison AP, Martin N, Shepherd A, et al. The CATH database:an extended protein family resource for structural and functional genomics [J]. Nucleic Acids Res.2003 Jan 1;31(1):452-5.
    [178]Brylinski M, Skolnick J. What is the relationship between the global structures of apo and holo proteins? [J]. Proteins.2008 Feb 1;70(2):363-77.
    [179]Gromiha MM, Selvaraj S. Inter-residue interactions in protein folding and stability [J]. Prog Biophys Mol Biol.2004 Oct;86(2):235-77.
    [180]Gromiha MM. Important inter-residue contacts for enhancing the thermal stability of thermophilic proteins [J]. Biophys Chem.2001 Jun 15;91(1):71-7.
    [181]Buchete NV, Straub JE, Thirumalai D. Development of novel statistical potentials for protein fold recognition [J]. Curr Opin Struct Biol.2004 Apr;14(2):225-32.
    [182]Halperin I, Wolfson H, Nussinov R. Protein-protein interactions; coupling of structurally conserved residues and of hot spots across interfaces. Implications for docking [J]. Structure.2004 Jun;12(6):1027-38.
    [183]Bostrom J, Hogner A, Schmitt S. Do structurally similar ligands bind in a similar fashion? [J]. J Med Chem.2006 Nov 16;49(23):6716-25.
    [184]Anderson AC. Winning the arms race by improving drug discovery against mutating targets [J]. ACS chemical biology.2011 Feb 17;7(2):278-88.
    [185]Connolly ML. Solvent-accessible surfaces of proteins and nucleic acids [J]. Science.1983 Aug 19;221(4612):709-13.
    [186]Shoichet BK, Kuntz ID. Matching chemistry and shape in molecular docking [J]. Protein Eng. 1993 Sep;6(7):723-32.
    [187]Nicholls AH; B. A. A Rapid Finite-Difference Algorithm, Utilizing Successive over-Relaxation to Solve the Poisson-Boltzmann Equation. [J]. J Comput Chem.1991;12:435-45.
    [188]Zhu KF, R. A.; Jacobson, M. P. Multiscale Optimization of a Truncated Newton Minimizer and Application to Proteins and Protein-Ligand Complexes [J]. J Chem Theory Comput.2007;3(2):640-8.
    [189]Xie DXS, T. Efficient implementation of the truncated-Newton algorithm for large-scale chemistry applications. [J]. SIAM J Optimization.1999;10:132-54.
    [190]Huang N, Kalyanaraman C, Irwin JJ, Jacobson MP. Physics-based scoring of protein-ligand complexes:enrichment of known inhibitors in large-scale virtual screening [J]. Journal of chemical information and modeling.2006 Jan-Feb;46(1):243-53.
    [191]Wei BQ, Baase WA, Weaver LH, Matthews BW, Shoichet BK. A model binding site for testing scoring functions in molecular docking [J]. J Mol Biol.2002 Sep 13;322(2):339-55.
    [192]Peng S, Lin X,Guo Z, Huang N. Identifying multiple-target ligands via computational chemogenomics approaches [J]. Current topics in medicinal chemistry.2012;12(12):1363-75.
    [193]Lin X, Huang XP, Chen G, Whaley R, Peng S, Wang Y, et al. Life beyond kinases:structure-based discovery of sorafenib as nanomolar antagonist of 5-HT receptors [J]. J Med Chem.2012 Jun 28;55(12):5749-59.
    [194]Lindsay MA. Target discovery [J]. Nat Rev Drug Discov.2003 Oct;2(10):831-8.
    [195]Roth BL, Sheffler DJ, Kroeze WK. Magic shotguns versus magic bullets:selectively non-selective drugs for mood disorders and schizophrenia [J]. Nat Rev Drug Discov.2004 Apr;3(4):353-9.
    [196]Jacoby E, Schuffenhauer A, Floersheim P. Chemogenomics knowledge-based strategies in drug discovery [J]. Drug news & perspectives.2003 Mar;16(2):93-102.
    [197]Ren J, Xie L, Li WW, Bourne PE. SMAP-WS:a parallel web service for structural proteome-wide ligand-binding site comparison [J]. Nucleic Acids Res.2010 Jul;38(Web Server issue):W441-4.
    [198]Chen YZ, Zhi DG. Ligand-protein inverse docking and its potential use in the computer search of protein targets of a small molecule [J]. Proteins.2001 May 1;43(2):217-26.
    [199]Barillari C, Marcou G, Rognan D. Hot-spots-guided receptor-based pharmacophores (HS-Pharm): a knowledge-based approach to identify ligand-anchoring atoms in protein cavities and prioritize structure-based pharmacophores [J]. Journal of chemical information and modeling.2008 Jul;48(7):1396-410.
    [200]Keiser MJ, Roth BL, Armbruster BN, Ernsberger P, Irwin JJ, Shoichet BK. Relating protein pharmacology by ligand chemistry [J]. Nat Biotechnol.2007 Feb;25(2):197-206.
    [201]Huang N, Jacobson MP. Physics-based methods for studying protein-ligand interactions [J]. Current opinion in drug discovery & development.2007 May;10(3):325-31.
    [202]Sachlos E, Risueno RM, Laronde S, Shapovalova Z, Lee JH, Russell J, et al. Identification of drugs including a dopamine receptor antagonist that selectively target cancer stem cells [J]. Cell.2012 Jun 8;149(6):1284-97.
    [203]Kang S, Dong SM, Kim BR, Park MS, Trink B, Byun HJ, et al. Thioridazine induces apoptosis by targeting the PI3K/Akt/mTOR pathway in cervical and endometrial cancer cells [J]. Apoptosis.2012 Sep;17(9):989-97.
    [204]Fathi AT, Arowojolu O, Swinnen I, Sato T, Rajkhowa T, Small D, et al. A potential therapeutic target for FLT3-ITD AML:PIM1 kinase [J]. Leuk Res.2012 Feb;36(2):224-31.
    [205]Szakacs G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM. Targeting multidrug resistance in cancer [J]. Nat Rev Drug Discov.2006 Mar;5(3):219-34.
    [206]Xie Y, Burcu M, Linn DE, Qiu Y, Baer MR. Pim-1 kinase protects P-glycoprotein from degradation and enables its glycosylation and cell surface expression [J]. Mol Pharmacol.2010 Aug;78(2):310-8.
    [207]Spengler G, Molnar J, Viveiros M, Amaral L. Thioridazine induces apoptosis of multidrug-resistant mouse lymphoma cells transfected with the human ABCB1 and inhibits the expression of P-glycoprotein [J]. Anticancer Res.2011 Dec;31(12):4201-5.
    [208]Gaulton A, Bellis U, Bento AP, Chambers J, Davies M, Hersey A, et al. ChEMBL:a large-scale bioactivity database for drug discovery [J]. Nucleic Acids Res.2012 Jan;40(Database issue):D1100-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700