6H-SiC-(0001)表面Graphene成核的第一原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
做为未来制备纳电子器件的目前最引人注意的新型纳米材料——单原子层石墨片(graphene),关于它的各类理论和实验的研究已经成为当今国际上凝聚态物理学领域一个新兴的热点问题。这一新型材料的各种可能的应用都要求人们对其制备技术的物理机制在微观尺度上有着更加准确和深刻的认识。本论文主要涉及的是6H-SiC热蒸发外延制备石墨片时,在生长初期石墨片生长机制的核心问题。
     到目前为止,由于实验方法,观测手段的限制,对graphene生长过程的微观机制中的很多问题都没有得到解决。已有的研究给出了多种生长模式,但却没能从原子尺度加以解释说明。本文中,我们采用基于密度泛函理论的第一性原理方法对6H-SiC的( 3×3)R30o重构面吸附碳原子生长石墨片缓冲层的微观过程从原子尺度进行了系统的理论研究。我们对6H-SiC- ( 3×3)R30o吸附graphene的情况进行了讨论。发现graphene下的Sia原子很难被脱附,却能通过两步置换的过程离开衬底。我们又分别对6H-SiC的( 3×3)R30o重构面进行了单个碳原子,单个硅原子,两个碳原子,三个碳原子的吸附性能进行了计算模拟。单个碳原子与单个硅原子的吸附性能的比对中,我们发现碳原子更易于吸附于6H-SiC- ( 3×3)R30o重构面。同时,我们还结合单个至三个碳原子时的吸附性能研究与相应结构下的置换构型研究,并进一步考察其电荷密度特性,发现Si a原子倾向于与外界C原子进行置换。本文找到可能的6H-SiC- ( 3×3)R30o重构面在graphene缓冲层生产过程中如何扮演着模版作用的微观解释。
     另外,针对实验上生长过程中所观测到的在SiC基底的不同区域出现不同生长速度的问题,本文对6H-SiC-(0001)面几种不同的晶体表面进行了比较研究。我们分别考察了它们的几何结构,表面能以及在不同晶面上的吸附作用。为它们对外延制备graphene时所产生的影响进行了分析。计算结果表明6H-SiC-(0001)的6个不同晶体表面S1、S2、S3、S1*、S2*、S3*在几何结构和表面能上存在差异。其中,S1与S1*,S2与S2*,S3与S3*的表面能分别相同。根据表面能的不同,这6类晶体表面可以被分为三组,按表面能由低到高的顺序排列为:S1(S*)Nowadays, graphene as a novel two-dimensional crystal and one of the most promising candidates for the future nano-electronics has attracted intensive theoretical and experimental research attention. It has become a new research focus in the field of international condensed matter physics. Naturally, to realize fully controlled preparation of high quality graphene, as well as future relevant device fabrication, a more accurate and profound understanding of the epeitaxial growth procedure on the micro scale is an essential prerequisite.This thesis deals with the growth mechanism of epitaxial graphene on 6H-SiC-(0001) in the initial stage.
     So far, due to the limit of experimental methods and instruments, restrictions, there are still many problems on the micro-mechanism of graphene growth on 6H-SiC-(0001) which have not been resolved. Some previous studies have given a variety conjecture of the growth mechanism, however, there is not explanation based on atomic scale yet. In this paper, we studied the growth mechanism in the initial stage of epitaxial graphene growth on 6H-SiC-(0001)- ( 3×3)R30oreconstruction surface, employing density functional theory from the atomic scale. We discuss the situation of 6H-SiC- ( 3×3)R30o adsorbing graphene, and find that the Sia atomic is difficult to be desorbed, but able to leave the substrate through the two-step process of substitution, when under the graphene. On the 6H-SiC-(0001)- ( 3×3)R30o reconstruction surface, we find the most stable configuration after adsorption of one, two, and three C adatoms. We also compared the adsorption energy of carbon and silicon adatom. From the results, we find that carbon atom is more easily adsorbed on the reconstruction surface than Si atom. Based on the most stable configurations of C adsorbed reconstruction surface, we further investigated the substitution energy, desorption energy of Sia atom as well as analyzed their charge density difference. We find that Sia atoms are readily substituted by exotic C atoms. The results indicate that the 6H-SiC- ( 3×3)R30o reconstruction surface plays the role of template in the growth process of graphene buffer layer.
     Former experimental researches figure that there are three kinds of adjacent steps with different reaction speeds on the epitaxial graphene growth process. In order to figure out the mechanism of this issue, we study six possibilities of termination of 6H-SiC-(0001) referring as S1、S2、S3、S1*、S2*、S3*. Different nature of all these termination of SiC may determine the epitaxial growth of grapheme on each of them. We compare their geometric structure, electronic structure, surface energy and adsorption energy. We find that S1 and S1 *, S2 and S2*, S3 and S3* have the same surface energy, respectively. According to the different surface energy, these 6 types of crystal surface can be divided into three groups. According to the surface energy from low to high order is: S1 (S*)
引文
[1]. Liu D, Li G, Li J, et al. Spontaneous superlattice formation of ZnO nanocrystals capped with ionic liquid molecules. Chemical Communications[J], 2007,2007(40):4131-4133.
    [2]. Liu D, Li G, Su Y, et al. Highly luminescent ZnO nanocrystals stabilized by ionic-liquid components. Angewandte Chemie[J], 2006,118(44):7530-7533.
    [3]. Gleiter H. Nanocrystalline materials. Progress in Materials Science[J], 1989,33(4):223-315.
    [4]. Feynman R. The man who dared to think small. Science[J], 1991,254(29):1.
    [5]. Webb R, Washburn S, Umbach C, et al. Observation of h/e Aharonov-Bohm oscillations in normal-metal rings. Physical review letters[J], 1985,54(25):2696-2699.
    [6]. Heath J, O’Brien S, Crul R, et al. C60: Buckminsterfullerene. nature[J], 1985,318(6042):162-163.
    [7].张立德,牟季美。纳米材料和结构。北京:科学出版社;2001。
    [8].王世敏,许祖勋,傅晶。纳米材料制备技术。北京:化学:I:业出版社[J],2002,220:24l.
    [9]. Li D, Ping D, Ye H, et al. HREM study of the microstructure in nanocrystalline materials. Materials Letters[J], 1993,18(1-2):29-34.
    [10]. Iijima S. Helical microtubules of graphitic carbon. nature[J], 1991,354(6348):56-58.
    [11]. Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. 1993.
    [12]. Ding J, Yan X, Cao J. Analytical relation of band gaps to both chirality and diameter of single-wall carbon nanotubes. Physical Review B[J], 2002,66(7):073401.
    [13]. Cao J, Yan X, Ding J, et al. Band structures of carbon nanotubes: the sp3s* tight-binding model. Journal of Physics: Condensed Matter[J], 2001,13:L271-L275.
    [14]. Cao J, Yan X, Ding J, et al. Electronic Properties of Single-Walled Carbon Nanotubes. JOURNAL-PHYSICAL SOCIETY OF JAPAN[J], 2002,71(5):1339-1345.
    [15]. Sun L, Xie S, Liu W, et al. Materials: Creating the narrowest carbon nanotubes. nature[J], 2000,403(6768):384.
    [16]. Bachtold A, Strunk C, Nussbaumer T, et al. Aharonov-Bohm oscillations in carbon nanotubes. nature[J], 1999,397(6721):673-675.
    [17]. Peng L, Zhang Z, Xue Z, et al. Stability of carbon nanotubes: how small can they be? Physical review letters[J], 2000,85(15):3249-3252.
    [18]. Novoselov K, Geim A, Morozov S, et al. Electric field effect in atomically thin carbon films. Science[J], 2004,306(5696):666.
    [19]. Novoselov K, Geim A, Morozov S, et al. Two-dimensional gas of massless Dirac fermions in graphene. nature[J], 2005,438(7065):197-200.
    [20]. Tombros N, Jozsa C, Popinciuc M, et al. Electronic spin transport and spin precession insingle graphene layers at room temperature. nature[J], 2007,448(7153):571-574.
    [21]. Ferrari A, Meyer J, Scardaci V, et al. Raman spectrum of graphene and graphene layers. Physical review letters[J], 2006,97(18):187401.
    [22]. Novoselov K, Jiang Z, Zhang Y, et al. Room-temperature quantum Hall effect in graphene. Science[J], 2007,315(5817):1379.
    [23].Wu J, Pisula W, Mullen K. Graphenes as potential material for electronics. Chem Rev[J], 2007,107(3):718-747.
    [24]. Zhang Y, Tan Y, Stormer H, et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene. nature[J], 2005,438(7065):201-204.
    [25]. Novoselov K, Jiang D, Schedin F, et al. Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences[J], 2005,102(30):10451.
    [26]. Berger C, Song Z, Li T, et al. Ultrathin Epitaxial Graphite: 2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics. J Phys Chem B[J], 2004,108:19912-19916.
    [27]. Berger C, Song Z, Li X, et al. Electronic confinement and coherence in patterned epitaxial graphene. Science(Washington)[J], 2006,312(5777):1191-1196.
    [28]. Hibino H, Kageshima H, Maeda F, et al. Microscopic thickness determination of thin graphite films formed on SiC from quantized oscillation in reflectivity of low-energy electrons. Physical Review B[J], 2008,77(7):075413.
    [29]. Forbeaux I, Themlin J, Debever J. Heteroepitaxial graphite on 6H-SiC (0001): Interface formation through conduction-band electronic structure. Physical Review B[J], 1998,58(24):16396-16406.
    [30]. Rutter G, Guisinger N, Crain J, et al. Imaging the interface of epitaxial graphene with silicon carbide via scanning tunneling microscopy. Physical Review B[J], 2007,76(23):235416.
    [31]. Poon S, Chen W, Tok E, et al. Probing epitaxial growth of graphene on silicon carbide by metal decoration. Applied Physics Letters[J], 2008,92:104102.
    [32]. Chen W, Xu H, Liu L, et al. Atomic structure of the 6H-SiC (0 0 0 1) nanomesh. Surface Science[J], 2005,596(1-3):176-186.
    [33]. Emtsev K, Speck F, Seyller T, et al. Interaction, growth, and ordering of epitaxial graphene on SiC {0001} surfaces: A comparative photoelectron spectroscopy study. Physical Review B[J], 2008,77(15):155303.
    [34]. http://wwwinovacaotecnologicacombr/[J].
    [35]. Georgia. Georgia Institute of Technology December[J], 2006.
    [36].杨克武,杨银堂。SiC半导体材料及其器件应用。半导体情报[J],2000,37(002):13-15.
    [37]. Kimoto T, Nishino H, Yoo W, et al. Growth mechanism of 6H‐SiC in step‐controlled epitaxy. Journal of Applied Physics[J], 1993,73:726.
    [38]. Stephen AA, Saddow E. Advances in Silicon Carbide Processing and Applications, Artech House, Inc. 2004.
    [39]. Tairov Y, Tsvetkov V. Investigation of growth processes of ingots of silicon carbide single crystals. Journal of Crystal Growth[J], 1978,43(2):209-212.
    [40]. Starke U, Schardt J, Bernhardt J, et al. Novel reconstruction mechanism for dangling-bond minimization: Combined method surface structure determination of SiC (111)-(3×3). Physical review letters[J], 1998,80(4):758-761.
    [41]. Starke U, Bernhardt J, Schardt J, et al. SiC surface reconstruction: Relevancy of atomic structure for growth technology. Surface Review and Letters[J], 1999,6(6):1129-1142.
    [42]. Porter L, Davis R. A critical review of ohmic and rectifying contacts for silicon carbide. Materials Science and Engineering B[J], 1995,34(2-3):83-105.
    [43]. Lambrecht W, Limpijumnong S, Rashkeev S, et al. Electronic band structure of SiC polytypes: a discussion of theory and experiment. Physica Status Solidi B Basic Research[J], 1997,202:5-34.
    [44]. Harris C, Konstantinov A. Recent developments in SiC device research. Physica Scripta[J], 1999,79:27-31.
    [45]. Heinz K, Bernhardt J, Schardt J, et al. Functional surface reconstructions of hexagonal SiC. Journal of Physics: Condensed Matter[J], 2004,16:S1705.
    [46]. Sabisch M, Krüger P, Pollmann J. Ab initio calculations of structural and electronic properties of 6H-SiC (0001) surfaces. Physical Review B[J], 1997,55(16):10561-10570.
    [47]. Xie X, Yakolev N, Loh K. Distinguishing the H3 and T4 silicon adatom model on 6H–SiC (0001)√3×√3R30°reconstruction by dynamic rocking beam approach. The Journal of Chemical Physics[J], 2003,119:1789.
    [48]. Starke U, Bram C, Steiner P, et al. The (0001)-surface of 6H---SiC: morphology, composition and structure. Applied Surface Science[J], 1995,89(2):175-185.
    [49]. Simon L, Bischoff J, Kubler L. X-ray photoelectron characterization of 6H-SiC (0001). Physical Review B[J], 1999,60(16):11653-11660.
    [50]. Forbeaux I, Themlin J, Charrier A, et al. Solid-state graphitization mechanisms of silicon carbide 6H-SiC polar faces. Applied Surface Science[J], 2000,162:406-412.
    [51]. Johansson L, Owman F, M rtensson P. High-resolution core-level study of 6H-SiC (0001). Physical Review B[J], 1996,53(20):13793-13802.
    [52]. Van Bommel A, Crombeen J, Van Tooren A. LEED and Auger electron observations of the SiC (0001) surface. Surface Science[J], 1975,48(2):463-472.
    [53].Hass J, Heer W, Conrad E. The growth and morphology of epitaxial multilayer graphene. Journal of Physics: Condensed Matter[J], 2008,20:323202.
    [54]. Seyller T, Emtsev K, Gao K, et al. Structural and electronic properties of graphite layers grown on SiC (0 0 0 1). Surface Science[J], 2006,600(18):3906-3911.
    [55]. Riedl C, Starke U, Bernhardt J, et al. Structural properties of the graphene-SiC (0001) interface as a key for the preparation of homogeneous large-terrace graphene surfaces. Phys Rev B[J], 2007,76:245406.
    [56]. Hass J, Feng R, Li T, et al. Highly ordered graphene for two dimensional electronics. Applied Physics Letters[J], 2006,89:143106-143108.
    [57]. Hupalo M, Conrad E, Tringides M. Growth mechanism for epitaxial graphene on vicinal 6H-SiC (0001) surfaces: A scanning tunneling microscopy study. Physical Review B[J],2009,80(4):41401-041404.
    [58]. Born M, Huang K. Dynamical theory of crystal lattices: Oxford University Press, USA; 1988.
    [59]. Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev[J], 1964,136(3B):B864-B871.
    [60]. Kohn W, Sham L. Self-consistent equations including exchange and correlation effects. Phys Rev[J], 1965,140(4A):A1133-A1138.
    [61]. Xu X, Goddard W. The X3LYP extended density functional for accurate descriptions of nonbond interactions, spin states, and thermochemical properties. Proceedings of the National Academy of Sciences of the United States of America[J], 2004,101(9):2673.
    [62]. Bachelet G, Hamann D, Schlüter M. Pseudopotentials that work: From H to Pu. Physical Review B[J], 1982,26(8):4199-4228.
    [63]. Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science[J], 1996,6(1):15-50.
    [64]. Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B[J], 1996,54(16):11169-11186.
    [65]. Hafner J. Ab-initio simulations of materials using VASP: Density-functional theory and beyond. Journal of Computational Chemistry[J], 2008,29(13):2044-2078.
    [66]. Schneider J, Sun Z, Mertens R, et al. Ab initio calculations and experimental determination of the structure of Cr2AlC. Solid State Communications[J], 2004,130(7):445-449.
    [67]. Wang Y, Curtarolo S, Jiang C, et al. Ab initio lattice stability in comparison with CALPHAD lattice stability. Calphad[J], 2004,28(1):79-90.
    [68]. Domain C, Becquart C. Ab initio calculations of defects in Fe and dilute Fe-Cu alloys. Physical Review B[J], 2001,65(2):24103.
    [69]. Hirosaki N, Ogata S, Kocer C. Ab initio calculation of the crystal structure of the lanthanide Ln2O3 sesquioxides. Journal of Alloys and Compounds[J], 2003,351(1-2):31-34.
    [70]. Woodward C, Rao S. Flexible ab initio boundary conditions: simulating isolated dislocations in bcc Mo and Ta. Physical review letters[J], 2002,88(21):216402.
    [71]. Raybaud P, Hafner J, Kresse G, et al. Ab initio density functional studies of transition-metal sulphides: II. Electronic structure. Journal of Physics: Condensed Matter[J], 1997,9:11107-11140.
    [72]. Barnard A, Russo S, Snook I. Ab initio modelling of the stability of nanocrystalline diamond morphologies. Philosophical Magazine Letters[J], 2003,83(1):39-45.
    [73]. Son Y, Cohen M, Louie S. Half-metallic graphene nanoribbons. nature[J], 2006,444(7117):347-349.
    [74]. Lomeda J, Doyle C, Kosynkin D, et al. Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. J Am Chem Soc[J], 2008,130(48):16201-16206.
    [75]. Stankovich S, Dikin D, Piner R, et al. Synthesis of graphene-based nanosheets viachemical reduction of exfoliated graphite oxide. Carbon[J], 2007,45(7):1558-1565.
    [76]. Coati A, Sauvage-Simkin M, Garreau Y, et al. (sqrt [3]×sqrt [3]) R30°reconstruction of the 6H-SiC (0001) surface: A simple T4 Si adatom structure solved by grazing-incidence x-ray diffraction. Physical Review B[J], 1999,59(19):12224-12227.
    [77]. Virojanadara C, Syv jarvi M, Yakimova R, et al. Homogeneous large-area graphene layer growth on 6H-SiC (0001). Physical Review B[J], 2008,78(24):245403.
    [78]. Perdew J, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Physical review letters[J], 1996,77(18):3865-3868.
    [79].Varchon F, Feng R, Hass J, et al. Electronic structure of epitaxial graphene layers on SiC: effect of the substrate. Physical review letters[J], 2007,99(12):126805.
    [80]. Mattausch A, Pankratov O. Ab initio study of graphene on SiC. Physical review letters[J], 2007,99(7):76802.
    [81].唐超,吉璐,孟利军,等。6H-SiC (000-1)表面graphene逐层生长的分子动力学研究.物理学报[J], 2009,11。
    [82]. Righi M, Pignedoli C, Di Felice R, et al. Ab initio simulations of homoepitaxial SiC growth. Physical review letters[J], 2003,91(13):136101.
    [83]. Righi M, Pignedoli C, Di Felice R, et al. Combined ab initio and kinetic Monte Carlo simulations of C diffusion on the sqrt [3]×sqrt [3]β-SiC (111) surface. Physical Review B[J], 2005,71(7):075303.
    [84]. Borovikov V, Zangwill A. Step bunching of vicinal 6H-SiC {0001} surfaces. Physical Review B[J], 2009,79(24):245413.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700