面向复杂产品的稳健产品平台建立方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于产品平台的产品开发模式通过充分挖掘已有系统资源,以尽可能少的内部多样化满足外部需求的不断变化,实现成本和风险的降低。复杂产品因其需求、结构、技术、制造和管理等方面的复杂性,导致产品设计参数和约束繁多,设计结果多变,定制生产周期长、风险大、成本高。在对复杂产品设计时只有充分利用现有成熟技术和零部件才能够提高复杂产品设计的可靠性,达到预期设计效果。因此为复杂产品建立产品平台的重要性相对于简单产品而言更加凸显。同时,复杂产品多变的使用环境,要求复杂产品的产品平台具有较好的稳健性。
     本文根据产品平台设计的任务,与稳健设计思想相比较,提出产品平台设计过程的本质是稳健设计。因为传统稳健设计不针对产品族设计问题,本文对稳健设计的概念进行扩展,并基于此提出产品平台的稳健设计模型,指出建立稳健产品平台的过程就是分析目标产品族结构变量对设计变量变化的敏感性。
     在稳健设计模型的基础上,本文提出面向复杂产品建立稳健产品平台的流程,包括设计变量提取和分析、系列划分、模块划分以及可调节模块的稳健参数设计等。该流程针对复杂产品的特点,应用实验设计方法中分区组的方法,提出建立系列产品平台以提高通用率;在流程的各个步骤中均充分考虑产品平台的稳健性。
     本文针对复杂产品稳健产品平台建立流程中的两个关键问题进行了研究:(1)对复杂产品设计变量识别和筛选的方法进行了研究。采用鱼骨图分析导致产品结构变量变化的因素,剔除人为原因造成的不必要变型;改进粗数方法,用粗数方法对客户需求进行重要度评价,并约简不重要客户需求;引入敏感性分析方法研究客户需求与技术参数之间的关系以及技术参数和产品主要部件之间的关系,进而得到划分平台系列的关键参数。(2)研究产品平台结构变量获取与表达方法,并将平台结构变量定义为实体模块和结构参数。在每个平台系列内利用反向鱼骨图对产品实体进行分解,基于敏感性分析将实体模块划分为标准模块、虚拟模块、需分解模块、柔性模块和可调节模块;建立可调节模块的参数化平台,给出了基于敏感性分析确定单值平台参数、多值平台参数和可调节参数的确定方法。
The mode of product development based on product platform can satisfy the ever-changing external demands with as little as possible internal diversity, and reduce cost and risk, by making full use of the existing system resources. Complex products show numerous complexities in the customer demands, structure, technique, manufacture, management and other aspects, which results in multifarious design parameters and constraints, uncertained design results, long lead time, high risk and cost. Then it is rather important for complex product design to use existing mature technique and components fully, so as to enhance the reliability of the design and achieve the anticipated design effect. In brief, the product platform building for complex product has more importance than that for simple product. At the same time the product platform built for complex product should be robust to adapt greatly uncertain application environment.
     By comparing the aim of product platform design with that of Robust Design, it indicates that the process of product platform design in nature is robust design. Traditional Robust Design fails to deal with the product family design, so the concept of Robust Design is extended here, on which the robust design model for product platform design is put forward. The model indicates that the process of robust product platform design is a process of performing sensitivity analysis to analyze the impact of the change of design variables on the structure variables of the target product family.
     Based on the model of robust design, a flowchart of robust product platform design for complex products is presented, which includes design variables drawing and analysis, series division, modularization, and robust parameter design of scaled module. According to the characteristic of complex products, by using block design in Experimental Design for reference, product platforms could be serialized for increasing commonality. Additionally, the demands of robustness are carefully considered in each step of product platform design.
     Two key issues in the process of robust product platform building for complex products are emphasized on: (1) the way of design variables identification and selection is researched on. First, fishbone diagram is introduced to identify and analyze the factors result in the changes of the product structure parameters, and to reject some artificial reason result in unnecessary modification of design. Second, the method of rough number is improved to perform importance evaluation for customer demands and reduce unimportant demands. Third, to obtain the key parameters as the reference index for series division, a method based on sensitivity analysis from customer requirements to technical parameters and further to product components is advised. (2) The approach of acquisition and description of the structure variable of product platform is studied on. The structure variables are defined as entity modules or structure parameters. The entity modules are divided into standard modules, flexible modules, scalable modules, virtual modules and decomposable modules through sensitivity analysis. And the initial modules are obtained by decomposing the product with reverse fishbone diagram in the interior of each series. Additionally, the parametric product platform is built for scaled modules, and the way of parameter identification is put forwards for single-valued, multi-valued and scaled value parametric platform.
引文
[1] Pine, J B, II. Mass Customization: The new frontier in business competition. Boston: Harvard Business School Press,1993:6
    [2] Sanderson, S W, Uzumeri, M. Managing product family. Chicago: Irwin, 1997
    [3] Meyer M H, Lehnerd A P. The power of product platform: building value and cost leadership. New York: Free press, 1997
    [4] Erens F. Synthesis of variety: developing product families[PhD dissertation]. The Netherlands:Eindhoven University of Technology, 1997
    [5] Simpson T W. A concept exploration method for product family design [PHD Dissertation]. Georgia: Georgia Institute of Technology,1998
    [6] Jiao J X, Simpson T W, Siddque Z. Product Family Design and Platfroms-based Product Development: a State-of-the-art Review. Journal of Intelligent Manufacturing, 2007,18:5-29
    [7] Huang G Q, Simpson T W, Pine II B J. The power of product platform in mass customization. International Journal of Mass Customizaion, 2005,1(1):1-13
    [8] Simpson T W, Maier J R A, Mistree F. Product platform design: method and application. Research in Engineering Design, 2001(13): 2-22
    [9] McAdams D, Stone R, Wood K. Functional interdependence and product similarity based on customer needs. Research in Engineering Design, 1999, 11(1): 1-19
    [10] Erens F, Verhulst K. Architectures for product families Computers in Industry, 1997,33:165-178
    [11] Ulrich K T. The role of product architecture in the manufacturing firm. Research in industry, 1997, 33: 165-178
    [12]张红旗,曹文钢,姜康等,基于实例推理的产品变型设计技术的研究,机械工程师,2002,(8):8-10
    [13]郭津津,朱世和,徐燕申等,基于模块化的变型设计技术研究及CAD系统框架的构建,组合机床与自动化加工技术,2005,(9):33-34
    [14]鲁玉军,于军合,祁国宁等,基于事物特性表的产品变型设计,计算机集成制造系统,2003,9(10):840-845
    [15]叶永伟,杨庆华,厉淦等,基于特征技术的变型设计与产品装配建模,计算机工程,2003,29(13):192-194
    [16]张换高,产品平台设计理论与创新方法研究[博士论文],天津:河北工业大学,2009
    [17] Meyer M H, Lehnerd A P. The power of product platforms: building value and cost leadership. New York: Free Press, 1997,ix, 1-170
    [18] Meyer M H, Utterback J M. The product family and the dynamics of core capability. Sloan Management Review, 1993, 34: 29-47
    [19] Suh Eun Suk, Olivier L de Weck, Chang D. Flexible product platforms: framework and case study. research in engineering design, 2007,18 (2): 67-89
    [20] Eun Suk Suh. Flexible Product Platforms [PhD dissertation]. Massachusetts: Massachusetts Institute of Technology, 2005
    [21] McGrath M E. Product strategy for sigh-technology companies. New York: Irwin Professional Publishing, 1995: 39
    [22] Corso M, Muffatto M, Verganti R. Multi-product innovation: emerging policies in automotive, motorcycle and earthmoving machinery industries. In: Proceedings of the EIASM 4th Product Development Management Conference, Fontainebleau, May, 1996: 205-218
    [23] Robertson D, Ulrich K. Planning product platforms. Sloan Management Review, 1998, 39(4):19-31
    [24] Simpson T W. Product platform design and optimization: status and promise. In: Proceedings of DETC’03, Chicago, Illinois USA, September, 2003: 131-142
    [25] Zahed Siddique. Common platform development- Designing for product variety [PHD Dissertation]. Georgia: Georgia Institute of Technology, 2000
    [26] Sanderson S W, Uzumeri M. Managing product families: The case of the Sony Walkman. Research Policy, 1995, 24:761-782
    [27] Muffatto M, Roveda M. Developing product platforms: analysis of the development process. Technovation , 2000, 20: 617-630
    [28] Sawhney, M S. Leverage high strategies: from portfolio thinking to platform thinking. Journal of the academy of mafkting science, 1998, 26(1):54-61
    [29] Johannes I M. Halman, Adrian P. Hofer, Wim van Vuuren. Platform-driven development of product families: linking theory with practice. Journal of product innovation management, 2003, 20(2): 149-162
    [30] Van Wie M J, Rajan P, Campbell, M I, etc.. Representing product architecture. In: ASME design engineering technical conferences, DETC2003/DTM-48668, Chicago, Illinois, 2003
    [31] Ulrich K, Eppinger S D. Product design and development. New York: McGraw-Hill, 1995
    [32] Fujita K, Yoshida H. Product variety optimization simultaneously designing module combination and module attributes. Concurrent Engineering: Researchand Application, 2004,12(2):105–118
    [33] Ulrich K. The role of product architecture in the manufacturing firm. Research Policy, 1995, 24(3):419–440
    [34] Sosa M E, Eppinger S D, Rowles C M. The misalignment of product architecture and organizational structure in complex product development, Management Science, 2004, 50(12): 1674-1689
    [35] Fixson S K. Linking modularity and cost: A methodology to assess cost implications of product architecture differences to support product design[PHD Dissertation]. Massachusetts Institute of Technology, Cambridge, MA, 2002
    [36] Oosterman B. Improving productdevelopmentprojectsby matching product architecture and organization [PHD Dissertation]. University of Groningen, Groningen, the Netherlands, 2001
    [37] Cutherell D. Product architecture. In: M. Rosenau,G. Griffin, G. Castellion, N. Anschuetz (Eds.), The PDM A handbook of new product development, JohnWiley & sons,1996
    [38] Muffatto M, Roveda M. Product architecture and platforms: a conceptual framework. International Journal of Technology Management, 2002,24(1), 1–16
    [39] Bi Z M, Zhang W J. Modularity technology in manufacturing: Taxonomy and issues. International Journal of Advanced Manufacturing Technology, 2001, 18(5), 381–390
    [40] Gershenson J K, Prasad G J, Zhang Y. Product modularity: definitions and benefits. Journal of engineering design, 2003, 14(3): 295-313
    [41] Ulrich K, Tung, K. Fundaments of product modularity. In A. Sharon (Ed.), Issues in mechanical design international, New York: ASME, DE-39,1991: 73–79
    [42] Henderson R M, Clark K B. Architecture innovation: the reconfiguration of existing product technologies and the failure of established firms. Administrative Science Quarterly, 1990,35(1), 9-30
    [43]柳玲,李百战,王建辉等,基于DSM的设计过程模型优化算法研究进展,中国科技论文在线,http://www.paper.edu.cn
    [44]侯亮,徐燕申,唐任仲,张炜,面向广义模块化设计的产品族规划方法研究,中国机械工程,2003,14(7)
    [45]高卫国,徐燕申,陈永亮等,广义模块化设计原理及方法,机械工程学报,2007,43(6):48-54
    [46]钟伟弘,徐燕申,胡亚辉,整体框架式液压机广义模块化产品族建模技术的研究,中国机械工程,2005,16(6):479-482
    [47] Daniel Bowman. Effective product platform planning in the front end. In :product platform and product family design. Springer Science+BusinessMedia, Inc.:2006
    [48] Krishnan V, Ulrich K.Product decision: A review of the literature. Management Science, 2001,47(1):1-21
    [49] Jaeil Park. Methods for incorporating cost information into platform-based product development [PhD dissertation]. Pennsylvania: Pennsylvania State University, 2005
    [50] Du Xuehong, Jiao Jianxin, Tseng Mitchell M. Architecture of Product Family: Fundamentals and Methodology. Concurrent Engineering: Research and Application, 2001,19(4): 309-325
    [51] Newcomb P J, Bras B, Rosen D W. Implications of modularity on product design for the life cycle. In: ASME design engineering technical conferences, DETC96/DTM-1516, Irvine, CA,1996
    [52] Erlandsson A, Erixon G, Ostgren B. Productmodules the link between QFD and DFA? The International Forum on Product Design for Manufacture and Assembly, Newport, RI,1992
    [53] Erixon G., Ostgren, B. Synthesis and evaluation tool for modular designs. In: International conference on engineering design. Hague, Netherlands,1993: 898-905
    [54] Yu T L,Yassine A A, Goldberg D E. Agenetic algorithm for developing modular product architectures. In: Proceedings of ASME design engineering technical conferences, Chicago, Illinois, 2003: DETC2003/DTM-48657
    [55] Malmstr?m J, Malmqvist J. Tradeoff analysis in product structures: A case study at Celsius Aerotech. In: Proceedings of NordDesign’98, Stockholm, 1998:187-196
    [56] Stone R B, Wood K L, Crawford R H. A heuristic method for identifying modules for product architectures. Design Studies,2000, 21(1), 5-31
    [57] Salhieh S M, Kamrani A K. Macro level product development using design for modularity. Robotics and Computer Integrated-Manufacturing, 1999,15(11), 319-329.
    [58] Otto K, Gonzalez-Zugasti J, Dahmus J. Modular product architecture. In:Proceedings of ASME design engineering technical conferences, Baltimore, MD,2000: DETC2000/DTM-4565
    [59] Gu P, Sosale S. Product modularization for life cycle engineering. Robotics and Computer Integrated Manufacturing 1999(15), 387-401
    [60] Pimmler T U, Eppinger S D. Integration analysis of product decompositions. In: Proceedings of ASME Design Theory and Methodology Conference,1994,9: 1-9
    [61] Nanda J, Simpson T W, Kumara S R T, etc. A methodology for product family ontology development using formal concept analysis and Web ontologylanguage. Journal of Computing and Information Science in Engineering, 2006,6: 103-113
    [62] Park J. Methods for incorporating cost information into platform-based product development[PhD dissertation]. Pennsylvania:Pennsylvania State University, 2005
    [63] Hernandez G. Platform design for customizable products as a problem of access in a geometric space[PhD dissertation]. Atlanta: Georgia Institute of Technology, 2001
    [64]何陈棋,谭建荣,张树有等,基于本体论和知识规则的大批量定制配置设计技术研究,2004,15(9):783-791
    [65]车君华,谭建荣,冯毅雄等,产品配置设计的多层次映射求解模型研究,中国机械工程,2006,17(8):849-853
    [66]王新,谭建荣,孙卫红,基于实例的需求产品配置技术研究,中国机械工程,2006,17(2):146-151
    [67]冯毅雄,谭建荣,郑兵,基于连接语义的概念结构建模方法研究,浙江大学学报,2006,40(2):221-225
    [68]王爱民,孟明辰,黄靖远,基于设计结构矩阵的模块化产品族设计方法研究,计算机集成制造系统-CIMS,2003,9(3):214-219
    [69]孟祥慧,蒋祖华,面向大批量定制的可配置产品族模型及其规划,计算机集成制造系统,2006,12(11):1755-1759
    [70] Simpson T. Method for optimizing product platforms and product familes. In :product platform and product family design. Springer Science+Business Media, Inc.:2006
    [71] Nelson S A II, Parkinson M B, Papalambros P Y. Multicriteria optimization in product platform design, ASME Journal of Mechanical Design, 2001,123(2): 199-204
    [72] Fellini R, Kokkolaras M, Michelena N, etc al. A sensitivity-based commonality strategy for family products of mild variation,with applcation to automotive body structures. 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization,Atlanta, GA, AIAA, AIAA-2002-5610
    [73] Dai Z H, Scott M J. Product platform design through sensitivity analysis and cluster analysis. Journal of Intelligent Manufacturing ,2007,18:97-113
    [74] Dai Z H. Robust Product family design[PhD dissertation]. Chicago: university of Illinois, 2005
    [75] Ninan J A. A platform cascading method for scale based product family design [PhD dissertation]. Norman: University of Oklahoma,2007
    [76] Simpson T W , Chen W U. Use of the robust concept exploration method to faciliate the design of a family of Products. In: Roy U, Usher J M, Parsaei HR( Eds.), Simulataneous Engineering: Methodologies and Applications, Amsterdam, Gordon & Breach Science Publishers, 1999:247-278
    [77] Nayak R, Chen W, Simpson T W. A variation-based method for product family design . Endineering Optimization,2002,34(1):65-81
    [78] Sopadang A. Synthesis of product family-based robust design development and analysis[PhD dissertation]. South Carolina, Clemson University, 2001
    [79] Fujita K, Sakaguchi H, Akagi S. Product Variety Deployment and its Optimization under Modular Architecture and Module Commonalization. In: Proceedings of the 1999 ASME Design Engineering Technical Conferences, 1999, Paper No. DETC99/DFM-8923, ASME
    [80] Messac A, Martinez M P, Simpson T W. Effective product family design using physical programming. Engineering Optimization,2002, 34(3), 245-261
    [81] Simpson T W, D’Souza B S,Assesing variable levels of platform commonality within a product family using a multiobjective genetic algorithm. Concurrent Engineering, 2004,12(2), 119-129
    [82] Hernandez G., Simpson T W, Allen, J K, etc al. Robust design of families of products with production modeling and evaluation. ASME Journal of Mechanical Design 2001,123(2), 183-190
    [83]朱斌,江平宇,苏建宁,种基于感性设计的产品平台参数的辨识方法研究,机械工程学报,2004,40(2):87-91
    [84]朱斌,江平宇,龙奕良,产品平台参数的回归规划方法及Web实现,计算机集成制造系统—CIMS,2003,9(12):1067-1071
    [85]邝俊生,江平宇,基于感性工学的产品客户化配置设计,计算机辅助设计与图形学学报,2007,19(2):178-183
    [86]苏建宁,江平宇,朱斌,等,感性工学及其在产品设计中的应用研究,西安交通大学学报,2004,38(1):60-63
    [87]苏建宁,江平宇,李鹤岐等,计算机辅助造型设计支持系统构建方法研究,计算机集成制造系统-CIMS,2003,9(12)专刊:61-64
    [88]吴扬东,面向机械产品族的稳健设计技术研究及其在往复泵中的应用[博士论文],杭州:浙江大学,2008
    [89]李中凯,谭建荣,冯毅雄等,基于多目标遗传算法的可调节变量产品族优化,浙江大学学报(工学版),2008,42(6):1015-1020
    [90]李中凯,谭建荣,冯毅雄,可调节产品族的自底向上优化再设计方法,计算机辅助设计与图形学学报,2009,21(8)
    [91]镇璐,蒋祖华,孟祥慧,基于进化的产品平台参数规划方法,上海交通大学学报,2006,40(5):818-821
    [92] Meyer M H. Revitalise your product lines through continuous platform renewal.Research Technology Management, March–April 1997:17-28
    [93]张曙,分散网络化制造,机械工业出版社,1999
    [94]王艳东,黄克正,刘和山,生长型产品族设计平台,工具技术,2006,(40):27-31
    [95]朱斌,江平宇,面向大批量定制生产的产品族设计技术综述,机械设计,2002,(8):1-4
    [96]顾新建,陈子辰,熊励,我国汽车制造业大规模定制生产模式研究,中国工业经济,2000, (6):37-41
    [97]秦红斌,肖人彬,陈义保等,面向公共产品平台通用化的聚类分析方法研究,计算机辅助设计与图形学学报,2004,16(4):518-522+529
    [98]秦红斌,肖人彬,李仁旺,面向产品族设计的公共产品平台研究,机械与电子,2006(10):21-24
    [99]张米尔,武春友,基于产品平台的产品创新模式,研究与发展管理,2000,12(5):9-11+34
    [100]刘芳,面向大规模定制的产品平台设计理论研究及其软件实现[硕士论文],天津:河北工业大学,2005
    [101]缪小明,徐济超,复杂产品创新:市场结构与企业战略,研究与发展管理,2007,19(1):59-62+71
    [102] Hobday Mike. Product complexity, innovation and industrial organisation. Research Policy, 1998, 26(6):689-710
    [103]桂彬旺,基于模块化的复杂产品系统创新因素与作用路径研究[博士论文],浙江大学,2006
    [104]刘晓冰,王霄,丁向峰等,复杂产品创新过程中的知识管理问题研究,科技进步与对策,2009,26(16):103-106
    [105]柴旭东,李伯虎,熊光楞等,复杂产品协同仿真平台的研究与实现,计算机集成制造系统—CIMS,2002,8(7):580-584
    [106] Taguchi G, Clausing D. Robust Quality, Harvard Business Review,1990, 68(1-2) : 65-75
    [107] Phadke M S. Quality Engineering Using Robust Design. Englewood Cliffs, New Jesery : Prentice Hall, 1989
    [108] Kackar R N. Off-line quality control, parameter design, and the Taguchi method. Journal of Quality Technology, 1985, 17: 176-188
    [109] Nair V N, Taguchi’s parameter design: A panel discussion, Technometrics, 1992,34: 127-161
    [110] Nair V N, Pregibon D, Discussion of“Signal-to-noise ratios, performance criteria, and transformations”.Technometrics, 1988,30: 24-30
    [111] Box, G. E P, Signal-to-noise ratios,performance criteria, and transformations (with discussion), Technometrics, 1988, 30(1):1-40
    [112] Lin D J, Tu W Z, Dual response surface optimization, Journal of Quality Technology, 1995, 27(1): 34-38
    [113] Goli T N. Taguchi methods: some technical , cultural , pedagogical perspective. Quality and Reliability Engineering International ,1993 ,9 :185-202
    [114] Chen Wei , Lewis K A. Robust design approach for achieving flexibility in multidisciplinary design. AIAA Journal , 1999 , 37(8) :982- 990
    [115] Ouo K N, Antonsson E K. Extensions to Taguchi method of product design, Journal of Mechnical Design , 1993 ,115 :3-13
    [116]田口玄一,试验设计法(魏锡禄,王世芳译),北京:机械工业出版社,1987
    [117]韩之俊,三次设计,北京:机械工业出版社,1992
    [118]陈立周,稳健设计,北京:机械工业出版社,2000
    [119] Shoemake A C , Tsui K-L , Wu C F J. Economical experimentation methods for robust design. Technometrics , 1991 ,33 (4) :415-421
    [120] Tong L I, Su C T. Optimizing multi - response problems in the taguchi method by multiple attribute design making, Quality and Reliability Engineering International , 1997 ,13 :25-34
    [121] Myers R H. Response surface methodology in quality improvement . Communications in Statistics - Theory and Method ,1991 ,20 :156-476
    [122] Vining G G, Myers R H. Combining taguchi and response surface philosophies: A dual response approach. Journal of Qualify.Technology,1990, 22(1):38-45
    [123] Pregibon D. Review of generalized linear models. The Annuals of Statistics, 1984,12(4):1589-1596
    [124] Michael W, Siddall J N. The optimization problem with optimal tolerance assignment and full acceptance. Journal of Mechnical Design, 1981, 103 : 842-848
    [125] Bates R A , Wynn M P . Toleranceing and optimization for model- based robust engineering design, Quality and Reliability Engineering International , 1996 ,12 :119-127
    [126] Kusiak A, Feng C X. Robust tolerance design for quality. Journal of Engineering for Industry, 1996 ,118 :166-169
    [127]陈立周,翁海珊等,基于随机模型的产品质量设计原理与方法,工程设计,1995,(4):12-16
    [128] Belegundu A D , Zhang S. Robustness of through minimum sensitivity. Journal of Mechnical Design, 1992, 114(6): 213-217
    [129]张义民,张旭方,黄贤振,多失效模式机械零部件可靠性稳健设计,中国机械工程,2009,20(2):142-149
    [130]陈立周,基于质量-成本模型的稳健优化设计-面向21世纪的工程设计.北京:人民交通出版社,1998
    [131]曹衍龙,面向制造环境的公差稳健设计方法与技术的研究[博士论文],浙江大学,2003
    [132] Dong Z, Hu W, Xue D. New production cost - tolerance models for tolerance synthesis. Journal of Eng. Industry, 1994, 116: 199~201
    [133]陈立周,稳健设计,北京:机械工业出版社, 2000
    [134]陈立周,翁海珊,工程稳健优化设计,机械设计,1998,8:6-9
    [135] Tzyy-Shuh Chang and Allen C. Ward. Conceptual Robustness in Simultaneous Engineering: An Extension of Taguchi's Parameter Design. Research in Engineering Design (1994) 6:211-222
    [136] Chang T S, Ward A C. Conceptual Robustness in Simultaneous Engineering: A Formulation in Continuous Spaces. Research in Engineering Design, 1995,7: 67-85
    [137] Ericsson A, Erixon G. Controlling design variants: Modular product platforms. New York,NY: ASME Press,1999
    [138] Ulrich K T, Eppinger S D. Product Design and Development, New York, NY: McGraw-Hill(2nd ed),2000
    [139] Stone R B. Towards a Theory of Modular Design [PhD Dissertation]. Austin: The University of Texas at Austin, 1997
    [140] Zamirowski E J, Otto K N. Identifying Product portfolio architecture modularity using function and variety heuristics. In: Thurson D (ed), Proceedings of DETC/DTM’99, Las Vegas, Nevada, 1999
    [141] H?ltt? K, Salonen M. Comparing three different modularity methods. In: Proceedings of ASME design engineering technical conferences, , Chicago, IL, 2003, DETC2003/DTM-48649
    [142] Erixon G, Yxkull A V, Arnstr?m A. Modularity-the basis for product and factory reengineering. Annal of the CIRP, 1996, 45 (1) :1-4
    [143] Blackenfelt M. Managing complexity by product modularisation [PhD Dissertation]. Sweden: Royal Institute of Technology, 2001
    [144] Kusiak A. Engineering Design-product, processes, and systems. New York :Academic Press, 1999
    [145] Jiao J X. Design for Mass Customization by Developing Product Family Architecture [PhD Dissertation]. Hong Kong: Hong Kong University of Science and Technology, 1998
    [146] Otto K N, Wood K L.产品设计(译),北京:电子工业出版社,2005:212-225
    [147] Gonzalez-Zugasti J P, Otto K N, Baker J D. A Method for Architecting Product platforms. Research in Engineering Design, 2000(12): 61-72
    [148] Jeffrey B Dahmus, Javier P Gonzalez-Zugasti, Kevin N Otto. Modular Product Architecture. Design Studies,2001(22): 409-424
    [149] Wood K L, Otto K N. Product Evolution: A Reverse Engineering and Redesign Methodology. Journal of Research in Engineering Design, 1998, (10): 226-243
    [150] Holtta K, Otto K N. Incorporating design effort complexity measures in product architectural Design and Assessment. Design Studies, 2005, 26(5): 445-564
    [151] Otto K N. Measurement Analysis of Product Design Methods. Research in Engineering Design, 1995, 7(2): 86-101
    [152]江屏,基于公理设计的产品族设计原理及实现方法研究[博士论文],天津:河北工业大学,2006
    [153] Siddique Z,Rosen D W. Product platform design: a graph grammar approach. In: Proceedings of ASME Design Engineering Technical Conferences, Las Vegas, Nevada,1999,DETC99/DTM-8762
    [154]谢延敏,基于Kriging模型和灰色关联分析的板料成形工艺稳健优化设计研究[博士论文],上海交通大学,2007
    [155] Box G E P, Wilson K B, On the Experimental Attainment of Optimum Conditions. Journal of the Royal Statistical Society, 1951,l(1), Series B, 13:1-45
    [156] Hill W J, Hunter W G., A review of response surface methodology: A literature review. Technomitics, 1965, 8:571-590
    [157] Vinning G.G., Schaub D, Experimental designs for estimating both mean and variance functions. Journal of Quality Technology, 1996, 28(2): 34-38
    [158] WuJeff C F, Hamada M. Experiments Planning, Analysis, and Parameter Design Optimization. New York: John Wiley & Sons, 2003
    [159] Simpson T W, Mauery T M, Korte J J, etc. Kriging metamodels for global approximation in simulation-based multidisciplinary design optimization. AIAA Journal, 2001,39(12):2233-2241
    [160] Jin R, Chen W, Simpson T W, Comparative Studies of Metamodeling Techniques Under Multiple Modeling Criteria. Structural and Multidisciplinary Optimization, 2001, 23(1), 1-13
    [161] Rijpkema J J M, Etman L F P, Schoofs A J G.. Use of Design Sensitivity Information in Response Surface and Kriging Metamodels. Optimization and Engineering, 2001,2: 469–484,
    [162] Wang G. G, Shan S. Review of metamodeling techniques in support of engineering design optimization. Journal of Mechanical design, 2007,129 (4): 370-380
    [163] Clarke S M, Griebsch J H, Simpson T W. Analysis of support vector regression for approximation of complex engineering analyses. Journal of Mechanical Design, 2005(127): 1077-1087
    [164]贾建东,姚卫星,吴德海,飞行器多学科优化设计技术概论,航空科学技术,2005,6:21-25
    [165] Chen W, Allen J K, Mavris D, etc. A Concept Exploration Method for Determining Robust Top-Level Specifications, Engineering Optimization, 1997, 26:137-158
    [166] Nishino T, Nagamachi M, Tanaka H. Variable precision bayesian rough set model and its application to Kansei Engineering. In: Transactions on Rough Sets V(International Journal of Rough Set Society), LNCS4100, Springer, 2006, 190-206
    [167] Nagamachi M. Kansei engineering as a powerful consumer-oriented technology for product development. Applied ergonomics, 2002,33: 289-294
    [168] Nagamachi M. Kansei Engineering: A new ergonomics consumer-oriented technology for product development, International Journal of Industrial Ergonomics, 1995, 15: 3-11
    [169]赵有,六西格玛设计中顾客需求分析关键技术研究[博士论文],天津天津大学,2007
    [170] Tseng M M,Jiao J X. Computer-aided requeriment management for product definitoin: A methodology and implementation. Conucrrent Engineering Reserch Application, 1998,6(2):145-160
    [171] Huage P L, Staufffer L A. A method for elieiting knowledge form customers. Desing and Methodology, 1993, 53,:73-81
    [172] Yan W,Chen C H,Khoo L P. A radical basis function neural network multicultural factors evaluation engine for product concept development. Expert system, 2001, 8(5): 219-232
    [173] Chen C H,Khoo L P,Yan W. A strategy for acquiring customer requirement patterns using laddering technique and ART2 neural network. Advanced Engineering Informatics, 2002, 16(3): 229-240
    [174]李延来,基于粗糙集的产品规划质量屋构建研究[博士论文],西安:西安交通大学,2006
    [175] Satty T L. The analytic hierarchy process. New York, NY: McGraw-Hill, 1980
    [176]肖峻,王成山,周敏,基于区间层次分析法的城市电网规划综合评判决策.中国电机工程学报,2004,24(4):50-57
    [177]王钦,文福拴,刘敏,易俗,基于模糊集理论和层次分析法的电力市场综合评价,电力系统自动化,2009,33(7):32-37
    [178]陈欣,模糊层次分析法在方案优选方面的应用,计算机工程与设计,2004,25(10):1847-1849
    [179]刘兴堂,吴晓燕,现代系统建模与仿真技术[M],西安:西安工业大学出版社,2001
    [180] Xu Z. On consistency of the weighted geometric mean complex judgement matrix in AHP. European Journal of Operational Research,2000,126(3): 683-687
    [181] Matsuda A. A neural network model for the decision making process based on AHP. In: Proceedings of International Joint Conference on Neural Networks, Vancouver, BC,Canada, 2006:1421-1426
    [182] Saaty T L. Decision-making with the AHP: Why is the principal eigenvector necessary [J].European Journal of Operational Research,2003,145(1):85-91
    [183] Saaty T L. Principles of the Analytical Hierarchy Process. London: Springer-Verlag,1987
    [184] Saaty T L. Negative priorities in the analytic hierarchy process. Math and Computer Modelling, 2003,37(1):1063-1075
    [185]鲁智勇,张磊,唐朝京,基于预排序和上取整函数的AHP判断矩阵生成算法,电子学报,2009,36(6):1247-1251
    [186] Chna L K, Kao H P, Wu M L. Rating the important needs of customer needs in quality function deployment by fuzzy and entropy methods. International Journal of production Research, 1999, 37(11):2499-2515
    [187] Chna L K, Wu M L. Asystematic approach quality function deployment with a full illusrtative exmaple.Omega,2005,33(1):119-139
    [188] Kwong C K, Bai H. A fuzzy AHP approach to the determination of importance weights of customer requirements in quality function deployment. Journal of intelligent manufacturing, 2002,13(1):367-377
    [189]解建喜,宋笔锋,刘东霞,飞机顶层设计中的模糊质量功能配置方法,机械工程学报,2004,40(9):165-170
    [190] Pawlak Z. Rough sets, International Journal of computer & information sciences 1982, 11 (5): 341-356.
    [191] Yamaguchi D, Li G D, Nagai M. A grey-based rough approximation model for interval data processing. Information Sciences, 2007,177:4727-4744
    [192] Zhai L Y, Khoo L P, Zhong Z W. A rough set based QFD approach to the management of imprecise design information in product development. Advanced Engineering Informatics, 2009, 23: 222-228
    [193] Zhai L Y, Khoo L P, Zhong Z W. A rough set enhanced fuzzy approach to quality function deployment. International Journal of Advanced Manufacturing Technology, 2008, 37:613-624
    [194] Zhai L Y, Khoo L P, Zhong Z W. Design concept evaluation in product development using rough sets and grey relation analysis. Expert Systems with Applications, 2009, 36:7072–7079
    [195] Baylep P, Farrington M, Sharp B, etc. Illustration of six sigma assistance on a design project. Quality Engineering, 2001, 13(3):341-348
    [196] Stone R B, Wood K L and Crawford R H. Using quantitative functional models to develop product architectures. Design Studies, 2000, 21(3):239~260
    [197] Hegge H M H, Wortmann J C. Generic bill-of-material: a new product model. International Journal of Production Economics, 1991, 23: 117-128
    [198] Jiao J X, Tseng M M, Methodology of developing product family architecture for mass customization. Journal of Intelligent Manufacturing, 1999,10(1): 3-20
    [199] Jiao J X, Tseng M M, Ma Q, etc. Generic Bill-of-Materials-and-Operations for high-variety production management. Concurrent Engineering Research & Applications, 2000, 8(4):297-321.
    [200] Romanowski C J, Nagi R. A data mining and graph theoretic approach to building generic bills of materials. In: Proceedings of The 11th industrial engineering research conference, Orlando, FL, 2002
    [201] Romanowski C J, Nagi R. On comparing bills of materials: A similarity/distance measure for unordered trees. In: IEEE Transactions on Systems, Man, and Cybernetics, Part A,2003
    [202] Romanowski C J, Nagi R, Sudit M. Data mining in an engineering design environment: OR applications from graph matching. Computers & Operations Research, 2006,33, (11): 3150-3160
    [203] Li L, Huang G Q, Newman S T. Interweaving genetic programming and genetic algorithm for structural and parametric optimization in adaptive platform product customization. Robotics and Computer-Integrated Manufacturing 2007, 23, 650-658
    [204] Wenyan Zhao, Huangao Zhang, Zhen He, Runhua Tan, Ping Jiang. Improved MRP System of OKP Enterprise Based on Product Platform.In Proceedings of the 4th IEEE International Conference on Management of Innovation and Technology, 2008, 9: 1240-1245
    [205] Scott M J, Antonsson E K, Aggregation Functions for Engineering Design Trade-offs”. Fuzzy Sets and Systems, 1998, 99 (3) :253–264
    [206] Scott M J, Antonsson E K. Using indifference points in engineering decisions. In: Proceedings of the 2000 ASME Design Engineering Technical Conferences & Computers and Information in Engineering Conference, 2000, DETC2000/DTM-14559
    [207]张蕾,张文明,申焱华,偏好函数在稳健设计中的应用,机械强度,2008,30(1):108-111
    [208] Ortega R, Kalyan-Seshu U, Bras B. A decision support model for the life-cycle design of a family of oil filters. In: Proceedings of ASME Design Engineering Technology Conference, 1999, DETC990DAC-8612

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700