MiR-497/Pim-1信号通路对胰腺癌恶性表型调控作用及诊断、预后价值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     早期诊断困难、化疗耐药、缺乏有效的预后指标是目前胰腺癌研究领域的重要难题,限制了胰腺癌患者的总体预后。寻找新的诊断及预后标记物,深入了解胰腺癌发生、发展机制,逆转化疗耐药是改善胰腺癌患者预后的重要手段。
     MicroRNAs (miRNAs)是一类长约22个核苷酸的非编码单链小分子RNA,在肿瘤发生、发展、增殖、侵袭、转移及化疗耐药等多个方面发挥重要作用。我们前期对胰腺癌耐药株和亲本株的miRNAs表达谱进行了高通量筛选及验证,发现miR-497在耐药株中表达显著下调,可能在胰腺癌耐药表型调控中发挥重要作用。MiR-497在结直肠癌、宫颈癌、乳腺癌等肿瘤中表达降低,参与多种肿瘤生物学表型的调控。但是其在胰腺癌中的表达水平、调控作用及机制尚不明确。因此,检测胰腺癌中miR-497的表达水平,深入研究miR-497的调控作用及机制,对于明确其在胰腺癌鉴别诊断、判断预后及逆转化疗耐药等方面的价值具有重要的意义。
     研究目的
     探索miR-497对胰腺癌细胞株增殖、凋亡、细胞周期、侵袭及迁移、化疗耐药、干细胞标志物等恶性表型的调控作用。明确miR-497的调控靶基因及信号通路。对其中一个靶基因Pim-1的功能及调控机制进行探索。检测胰腺癌组织及血浆miR-497、Pim-1的表达水平,评估其诊断与预后价值。
     研究方法
     通过CCK8法检测细胞增殖及化疗敏感性;流式细胞术检测细胞周期和细胞凋亡;transwell法检测细胞侵袭和迁移能力;实时定量PCR法检测miRNA及mRNA的表达水平;western blot检测蛋白表达水平;建立稳转miR-497的细胞株,裸鼠体内观察miR-497对肿瘤生长的影响;双萤光素酶报告基因实验验证miR-497的靶基因;分别采用原位杂交及免疫组化法检测组织miR-497及Pim-1蛋白的表达水平,实时定量PCR法及酶联免疫吸附测定法(ELISA)检测血浆miR-497及Pim-1蛋白表达水平;单因素及多因素生存分析评估miR-497及Pim-1的预后价值;受试者工作特征曲线(ROC曲线)及约登指数(Youden index)评估血浆miR-497及Pim-1的诊断价值。
     研究结果
     1.MiR-497对胰腺癌细胞恶性表型的调控作用
     在两株胰腺导管腺癌细胞株SW1990及MiaPaCa-2中上调miR-497的表达水平,显著抑制胰腺癌细胞增殖、增加吉西他滨诱导的Cleaved caspase-3及PARP的表达水平、增加吉西他滨及厄洛替尼化疗敏感性、抑制细胞迁移和侵袭能力,减少S期细胞百分比,并抑制干细胞标志物ABCG2和EZH2的表达水平;反之,下调miR-497表达水平,观察到相反的实验结果。体内实验发现,稳定表达miR-497的实验组的肿瘤生长速度显著慢于对照组。(P<0.05)。
     2.MiR-497调控的靶基因及信号通路
     通过构建包含种子区的野生型和突变型双萤光素酶报告基因载体,并分别与miR-497mimics或mimics control共转染293A细胞,发现共转染mimics与野生型载体的细胞的荧光素酶活性显著低于共转染mimics与突变型载体,mimics control与野生型载体,及mimics control与突变型载体的细胞(P<0.05),提示IGF-1R、FGF2、FGFR1、Kras及Pim-1是miR-497的直接靶基因。蛋白水平的检测发现,上调miR-497的表达水平显著抑制IGF-1R、FGF2、FGFR1、Kras及Pim-1的表达水平,反之,下调miR-497的表达水平显著上调IGF-1R、FGF2、 FGFR1、Kras及Pim-1的表达水平。对重要信号通路的关键信号分子进行检测,发现上调miR-497显著抑制p-AKT及p-ERK等蛋白分子的表达;下调miR-497显著增加,p-AKT及p-ERK等蛋白分子的表达。(P<0.05)。
     3.Pim-1对胰腺癌细胞恶性表型的调控作用及机制
     作为miR-497的一个靶基因,Pim-1的调控作用和机制仍不明确。通过siRNA下调Pim-1的表达水平,显著抑制胰腺癌细胞增殖、促进细胞凋亡、增加吉西他滨及厄洛替尼化疗敏感性及诱导的细胞凋亡、抑制细胞迁移和侵袭能力,减少S期细胞百分比,并抑制干细胞标志物ABCG2和EZH2的表达水平(P<0.05);通过SGI-1776下调Pim-1的表达水平,显著抑制胰腺癌细胞增殖、促进细胞凋亡、增加吉西他滨及厄洛替尼化疗敏感性及诱导的细胞凋亡、抑制细胞迁移和侵袭能力,减少S期细胞百分比(P<0.05)。对Pim-1调控机制的研究发现,Pim-1与EGFR通路形成一个调控环路,通过siRNA下调Pim-1的表达水平,显著抑制p-EGFR及EGFR的表达水平;而通过厄洛替尼抑制EGFR通路活性,显著抑制Pim-1蛋白的表达水平,通过siRNA下调EGFR表达水平,也观察到相同效应(P<0.05)。
     4.组织miR-497、Pim-1蛋白的表达水平检测及预后价值评估
     对90例胰腺癌组织及相应的癌旁组织(90例)进行了miR-497原位杂交及Pim-1蛋白免疫组化检测。胰腺癌组织中miR-497的表达水平显著低于癌旁组织(P=0.000),而癌组织Pim-1蛋白表达水平显著高于癌旁组织(P=0.041)。胰腺癌组织miR-497表达水平与Pim-1表达水平存在负相关性(P=0.006)。组织miR-497,Pim-1表达水平与患者性别、年龄、肿瘤部位、分化程度、T分期、N分期、TNM分期、是否合并糖尿病及是否存在周围神经侵犯等临床病理参数并无显著相关性。单因素生存分析发现,TNM分期、Pim-1蛋白表达水平、miR-497表达水平与患者预后相关(P值分别为P=0.027;P=0.039;P=0.027)。多因素生存分析发现,TNM分期(Ⅱ/Ⅲ/Ⅳ)及组织miR-497表达水平(Low)是胰腺癌患者预后不良的独立危险因素(分别为P=0.016,HR=1.97,95%可信区间(CI):1.13-3.42;P=0.01,HR=2.76,95%CI:1.159-6.58).
     5.血浆miR-1497、Pim-1蛋白的表达水平检测及诊断价值评估
     通过检测78例血浆样本,发现miR-497在血浆中的表达水平很低,难于有效检测。胰腺癌患者(90例)血浆标本Pim-1蛋白表达水平(29.8±47.7ng/ml)显著高于健康志愿者(20例,0.21±0.31ng/ml).慢性胰腺炎患者(19例,3.11±5.2ng/ml).胰腺其他肿瘤(29例,8.75±6.6ng/ml)及胰腺内分泌肿瘤患者(20例,15.7±8.9ng/ml)的血浆标本的Pim-1蛋白表达水平(P值分别为P=0.000;P=0.000;P=0.000;P=0.01);且胰腺癌患者血浆Pim-1蛋白表达水平显著高于非癌对照病例(29.8±47.7ng/ml VS7.21±8.3ng/ml,P=0.000).
     血浆Pim-1表达水平具有鉴别胰腺癌患者与健康志愿者的价值(曲线下面积(AUC)为0.984,95%CI为0.963-1.006,P=0.000),诊断敏感性及特异性分别为95.6%和100%。血浆Pim-1表达水平具有鉴别胰腺癌患者与慢性胰腺炎患者的价值(AUC=0.895,95%CI为0.812-0.977,P=0.000),敏感性及特异性分别为87.8%和77.8%。血浆Pim-1表达水平具有鉴别胰腺癌患者与胰腺其他肿瘤患者的价值(AUC=0.706,95%CI为0.611~0.802,P=0.001),敏感性及特异性分别为51.1%和86.2%。血浆Pim-1表达水平具有鉴别胰腺癌患者与非胰腺癌对照病例的价值(AUC=0.768,95%CI为0.701~0.836,P=0.000),敏感性及特异性分别为73.3%和66.7%。未发现血浆Pim-1表达水平鉴别胰腺癌患者与PNET患者的价值(曲线下面积(AUC)为0.529,95%CI为0.411-0.647,P=0.684)。
     6.血浆Pim-1蛋白表达水平与临床病理参数及预后的相关性
     通过与临床病理参数的相关性研究,发现血浆Pim-1表达水平与患者年龄、肿瘤部位、TNM分期相关(P值分别为P=0.031,P=0.000,P=0.013)。高表达Pim-1的患者具有更高TNM分期的肿瘤。单因素生存分析发现M分期、TNM分期、切除情况、Pim-1蛋白表达水平与患者预后相关(P=0.000;P=0.000;P=0.002;P=0.026)。多因素生存分析发现,TNM分期(advanced)及血浆Pim-1表达水平(High)是胰腺癌患者预后不良的独立危险因素(分别为P=0.000,HR=1.88,95%CI:1.17.2.57;P=0.037,HR1.87,95%CI:1.04-3.35).
     结论
     MiR-497通过负向调控IGF-1R、FGF2、FGFR1、Kras及Pim-1表达水平,参与胰腺癌细胞增殖、凋亡、细胞周期、侵袭及迁移、吉西他滨及厄洛替尼化疗耐药、干细胞标志物等恶性表型的调控。作为miR-497的一个靶基因,Pim-1与EGFR通路形成一个调控环路,参与调控胰腺癌细胞恶性表型。MiR-497、Pim-1可能成为新的胰腺癌分子治疗靶标。组织miR-497和Pim-1及血浆Pim-1表达水平具有一定的预后价值,可能成为新的胰腺癌预后指标。血浆Pim-1表达水平展现出一定的诊断价值,可能用于胰腺癌的早期或鉴别诊断。
Background
     The main obstacles in the field of pancreatic cancer research, which we must face, are difficulty in early diagnosis, chemoresistance and lack of effective biomarkers for prognosis. Identification of new biomarkers for early detection and predicting prognosis, disclosing the mechanisms of tumorigenesis and development, and reversal of multidrug resistance are effective strategies to improve overall survival of patients with pancreatic cancer.
     MicroRNAs (miRNAs) are short, single-stranded RNA molecules with22nucleotides, which involve in tumorigenesis, cancer development, proliferation, metastasis and chemoresistance. Our previous study showed miR-497was significant downregulation in gemcitabine resistant cell lines, compared with that in parent cell lines, which meant that miR-497might play an important role in the regulation of drug resistance in pancreatic cancer. MiR-497decrease has been illustrated in breast, colorectal and cervical cancers and contributes to the malignancy of multiple tumors. However, the expression levels and regulatory roles of miR-497in pancreatic cancer are still unclear. It is necessary to investigate the regulatory roles and mechanisms of miR-497in pancreatic cancer and assess its diagnostic and prognostic values.
     Objective
     This study aimed to investigate the effects of miR-497on regulating proliferation, apoptosis, cell cycle, migration and invasion, chemosensitivity, biomarkers of cancer stem cells in pancreatic cancer cells. Then we studied the mechanisms of miR-497in regulating the progression of pancreatic cancer. We also investigated the regulatory roles and mechanisms of Pim-1, which was a target of miR-497. In addition, we detected the expression levels of miR-497and Pim-1in tissues and plasma, and then assessed their diagnostic and prognostic values.
     Methods
     For the in vitro experiments, proliferation was analyzed using a cell count kit (CCK-8). The effects on the chemosensitivity of gemcitabine and erlotinib were evaluated by CCK-8assay. Cell-cycle and apoptosis analysis were performed by fluorescence-activated cell sorting (FACS) flow-cytometry. Real-time PCR was used to detect the expression levels of miRNA and mRNA. Protein levels were detected by western blot. For the in vivo experiment, SW1990cells steadily expressing miR-497were established. Subcutaneous transplantation models of pancreatic cancer in nude mice were established to observe the tumor growth. Luciferase reporter assays were used to verify the candidate genes. The expression levels of miR-497and Pim-1in tissues were detected by in situ hybridization (ISH) and immunohistochemistry (IHC), respectively. Enzyme linked immunosorbent assay (ELISA) were used to detect the levels of plasma Pim-1. The prognostic values of miR-497and Pim-1were assessed by univariate and multivariate survival analysis. The diagnostic values of plasma pim-1levels were evaluated using receiver operating characteristic curve (ROC curve).
     Results
     1. The effects of miR-497on the malignant phenotype of pancreatic cancer cells
     Upregulation of miR-497in SW1990and MiaPaCa-2cells significantly suppressed proliferation, increased sensitivity to gemcitabine and erlotinib, promoted expression of cleaved caspase-3and PARP activated by gemcitabine, inhibited migration and invasion capacities, decreased the percentage of S phase cells, and attenuated the expression levels of ABCG2and EZH2mRNA, which were biomarkers of pancreatic cancer stem cells. Opposite effects were observed after downregulation of miR-497. For the in vivo experiment, overexpression of miR-497significantly suppressed tumor growth, compared with control group.(P<0.05).
     2. The mechanisms of miR-497in regulating the progression of pancreatic cancer.
     Dual-luciferase reporter assays were performed to confirm the targets of miR-497. We found that luciferase activities were significantly decreased after co-transfection of miR-497mimics and vectors expressing wild type target sequence in293A cells, compared with that in cells co-transfected with mimics and vectors expressing mutated target sequence (P<0.05), which meant IGF-1R, FGF2, FGFR1, Kras and Pim-1were direct targets of miR-497. We also detected proteins levels, which showed upregulation of miR-497significantly decreased the expression of IGF-1R, FGF2, FGFR1, Kras and Pim-1. On the contrary, inhibition of miR-497increased the levels of these proteins. Additionally, we investigated the levels of the key molecules in the important signaling pathways. We observed that the expression levels of p-AKT and p-ERK decreased significantly after overexpression of miR-497. On the other hand, inhibition of miR-497increased the expression levels of p-AKT and p-ERK.(P<0.05).
     3. The effects of Pim-1on the malignant phenotype of pancreatic cancer cells
     As a target of miR-497, the regulatory roles of Pim-1in pancreatic cancer were still unknown. We showed that decrease of Pim-1levels by siRNA significantly suppressed proliferation, induced apoptosis, increased sensitivity to gemcitabine and erlotinib, inhibited migration and invasion capacities, decreased the percentage of S phase cells, and attenuated the expression levels of ABCG2and EZH2mRNA. Similar effects were observed after blocking Pim-1activity by SGI-1776. In addition, we investigated the mechanisms. We found that Pim-1and EGFR pathway formed a feedback loop.Knockdown of Pim-1by siRNA decreased the expression of EGFR and p-EGFR. Whereas blocking EGFR pathway by erlotinib or EGFR siRNA suppressed the expression of Pim-1.(P<0.05).
     4. The expression levels and prognostic values of miR-497and Pim-1in tissues
     The expression levels of miR-497were significantly decreased in pancreatic cancer tissues, compared with that In tumor-adjacent tissues (P=0.000).Whereas Pim-1protein levels were significantly increased in cancer tissues, compared with that in tumor-adjacent tissues (P=0.041). There was a negative correlation between the expression levels of miR-497and Pim-1protein in pancreatic cancer tissues (P=0.006). There was no association between the expression levels of miR-497/Pim-1and clinicopathological parameters, including sex, age, tumor locations, differential degree, TNM staging, diabetes, and perineuronal invasion. Univariate analysis showed TNM staging, Pim-1levels and miR-497levels were the potential prognostic factors of pancreatic cancer (P=0.027, P=0.039, and P=0.027, respectively). Multivariate analysis indicated that TNM staging (Ⅱ/Ⅲ/Ⅳ) and miR-497expression (Low) were the independent adverse prognostic factor (P=0.016, HR=1.97,95%CI:1.13-3.42, P=0.01, HR=2.76,95%CI:1.159-6.58, respectively).
     5. The expression levels and diagnostic values of miR-497and Pim-1in plasma
     78plasma samples were collected for detection of miR-497. Depressingly, miR-497could not be effectively detected for its extremely low expression in plasma. The plasma levels of Pim-1in patients with pancreatic cancer (29.8±47.7ng/ml) were significantly higher than that in healthy volunteers (0.21±0.31ng/ml), chronic pancreatitis (3.11±5.2ng/ml), other pancreatic tumors (8.75±6.6ng/ml), pancreatic neuroendocrine pancreatic patients (PNET,15.7±8.9ng/ml)(P=0.000; P=0.000; P=0.000; P=0.01, respectivley). In addition, the plasma levels of Pim-1in patients with pancreatic cancer were significantly higher than that in all controls (29.8±47.7ng/ml VS7.21±8.3ng/ml,P=0.000).
     The plasma levels of Pim-1displayed diagnostic values for distinguishing patients with pancreatic cancers from healthy volunteers, chronic pancreatitis, other pancreatic tumors patients and all controls (AUC=0.984,95%CI:0.963~1.006, P=0.000; AUC=0.895,95%CI:0.812~0.977, P=0.000; AUC=0.706,95%CI:0.611~0.802, P=0.001, AUC=0.768,95%CI:0.701~0.836, P=0.000, respectively). The sensitivity and specificity for distinguishing pancreatic cancer from healthy volunteers, chronic pancreatitis, other pancreatic tumors patients and all controls were95.6%and100%,87.8%and77.8%,51.1%and86.2%,73.3%and66.7%, respectively.
     6. The correlation between plasma Pim-1levels and clinicopathological parameters and survival analysis
     Plasma Pim-1levels were associated with age, tumor locations and TNM staging (P=0.031,P=0.000, and P=0.013, respectively). Patients with high levels of Pim-1had advanced tumors. Univariate analysis demonstrated that M staging, TNM staging, R status and Pim-1levels were the potential prognostic factors of pancreatic cancer (P=0.000; P=0.000; P=0.002; P=0.026). Multivariate analysis indicated that TNM staging (advanced) and plasma Pim-1expression (High) were the independent adverse prognostic factor (P=0.000, HR=1.88,95%CI:1.17-2.57, P=0.037, HR=1.87,95%CI:1.04-3.35, respectively).
     Conclusion
     MiR-497involved in regulation of proliferation, apoptosis, cell cycle, migration and invasion, chemosensitivity, biomarkers of cancer stem cells in pancreatic cancer cells through negatively regulating the expression levels of IGF-1R, FGF2, FGFR1, Kras and Pim-1. As a target of miR-497, Pim-1contributed to the malignancy of pancreatic cancer. MiR-497and Pim-1could be new therapeutic targets in pancreatic cancer. The levels of miR-497and Pim-1in tissues and the plasma levels of pim-1displayed prognostic values, and could be new biomarkers in predicting the prognosis of pancreatic cancer. Plasma Pim-1levels presented a potential value for distinguishing pancreatic lesions, and could be also a new plasma biomarker for early detection of pancreatic cancer.
引文
1. Siegel R, Naishadham D, Jemal A:Cancer statistics,2013[J]. CA:a cancer journal for clinicians 2013,63(1):11-30.
    2. Conroy T, Desseigne F, Ychou M, Bouche O, Guimbaud R, Becouara Y, Adenis A, Raoul JL, Gourgou-Bourgade S, de la Fouchardiere C et al: FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer [J]. The New England journal of medicine 2011,364(19):1817-1825.
    3. Moore MJ, Goldstein D, Hamm J, Figer A, Hecht JR, Gallinger S, Au HJ, Murawa P, Walde D, Wolff RA et al: Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer:a phase III trial of the National Cancer Institute of Canada Clinical Trials Group [J]. Journal of clinical oncology:official journal of the American Society of Clinical Oncology 2007,25(15):1960-1966.
    4. Iorio MV, Croce CM:MicroRNA dysregulation in cancer:diagnostics, monitoring and therapeutics. A comprehensive review[J]. EMBO molecular medicine 2012,4(3):143-159.
    5.徐建威,张太平,赵玉沛:MicroRNAs与实体肿瘤化疗耐药[J].中际外科学杂志2011,38(3):182-185.
    6. Li D, Zhao Y, Liu C, Chen X, Qi Y, Jiang Y, Zou C, Zhang X, Liu S, Wang X et al: Analysis of MiR-195 and MiR-497 expression, regulation and role in breast cancer [J]. Clinical cancer research:an official journal of the American Association for Cancer Research 2011,17(7):1722-1730.
    7. Luo M, Shen D, Zhou X, Chen X, Wang W:MicroRNA-497 is a potential prognostic marker in human cervical cancer and functions as a tumor suppressor by targeting the insulin-like growth factor 1 receptor [J]. Surgery 2013,153(6):836-847.
    8. Guo ST, Jiang CC, Wang GP, Li YP, Wang CY, Guo XY, Yang RH, Feng Y, Wang FH, Tseng HY et al: MicroRNA-497 targets insulin-like growth factor 1 receptor and has a tumour suppressive role in human colorectal cancer [J]. Oncogene 2013,32(15):1910-1920.
    9. Furuta M, Kozaki K, Tanimoto K, Tanaka S, Arii S, Shimamura T, Niida A, Miyano S, Inazawa J:The tumor-suppressive miR-497-195 cluster targets multiple cell-cycle regulators in hepatocellular carcinoma [J]. PloS one 2013, 8(3):e60155.
    10. Luo Q, Li X, Gao Y, Long Y, Chen L, Huang Y, Fang L:MiRNA-497 regulates cell growth and invasion by targeting cyclin E1 in breast cancer [J]. Cancer cell international 2013,13(1):95.
    11. Reid G, Pel ME, Kirschner MB, Cheng YY, Mugridge N, Weiss J, Williams M, Wright C, Edelman JJ, Vallely MP et al: Restoring expression of miR-16:a novel approach to therapy for malignant pleural mesothelioma[J]. Annals of oncology:official journal of the European Society for Medical Oncology/ ESMO 2013,24(12):3128-3135.
    12. Polytarchou C, Iliopoulos D, Struhl K:An integrated transcriptional regulatory circuit that reinforces the breast cancer stem cell state [J]. Proceedings of the National Academy of Sciences of the United States of America 2012,109(36):14470-14475.
    1. Vlachos IS, Hatzigeorgiou AG:Online resources for miRNA analysis[J]. Clinical biochemistry 2013,46(10-11):879-900.
    2. Ritchie W, Rasko JE, Flamant S:MicroRNA target prediction and validation[J]. Advances in experimental medicine and biology 2013,774:39-53.
    3. Luo M, Shen D, Zhou X, Chen X, Wang W:MicroRNA-497 is a potential prognostic marker in human cervical cancer and functions as a tumor suppressor by targeting the insulin-like growth factor 1 receptor[J]. Surgery 2013,153(6):836-847.
    4. Guo ST, Jiang CC, Wang GP, Li YP, Wang CY, Guo XY, Yang RH, Feng Y, Wang FH, Tseng HY et al: MicroRNA-497 targets insulin-like growth factor 1 receptor and has a tumour suppressive role in human colorectal cancer [J]. Oncogene 2013,32(15):1910-1920.
    5. Yin KJ, Olsen K, Hamblin M, Zhang J, Schwendeman SP, Chen YE:Vascular endothelial cell-specific microRNA-15a inhibits angiogenesis in hindlimb ischemia[J]. The Journal of biological chemistry 2012,287(32):27055-27064.
    6. Musumeci M, Coppola V, Addario A, Patrizii M, Maugeri-Sacca M, Memeo L, Colarossi C, Francescangeli F, Biffoni M, Collura D et al: Control of tumor and microenvironment cross-talk by miR-15a and miR-16 in prostate cancer[J]. Oncogene 2011,30(41):4231-4242.
    7. Kim KT, Carroll AP, Mashkani B, Cairns MJ, Small D, Scott RJ:MicroRNA-16 is down-regulated in mutated FLT3 expressing murine myeloid FDC-P1 cells and interacts with Pim-1[J]. PloS one 2012,7(9):e44546.
    8. Weirauch U, Beckmann N, Thomas M, Grunweller A, Huber K, Bracher F, Hartmann RK, Aigner A:Functional role and therapeutic potential of the pim-1 kinase in colon carcinoma[J]. Neoplasia (New York, NY) 2013, 15(7):783-794.
    9. Roy S, Banerjee J, Gnyawali SC, Khanna S, He Q Pfeiffer D, Zweier JL, Sen CK:Suppression of Induced microRNA-15b Prevents Rapid Loss of Cardiac Function in a Dicer Depleted Model of Cardiac Dysfunction [J]. PloS one 2013,8(6):e66789.
    10. Kumar A, Rajendran V, Sethumadhavan R, Purohit R:AKT kinase pathway:a leading target in cancer research [J]. TheScientificWorldJournal 2013, 2013:756134.
    11. Pollak M:The insulin and insulin-like growth factor receptor family in neoplasia:an update[J]. Nature reviews Cancer 2012,12(3):159-169.
    12. Zhang XH, Chen SY, Tang L, Shen YZ, Luo L, Xu CW, Liu Q, Li D:Myricetin induces apoptosis in HepG2 cells through Akt/p70S6K/bad signaling and mitochondrial apoptotic pathway [J]. Anti-cancer agents in medicinal chemistry 2013,13(10):1575-1581.
    13. Faissner A, Heck N, Dobbertin A, Garwood J: DSD-1-Proteoglycan/Phosphacan and receptor protein tyrosine phosphatase-beta isoforms during development and regeneration of neural tissues[J]. Advances in experimental medicine and biology 2006,557:25-53.
    14. Lee SH, Kim HS, Park WS, Kim SY, Lee KY, Kim SH, Lee JY, Yoo NJ: Non-small cell lung cancers frequently express phosphorylated Akt; an immunohistochemical study [J]. APMIS:acta pathologica, microbiologica, et immunologica Scandinavica 2002,110(7-8):587-592.
    15. Viglietto G, Motti ML, Bruni P, Melillo RM, D'Alessio A, Califano D, Vinci F, Chiappetta G, Tsichlis P, Bellacosa A et al: Cytoplasmic relocalization and inhibition of the cyclin-dependent kinase inhibitor p27(Kipl) by PKB/Akt-mediated phosphorylation in breast cancer [J]. Nature medicine 2002,8(10):1136-1144.
    16. Chen D, Niu M, Jiao X, Zhang K, Liang J, Zhang D:Inhibition of AKT2 Enhances Sensitivity to Gemcitabine via Regulating PUMA and NF-kappaB Signaling Pathway in Human Pancreatic Ductal Adenocarcinoma[J]. International journal of molecular sciences 2012, 13():1186-1208.
    17. Yamasaki F, Johansen MJ, Zhang D, Krishnamurthy S, Felix E, Bartholomeusz C, Aguilar RJ, Kurisu K, Mills GB, Hortobagyi GN et al: Acquired resistance to erlotinib in A-431 epidermoid cancer cells requires down-regulation of MMAC1/PTEN and up-regulation of phosphorylated Akt[J]. Cancer research 2007,67(12):5779-5788.
    18. Hill MM, Hemmings BA:Inhibition of protein kinase B/Akt. implications for cancer therapy. Pharmacology & therapeutics 2002,93(2-3):243-251.
    19. Qian Y, Corum L, Meng Q, Blenis J, Zheng JZ, Shi X, Flynn DC, Jiang BH: PI3K induced actin filament remodeling through Akt and p70S6K1: implication of essential role in cell migration [J]. American journal of physiology Cell physiology 2004,286(1):C153-163.
    20. Kim D, Kim S, Koh H, Yoon SO, Chung AS, Cho KS, Chung J:Akt/PKB promotes cancer cell invasion via increased motility and metalloproteinase production [J]. FASEB journal:official publication of the Federation of American Societies for Experimental Biology 2001,15(11):1953-1962.
    21. Fan X, Khaki L, Zhu TS, Soules ME, Talsma CE, Gul N, Koh C, Zhang J, Li YM, Maciaczyk J et al: NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts[J]. Stem cells (Dayton, Ohio) 2010,28(1):5-16.
    22. Jung SM, Park SS, Kim WJ, Moon SK:Ras/ERKl pathway regulation of p27KIP1-mediated Gl-phase cell-cycle arrest in cordycepin-induced inhibition of the proliferation of vascular smooth muscle cells [J]. European journal of pharmacology 2012,681(1-3):15-22.
    23. Li Z, Li J, Mo B, Hu C, Liu H, Qi H, Wang X, Xu J:Genistein induces G2/M cell cycle arrest via stable activation of ERK1/2 pathway in MDA-MB-231 breast cancer cells[J]. Cell biology and toxicology 2008,24(5):401-409.
    24. Cagnol S, Chambard JC:ERK and cell death:mechanisms of ERK-induced cell death--apoptosis, autophagy and senescence [J]. The FEBS journal 2010, 277(1):2-21.
    25. Kim JH, Kim JH, Kim SC, Yi YS, Yang WS, Yang Y, Kim HQ Lee JY, Kim KH, Yoo BC et al: Adenosine dialdehyde suppresses MMP-9-mediated invasion of cancer cells by blocking the Ras/Raf-1/ERK/AP-1 signaling pathway[J]. Biochemical pharmacology 2013,86(9):1285-1300.
    26. Luk PP, Galettis P, Links M:ERK phosphorylation predicts synergism between gemcitabine and the epidermal growth factor receptor inhibitor AG1478[J]. Lung cancer (Amsterdam, Netherlands) 2011,73(3):274-282.
    27. Maroun CR, Rowlands T:The Met receptor tyrosine kinase:A key player in oncogenesis and drug resistance[J]. Pharmacology & therapeutics 2013.
    28. Dent P:Crosstalk between ERK, AKT, and cell survival[J]. Cancer biology & therapy 2014,15(3).
    29. Cuypers HT, Selten G, Quint W, Zijlstra M, Maandag ER, Boelens W, van Wezenbeek P, Melief C, Berns A:Murine leukemia virus-induced T-cell lymphomagenesis:integration of proviruses in a distinct chromosomal region[J]. Cell 1984,37(1):141-150.
    30. Amson R, Sigaux F, Przedborski S, Flandrin G, Givol D, Telerman A:The human protooncogene product p33pim is expressed during fetal hematopoiesis and in diverse leukemias[J]. Proceedings of the National Academy of Sciences of the United States of America 1989,86(22):8857-8861.
    31. Dhanasekaran SM, Barrette TR, Ghosh D, Shah R, Varambally S, Kurachi K, Pienta KJ, Rubin MA, Chinnaiyan AM:Delineation of prognostic biomarkers in prostate cancer[J]. Nature 2001,412(6849):822-826.
    32. Blanco-Aparicio C, Carnera A:Pim kinases in cancer:diagnostic, prognostic and treatment opportunities[J]. Biochemical pharmacology 2013, 85(5):629-643.
    33. Reiser-Erkan C, Erkan M, Pan Z, Bekasi S, Giese NA, Streit S, Michalski CW, Friess H, Kleeff J:Hypoxia-inducible proto-oncogene Pim-1 is a prognostic marker in pancreatic ductal adenocarcinoma[J]. Cancer biology & therapy 2008,7(9):1352-1359.
    1. Cuypers HT, Selten G, Quint W, Zijlstra M, Maandag ER, Boelens W, van Wezenbeek P, Melief C, Berns A:Murine leukemia virus-induced T-cell lymphomagenesis:integration of proviruses in a distinct chromosomal region[J]. Cell 1984,37(1):141-150.
    2. Amson R, Sigaux F, Przedborski S, Flandrin G, Givol D, Telerman A:The human protooncogene product p33pim is expressed during fetal hematopoiesis and in diverse leukemias[J]. Proceedings of the National Academy of Sciences of the United States of America 1989,86(22):8857-8861.
    3. Dhanasekaran SM, Barrette TR, Ghosh D, Shah R, Varambally S, Kurachi K, Pienta KJ, Rubin MA, Chinnaiyan AM:Delineation of prognostic biomarkers in prostate cancer[J]. Nature 2001,412(6849):822-826.
    4. Blanco-Aparicio C, Carnero A:Pim kinases in cancer:diagnostic, prognostic and treatment opportunities [J]. Biochemical pharmacology 2013, 85(5):629-643.
    5. Reiser-Erkan C, Erkan M, Pan Z, Bekasi S, Giese NA, Streit S, Michalski CW, Friess H, Kleeff J:Hypoxia-inducible proto-oncogene Pim-1 is a prognostic marker in pancreatic ductal adenocarcinoma[J]. Cancer biology & therapy 2008,7(9):1352-1359.
    6. Mochizuki T, Kitanaka C, Noguchi K, Muramatsu T, Asai A, Kuchino Y: Physical and functional interactions between Pim-1 kinase and Cdc25A phosphatase. Implications for the Pim-1-mediated activation of the c-Myc signaling pathway [J]. The Journal of biological chemistry 1999, 274(26):18659-18666.
    7. Bachmann M, Kosan C, Xing PX, Montenarh M, Hoffmann I, Moroy T:The oncogenic serine/threonine kinase Pim-1 directly phosphorylates and activates the G2/M specific phosphatase Cdc25C[J]. The international journal of biochemistry & cell biology 2006,38(3):430-443.
    8. Wang Z, Bhattacharya N, Mixter PF, Wei W, Sedivy J, Magnuson NS: Phosphorylation of the cell cycle inhibitor p21Cip1/WAFl by Pim-1 kinase[J]. Biochimica et biophysica acta 2002,1593(1):45-55.
    9. Morishita D, Katayama R, Sekimizu K, Tsuruo T, Fujita N:Pim kinases promote cell cycle progression by phosphorylating and down-regulating p27Kipl at the transcriptional and posttranscriptional levels [J]. Cancer research 2008,68(13):5076-5085.
    10. Aho TL, Sandholm J, Peltola KJ, Mankonen HP, Lilly M, Koskinen PJ:Pim-1 kinase promotes inactivation of the pro-apoptotic Bad protein by phosphorylating it on the Serl12 gatekeeper site[J]. FEBS letters 2004, 571(1-3):43-49.
    11. Gu JJ, Wang Z, Reeves R, Magnuson NS:PIMl phosphorylates and negatively regulates ASKl-mediated apoptosis[J]. Oncogene 2009,28(48):4261-4271.
    12. Zhang F, Beharry ZM, Harris TE, Lilly MB, Smith CD, Mahajan S, Kraft AS: PIM1 protein kinase regulates PRAS40 phosphorylation and mTOR activity in FDCP1 cells[J]. Cancer biology & therapy 2009,8(9):846-853.
    13. Isaac M, Siu A, Jongstra J:The oncogenic PIM kinase family regulates drug resistance through multiple mechanisms [J]. Drug resistance updates:reviews and commentaries in antimicrobial and anticancer chemotherapy 2011, 14(4-5):203-211.
    14. Xie Y, Xu K, Linn DE, Yang X, Guo Z, Shimelis H, Nakanishi T, Ross DD, Chen H, Fazli L et al: The 44-kDa Pim-1 kinase phosphorylates BCRP/ABCG2 and thereby promotes its multimerization and drug-resistant activity in human prostate cancer cells[J]. The Journal of biological chemistry 2008, 283(6):3349-3356.
    15. Natarajan K, Bhullar J, Shukla S, Burcu M, Chen ZS, Ambudkar SV, Baer MR: The Pim kinase inhibitor SGI-1776 decreases cell surface expression of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) and drug transport by Pim-1-dependent and-independent mechanisms [J]. Biochemical pharmacology 2013,85(4):514-524.
    16. Chen LS, Redkar S, Bearss D, Wierda WG, Gandhi V:Pim kinase inhibitor, SGI-1776, induces apoptosis in chronic lymphocytic leukemia cells [J]. Blood 2009,114(19):4150-4157.
    17. Mumenthaler SM, Ng PY, Hodge A, Bearss D, Berk G, Kanekal S, Redkar S, Taverna P, Agus DB, Jain A:Pharmacologic inhibition of Pim kinases alters prostate cancer cell growth and resensitizes chemoresistant cells to taxanes[J]. Molecular cancer therapeutics 2009,8(10):2882-2893.
    18. Peltola K, Hollmen M, Maula SM, Rainio E, Ristamaki R, Luukkaa M, Sandholm J, Sundvall M, Elenius K, Koskinen PJ et al: Pim-1 kinase expression predicts radiation response in squamocellular carcinoma of head and neck and is under the control of epidermal growth factor receptor [J]. Neoplasia (New York, NY) 2009, 11(7):629-636.
    19. Siu A, Virtanen C, Jongstra J:PIM kinase isoform specific regulation of MIG6 expression and EGFR signaling in prostate cancer cells[J]. Oncotarget 2011, 2(12):1134-1144.
    20. Capdevila J, Elez E, Macarulla T, Ramos FJ, Ruiz-Echarri M, Tabernero J: Anti-epidermal growth factor receptor monoclonal antibodies in cancer treatment[J]. Cancer treatment reviews 2009,35(4):354-363.
    21. Bloomston M, Bhardwaj A, Ellison EC, Frankel WL:Epidermal growth factor receptor expression in pancreatic carcinoma using tissue microarray technique[J]. Digestive surgery 2006,23(1-2):74-79.
    22. Tebbutt N, Pedersen MW, Johns TG:Targeting the ERBB family in cancer: couples therapy[J]. Nature reviews Cancer 2013,13(9):663-673.
    23. Sasaki T, Hiroki K, Yamashita Y:The role of epidermal growth factor receptor in cancer metastasis and microenvironment[J]. BioMed research international 2013,2013:546318.
    24. Dent P:Crosstalk between ERK, AKT, and cell survival[J]. Cancer biology & therapy 2014,15(3).
    25. Arteaga CL:The epidermal growth factor receptor:from mutant oncogene in nonhuman cancers to therapeutic target in human neoplasia[J]. Journal of clinical oncology:official journal of the American Society of Clinical Oncology 2001,19(18 Suppl):32s-40s.
    26. Foley J, Nickerson NK, Nam S, Allen KT, Gilmore JL, Nephew KP, Riese DJ, 2nd:EGFR signaling in breast cancer:bad to the bone[J]. Seminars in cell & developmental biology 2010,21(9):951-960.
    1. Li D, Zhao Y, Liu C, Chen X, Qi Y, Jiang Y, Zou C, Zhang X, Liu S, Wang X et al: Analysis of MiR-195 and MiR-497 expression, regulation and role in breast cancer[J].Clinical cancer research:an official journal of the American Association for Cancer Research 2011,17(7):1722-1730.
    2. Guo ST, Jiang CC, Wang GP, Li YP, Wang CY, Guo XY, Yang RH, Feng Y, Wang FH, Tseng HY et al: MicroRNA-497 targets insulin-like growth factor 1 receptor and has a tumour suppressive role in human colorectal cancer[J]. Oncogene 2013,32(15):1910-1920.
    3. Luo M, Shen D, Zhou X, Chen X, Wang W:MicroRNA-497 is a potential prognostic marker in human cervical cancer and functions as a tumor suppressor by targeting the insulin-like growth factor 1 receptor [J]. Surgery 2013,153(6):836-847.
    4. Amson R, Sigaux F, Przedborski S, Flandrin G, Givol D, Telerman A:The human protooncogene product p33pim is expressed during fetal hematopoiesis and in diverse leukemias[J]. Proceedings of the National Academy of Sciences of the United States of America 1989,86(22):8857-8861.
    5. Reiser-Erkan C, Erkan M, Pan Z, Bekasi S, Giese NA, Streit S, Michalski CW, Friess H, Kleeff J:Hypoxia-inducible proto-oncogene Pim-1 is a prognostic marker in pancreatic ductal adenocarcinoma[J]. Cancer biology & therapy 2008,7(9):1352-1359.
    6. Dhanasekaran SM, Barrette TR, Ghosh D, Shah R, Varambally S, Kurachi K, Pienta KJ, Rubin MA, Chinnaiyan AM:Delineation of prognostic biomarkers in prostate cancer[J]. Nature 2001,412(6849):822-826.
    7. Merkel AL, Meggers E, Ocker M:PIM1 kinase as a target for cancer therapy[J]. Expert opinion on investigational drugs 2012,21(4):425-436.
    8. Warnecke-Eberz U, Bollschweiler E, Drebber U, Metzger R, Baldus SE, Holscher AH, Monig S:Prognostic impact of protein overexpression of the proto-oncogene PIM-1 in gastric cancer[J]. Anticancer research 2009, 29(11):4451-4455.
    9. Goonetilleke KS, Siriwardena AK:Systematic review of carbohydrate antigen (CA 19-9) as a biochemical marker in the diagnosis of pancreatic cancer[J]. European journal of surgical oncology:the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology 2007, 33(3):266-270.
    1. Siegel R, Naishadham D, Jemal A. Cancer statistics,2013. CA. Cancer J. Clin. 63(1),11-30(2013).
    2. Winter JM, Yeo CJ, Brody JR. Diagnostic, prognostic, and predictive biomarkers in pancreatic cancer. J. Surg. Oncol.107(1),15-22 (2013).
    3. Conroy T, Desseigne F, Ychou M et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N. Engl. J. Med.364(19),1817-1825 (2011).
    4. Ueno H, Ioka T, Ikeda M et al. Randomized phase III study of gemcitabine plus S-1, S-1 alone, or gemcitabinealone in patients with locally advanced and metastatic pancreatic cancer in Japanand Taiwan:GEST study.J. Clin. Oncol. 31(13),1640-1648 (2013).
    5. Sun C, Ansari D, Andersson R, Wu DQ. Does gemcitabine-based combination therapy improve the prognosis of unresectable pancreatic cancer. World J. Gastroenterol.18(35),4944-4958 (2012).
    6. Cinar P, Tempero MA. Monoclonal antibodies and other targeted therapies for pancreatic cancer. Cancer J 18(6),653-664 (2012).
    7. Alvarado Y, Giles FJ, Swords RT. The PIM kinases in hematological cancers. Expert Rev Hematol 5(1),81-96 (2012).
    8. Wang Z, Bhattacharya N, Weaver M et al. Pim-1:a serine/threonine kinase with a role in cell survival, proliferation,differentiation and tumorigenesis.J. Vet. Sci. 2(3),167-179 (2001).
    9. Mukaida N, Wang YY, Li YY. Roles of Pim-3, a novel survival kinase, in tumorigenesis. Cancer Sci.102(8),1437-1442 (2011).
    10. Fox CJ, Hammerman PS, Cinalli RM, Master SR, Chodosh LA, Thompson CB. The serine/threonine kinase Pim-2 is a transcriptionally regulated apoptoticinhibitor. Genes Dev.17(15),1841-1854 (2003).
    11. Cuypers HT, Selten G, Quint W et al. Murine leukemia virus-induced T-cell lymphomagenesis:integration of provirusesin a distinct chromosomal region. Cell 37(1),141-150(1984).
    12. Blanco-Aparicio C, Carnero A. Pim kinases in cancer:Diagnostic, prognostic and treatment opportunities.LID-S0006-2952(12)00649-1 [pii]LID 10.1016/j.bcp.2012.09.018 [doi]. Biochem. Pharmacol. (2012).
    13. Merkel AL, Meggers E, Ocker M. PIM1 kinase as a target for cancer therapy. Expert Opin Investig Drugs 21(4),425-436 (2012).
    14. Breuer ML, Cuypers HT, Berns A. Evidence for the involvement of pim-2, a new common proviral insertion site, inprogression of lymphomas. EMBO J.8(3), 743-748 (1989).
    15. Feldman JD, Vician L, Crispino M, Tocco G, Baudry M, Herschman HR. Seizure activity induces PIM-1 expression in brain. J. Neurosci. Res.53(4),502-509 (1998).
    16. Konietzko U, Kauselmann G, Scafidi J et al. Pim kinase expression is induced by LTP stimulation and required for theconsolidation of enduring LTP. EMBO J. 18(12),3359-3369 (1999).
    17. Bachmann M, Moroy T. The serine/threonine kinase Pim-1. Int. J. Biochem. Cell Biol.37(4),726-730 (2005).
    18. Brault L, Menter T, Obermann EC et al. PIM kinases are progression markers and emerging therapeutic targets in diffuselarge B-cell lymphoma. Br. J. Cancer 107(3),491-500 (2012).
    19. Ayala GE, Dai H, Ittmann M et al. Growth and survival mechanisms associated with perineural invasion in prostatecancer. Cancer Res.64(17),6082-6090 (2004).
    20. Deneen B, Welford SM, Ho T, Hernandez F, Kurland I, Denny CT. PIM3 proto-oncogene kinase is a common transcriptional target of divergentEWS/ETS oncoproteins. Mol. Cell. Biol.23(11),3897-3908 (2003).
    21. Fujii C, Nakamoto Y, Lu P et al. Aberrant expression of serine/threonine kinase Pim-3 in hepatocellular carcinoma development and its role in the proliferation of human hepatoma cell lines. Int. J. Cancer 114(2),209-218 (2005).
    22. Li YY, Popivanova BK, Nagai Y, Ishikura H, Fujii C, Mukaida N. Pim-3,a proto-oncogene with serine/threonine kinase activity, is aberrantlyexpressed in human pancreatic cancer and phosphorylates bad to block bad-mediatedapoptosis in human pancreatic cancer cell lines. Cancer Res. 66(13),6741-6747 (2006).
    23. Zheng HC, Tsuneyama K, Takahashi H et al. Aberrant Pim-3 expression is involved in gastric adenoma-adenocarcinoma sequence and cancer progression.J. Cancer Res. Clin. Oncol.134(4),481-488 (2008).
    24. Mizuki M, Schwable J, Steur C et al. Suppression of myeloid transcription factors and induction of STAT response genesby AML-specific Flt3 mutations. Blood 101(8),3164-3173 (2003).
    25. Cohen AM, Grinblat B, Bessler H et al. Increased expression of the hPim-2 gene in human chronic lymphocytic leukemia andnon-Hodgkin lymphoma. Leuk. Lymphoma 45(5),951-955(2004).
    26. Sharma P, Saraya A, Gupta P, Sharma R. Decreased levels of circulating and tissue miR-107 in human esophageal cancer. Biomarkers 18(4),322-330 (2013).
    27. Pasqualucci L, Neumeister P, Goossens T et al. Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas. Nature 412(6844), 341-346 (2001).
    28. Dhanasekaran SM, Barrette TR, Ghosh D et al. Delineation of prognostic biomarkers in prostate cancer. Nature 412(6849),822-826 (2001).
    29. Amson R, Sigaux F, Przedborski S, Flandrin G, Givol D, Telerman A. The human protooncogene product p33pim is expressed during fetal hematopoiesisand in diverse leukemias. Proc. Natl.Acad. Sci. U.S.A.86(22),8857-8861(1989).
    30. Guo S, Mao X, Chen J et al. Overexpression of Pim-1 in bladder cancer. J. Exp. Clin. Cancer Res.29(161 (2010).
    31. Malinen M, Jaaskelainen T, Pelkonen M et al. Proto-oncogene PIM-1 is a novel estrogen receptor target associating with highgrade breast tumors. Mol. Cell. Endocrinol.365(2),270-276(2013).
    32. Miura O, Miura Y, Nakamura N et al. Induction of tyrosine phosphorylation of Vav and expression of Pim-1 correlateswith Jak2-mediated growth signaling from the erythropoietin receptor. Blood 84(12),4135-4141 (1994).
    33. Zhu N, Ramirez LM, Lee RL, Magnuson NS, Bishop GA, Gold MR. CD40 signaling in B cells regulates the expression of the Pim-1 kinase via theNF-kappa B pathway. J. Immunol.168(2),744-754 (2002).
    34. Chen J, Kobayashi M, Darmanin S et al. Hypoxia-mediated up-regulation of Pim-1 contributes to solid tumor formation. Am. J. Pathol.175(1),400-411 (2009).
    35. Peltola K, Hollmen M, Maula SM et al. Pim-1 kinase expression predicts radiation response in squamocellular carcinomaof head and neck and is under the control of epidermal growth factor receptor. Neoplasia 11(7),629-636 (2009).
    36. Shen J, Xia W, Khotskaya YB et al. EGFR modulates microRNA maturation in response to hypoxia through phosphorylationof AGO2. Nature 497(7449), 383-387 (2013).
    37. Bednarski JJ, Nickless A, Bhattacharya D, Amin RH, Schlissel MS, Sleckman BP. RAG-induced DNA double-strand breaks signal through Pim2 to promote pre-B cellsurvival and limit proliferation.J. Exp. Med.209(1),11-17 (2012).
    38. Xu D, Allsop SA, Witherspoon SM et al. The oncogenic kinase Pim-1 is modulated by K-Ras signaling and mediatestransformed growth and radioresistance in human pancreatic ductal adenocarcinoma cells. Carcinogenesis 32(4),488-495 (2011).
    39. Selmi T, Martello A, Vignudelli T et al. ZFP36 expression impairs glioblastoma cell lines viability and invasiveness bytargeting multiple signal transduction pathways. Cell Cycle 11(10),1977-1987 (2012).
    40. Li YY, Wu Y, Tsuneyama K, Baba T, Mukaida N. Essential contribution of Ets-1 to constitutive Pim-3 expression in humanpancreatic cancer cells. Cancer Sci. 100(3),396-404 (2009).
    41. Kim KT, Carroll AP, Mashkani B, Cairns MJ, Small D, Scott RJ. MicroRNA-16 is down-regulated in mutated FLT3 expressing murine myeloid FDC-P1 cells and interacts with Pim-1. PLoS One 7(9), e44546(2012).
    42. Thomas M, Lange-Grunweller K, Weirauch U et al. The proto-oncogene Pim-1 is a target of miR-33a. Oncogene 31(7),918-928 (2012).
    43. Chen J, Yin H, Jiang Y et al. Induction of microRNA-1 by myocardin in smooth muscle cells inhibits cellproliferation. Arterioscler. Thromb. Vasc. Biol.31(2), 368-375(2011).
    44. Eiring AM, Harb JG, Neviani P et al. miR-328 functions as an RNA decoy to modulate hnRNP E2 regulation of mRNAtranslation in leukemic blasts. Cell 140(5),652-665 (2010).
    45. Lang MF, Yang S, Zhao C et al. Genome-wide profiling identified a set of miRNAs that are differentiallyexpressed in glioblastoma stem cells and normal neural stem cells. PLoS One 7(4), e36248 (2012).
    46. Zemskova M, Sahakian E, Bashkirova S, Lilly M. The PIM1 kinase is a critical component of a survival pathway activated bydocetaxel and promotes survival of docetaxel-treated prostate cancer cells. J. Biol. Chem.283(30), 20635-20644 (2008).
    47. Wozniak MB, Villuendas R, Bischoff JR et al. Vorinostat interferes with the signaling transduction pathway of T-cell receptor and synergizes with phosphoinositide-3 kinase inhibitors in cutaneous T-celllymphoma. Haematologica 95(4),613-621 (2010).
    48. Aksoy I, Sakabedoyan C, Bourillot PY et al. Self-renewal of murine embryonic stem cells is supported by the serine/threonine kinases Pim-1 and Pim-3. Stem Cells 25(12),2996-3004 (2007).
    49. Mochizuki T, Kitanaka C, Noguchi K, Muramatsu T, Asai A, Kuchino Y. Physical and functional interactions between Pim-1 kinase and Cdc25A phosphatase.Implications for the Pim-1-mediated activation of the c-Myc signaling pathway.J. Biol. Chem.274(26),18659-18666(1999).
    50. Bachmann M, Kosan C, Xing PX, Montenarh M, Hoffmann I, Moroy T. The oncogenic serine/threonine kinase Pim-1 directly phosphorylates and activatesthe G2/M specific phosphatase Cdc25C. Int. J. Biochem. Cell Biol. 38(3),430-443 (2006).
    51. Wang Z, Bhattacharya N, Mixter PF, Wei W, Sedivy J, Magnuson NS. Phosphorylation of the cell cycle inhibitor p21Cip1/WAF1 by Pim-1 kinase. Biochim. Biophys. Acta 1593(1),45-55 (2002).
    52. Leverson JD, Koskinen PJ, Orrico FC et al. Pim-1 kinase and p100 cooperate to enhance c-Myb activity. Mol. Cell 2(4),417-425 (1998).
    53. Morishita D, Katayama R, Sekimizu K, Tsuruo T, Fujita N. Pim kinases promote cell cycle progression by phosphorylating and down-regulatingp27Kipl at the transcriptional and posttranscriptional levels. Cancer Res.68(13),5076-5085 (2008).
    54. Levy D, Davidovich A, Zirkin S et al. Activation of cell cycle arrest and apoptosis by the proto-oncogene Pim-2. PLoS One 7(4), e34736 (2012).
    55. Wang Z, Zhang Y, Gu JJ, Davitt C, Reeves R, Magnuson NS. Pim-2 phosphorylation of p21(Cipl/WAF1) enhances its stability and inhibits cell proliferation in HCT116 cells. Int. J. Biochem. Cell Biol.42(6),1030-1038 (2010).
    56. Aho TL, Sandholm J, Peltola KJ, Mankonen HP, Lilly M, Koskinen PJ. Pim-1 kinase promotes inactivation of the pro-apoptotic Bad protein byphosphorylating it on the Serl12 gatekeeper site. FEBS Lett.571(1-3), 43-49 (2004).
    57. Xu D, Cobb MG, Gavilano L et al. Inhibition of oncogenic Pim-3 kinase modulates transformed growth andchemosensitizes pancreatic cancer cells to gemcitabine. Cancer Biol. Ther.14(6),492-501 (2013).
    58. Bohensky J, Shapiro IM, Leshinsky S, Watanabe H, Srinivas V. PIM-2 is an independent regulator of chondrocyte survival and autophagy in theepiphyseal growth plate. J. Cell. Physiol.213(1),246-251 (2007).
    59. Gu JJ, Wang Z, Reeves R, Magnuson NS. PIM1 phosphorylates and negatively regulates ASK1-mediated apoptosis. Oncogene 28(48),4261-4271 (2009).
    60. Zhang F, Beharry ZM, Harris TE et al. PIM1 protein kinase regulates PRAS40 phosphorylation and mTOR activity in FDCP1 cells. Cancer Biol. Ther.8(9), 846-853 (2009).
    61. Hammerman PS, Fox CJ, Cinalli RM et al. Lymphocyte transformation by Pim-2 is dependent on nuclear factor-kappaBactivation. Cancer Res.64(22), 8341-8348 (2004).
    62. Hogan C, Hutchison C, Marcar L et al. Elevated levels of oncogenic protein kinase Pim-1 induce the p53 pathway incultured cells and correlate with increased Mdm2 in mantle cell lymphoma. J. Biol. Chem.283(26), 18012-18023 (2008).
    63. Zemskova M, Lilly MB, Lin YW, Song JH, Kraft AS. p53-dependent induction of prostate cancer cell senescence by the PIM1 proteinkinase. Mol. Cancer Res. 8(8),1126-1141(2010).
    64. Gibbons JJ, Abraham RT, Yu K. Mammalian target of rapamycin:discovery of rapamycin reveals a signaling pathwayimportant for normal and cancer cell growth. Semin. Oncol.36 Suppl 3(S3-3S17 (2009).
    65. Laplante M, Sabatini DM. mTOR signaling at a glance. J. Cell. Sci.122(Pt 20), 3589-3594 (2009).
    66. Beharry Z, Mahajan S, Zemskova M et al. The Pim protein kinases regulate energy metabolism and cell growth. Proc. Natl. Acad. Sci. U.S.A.108(2), 528-533 (2011).
    67. Rubinsztein DC, Codogno P, Levine B. Autophagy modulation as a potential therapeutic target for diverse diseases. Nat Rev Drug Discov 11(9),709-730 (2012).
    68. Pyo JO, Nah J, Jung YK. Molecules and their functions in autophagy. Exp. Mol. Med.44(2),73-80 (2012).
    69. Codogno P, Meijer AJ. Autophagy and signaling:their role in cell survival and cell death. Cell Death Differ.12 Suppl 2(1509-1518 (2005).
    70. Zippo A, De Robertis A, Bardelli M, Galvagni F, Oliviero S. Identification of Flk-1 target genes in vasculogenesis:Pim-1 is required forendothelial and mural cell differentiation in vitro. Blood 103(12),4536-4544 (2004).
    71. Tjwa M, Dimmeler S. A nucleolar weapon in our fight for regenerating adult hearts:nucleostemin andcardiac stem cells. Circ. Res.103(1),4-6(2008).
    72. Fischer KM, Cottage CT, Wu W et al. Enhancement of myocardial regeneration through genetic engineering of cardiacprogenitor cells expressing Pim-1 kinase. Circulation 120(21),2077-2087 (2009).
    73. An N, Kraft AS, Kang Y. Abnormal hematopoietic phenotypes in Pim kinase triple knockout mice:Pim kinase regulates hematopoiesis. J Hematol Oncol 6(1),12 (2013).
    74. Agrawal S, Koschmieder S, Baumer N et al. Pim2 complements Flt3 wild-type receptor in hematopoietic progenitor celltransformation. Leukemia 22(1), 78-86 (2008).
    75. Tsuzuki S, Seto M. TEL(ETV6)-AML1(RUNX1) Initiates Self-renewing Fetal Pro-B Cells in Associationwith a Transcriptional Program Shared with Embryonic Stem Cells in Mice.LID-10.1002/stem.l277 [doi]. Stem Cells (2012).
    76. Ratajczak MZ, Zuba-Surma E, Kucia M, Reca R, Wojakowski W, Ratajczak J. The pleiotropic effects of the SDF-1-CXCR4 axis in organogenesis, regenerationand tumorigenesis. Leukemia 20(11),1915-1924 (2006).
    77. Lapidot T, Dar A, Kollet O. How do stem cells find their way home. Blood 106(6), 1901-1910(2005).
    78. Grundler R, Brault L, Gasser C et al. Dissection of PIM serine/threonine kinases in FLT3-ITD-induced leukemogenesisreveals PIM1 as regulator of CXCL12-CXCR4-mediated homing and migration. J. Exp. Med.206(9), 1957-1970(2009).
    79. Isaac M, Siu A, Jongstra J. The oncogenic PIM kinase family regulates drug resistance through multiplemechanisms. Drug Resist. Updat.14(4-5),203-211 (2011).
    80. Xie Y, Xu K, Linn DE et al. The 44-kDa Pim-1 kinase phosphorylates BCRP/ABCG2 and thereby promotes itsmultimerization and drug-resistant activity in human prostate cancer cells. J. Biol. Chem.283(6),3349-3356 (2008).
    81. Xie Y, Burcu M, Linn DE, Qiu Y, Baer MR. Pim-1 kinase protects P-glycoprotein from degradation and enables itsglycosylation and cell surface expression. Mol. Pharmacol.78(2),310-318 (2010).
    82. Natarajan K, Bhullar J, Shukla S et al. The Pim kinase inhibitor SGI-1776 decreases cell surface expression ofP-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) and drugtransport by Pim-1-dependent and-independent mechanisms.LID-S0006-2952(12)00792-7 [pii]LID 10.1016/j.bcp.2012.12.006 [doi]. Biochem. Pharmacol. (2012).
    83. Chen LS, Redkar S, Bearss D, Wierda WG, Gandhi V. Pim kinase inhibitor, SGI-1776, induces apoptosis in chronic lymphocytic leukemiacells. Blood 114(19),4150-4157 (2009).
    84. Mumenthaler SM, Ng PY, Hodge A et al. Pharmacologic inhibition of Pim kinases alters prostate cancer cell growth andresensitizes chemoresistant cells to taxanes. Mol. Cancer Ther:8(10),2882-2893 (2009).
    85. Toffoli S, Michiels C. Intermittent hypoxia is a key regulator of cancer cell and endothelial cellinterplay in tumours. FEBS J.275(12),2991-3002 (2008).
    86. Chen J, Kobayashi M, Darmanin S et al. Pim-1 plays a pivotal role in hypoxia-induced chemoresistance. Oncogene 28(28),2581-2592 (2009).
    87. Mikkers H, Nawijn M, Allen J et al. Mice deficient for all PIM kinases display reduced body size and impairedresponses to hematopoietic growth factors. Mol. Cell. Biol.24(13),6104-6115 (2004).
    88. Yeh JJ, Der CJ. Targeting signal transduction in pancreatic cancer treatment. Expert Opin. Ther.Targets 11(5),673-694 (2007).
    89. Narlik-Grassow M, Blanco-Aparicio C, Cecilia Y et al. The essential role of PIM kinases in sarcoma growth and bone invasion. Carcinogenesis 33(8), 1479-1486 (2012).
    90. Mahalingam D, Espitia CM, Medina EC et al. Targeting PIM kinase enhances the activity of sunitinib in renal cell carcinoma. Br. J. Cancer 105(10),1563-1573 (2011).
    91. Kelly KR, Espitia CM, Taverna P et al. Targeting PIM kinase activity significantly augments the efficacy of cytarabine. Br. J. Haematol.156(1), 129-132 (2012).
    92. Pierre F, Chua PC, O'Brien SE et al. Pre-clinical characterization of CX-4945, a potent and selective small moleculeinhibitor of CK2 for the treatment of cancer. Mol. Cell. Biochem.356(1-2),37-43 (2011).
    93. Pierre F, Stefan E, Nedellec AS et al. 7-(4H-1,2,4-Triazol-3-yl)benzo[c][2,6]naphthyridines:a novel class of Pim kinaseinhibitors with potent cell antiproliferative activity. Bioorg. Med. Chem. Lett.21(22),6687-6692(2011).
    94. Barnett AD MS, Chamberlain C PM, Evans S MT, et a. a novel anti-cancer clinical phase compound that induces ER stress and inhibits PIM kinases: human tumor xenograft efficacy and in vitro mode of action. Suppl(8),45-46 (2010).
    95. Siu A, Virtanen C, Jongstra J. PIM kinase isoform specific regulation of MIG6 expression and EGFR signaling inprostate cancer cells. Oncotarget 2(12), 1134-1144(2011).
    96. Reiser-Erkan C, Erkan M, Pan Z et al. Hypoxia-inducible proto-oncogene Pim-1 is a prognostic marker in pancreaticductal adenocarcinoma. Cancer Biol. Ther: 7(9),1352-1359 (2008).
    97. Buchholz M, Braun M, Heidenblut A et al. Transcriptome analysis of microdissected pancreatic intraepithelial neoplasticlesions. Oncogene 24(44), 6626-6636(2005).
    98. Zhang Y, Wang Z, Li X, Magnuson NS. Pim kinase-dependent inhibition of c-Myc degradation. Oncogene 27(35),4809-4819 (2008).
    99. Block KM, Hanke NT, Maine EA, Baker AF. IL-6 stimulates STAT3 and Pim-1 kinase in pancreatic cancer cell lines. Pancreas 41(5),773-781 (2012).
    100. Wang C, Li HY, Liu B, Huang S, Wu L, Li YY. Pim-3 promotes the growth of human pancreatic cancer in the orthotopic nude mousemodel through vascular endothelium growth factor.LID-S0022-4804(13)00593-3 [pii]LID 10.1016/j.jss.2013.06.004 [doi]. J. Surg. Res. (2013).
    101. Chang M, Kanwar N, Feng E et al. PIM kinase inhibitors downregulate STAT3(Tyr705) phosphorylation. Mol. Cancer Ther:9(9),2478-2487 (2010).
    102. Wang YY, Taniguchi T, Baba T, Li YY, Ishibashi H, Mukaida N. Identification of a phenanthrene derivative as a potent anticancer drug with Pim kinase inhibitory activity. Cancer Sci.103(1),107-115 (2012).
    103. Li YY, Wang YY, Taniguchi T et al. Identification of stemonamide synthetic intermediates as a novel potentanticancer drug with an apoptosis-inducing ability. Int. J. Cancer 127(2),474-484 (2010).
    104. Wang Z, Li XM, Shang K et al. T-18, a stemonamide synthetic intermediate inhibits Pim kinase activity andinduces cell apoptosis, acting as a potent anticancer drug. Oncol. Rep.29(3),1245-1251(2013).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700