网络化运动控制系统多轴协同关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
运动控制是现代机电设备的重要支柱,多个运动轴之间高精度协同运动是实现复杂的设备功能、提高产品质量的关键。随着现代化设备向高速度、高精度方向飞速发展,对运动控制提出了更高的要求。运动控制网络的应用,为多轴运动控制系统带来了巨大便利,同时为多轴之间实现高速度、高精度协同运动带来了新的挑战。
     为了应对这种挑战,本文针对提高网络化运动控制系统多轴协同运动精度的相关问题展开研究:
     首先,网络延时对运动控制系统的性能具有重要影响,研究网络延时对控制系统的作用特点是解决多轴同步问题的基础。
     通过对网络延时产生机理及其特点的分析,提出一种基于统计规律的网络延时模型,将网络延时划分为延时期望τ_D和延时抖动τ_J,两部分,其中τ_D对应网络延时的数学期望,而将τ_J,视为0均值的有界随机干扰。
     从传递函数的角度,分析控制通道网络延时对控制信号的影响,进而将网络与控制对象结合在一起,建立了任意延时情况下二者的离散时间模型,为分析网络延时对控制系统的影响提供了理论依据。
     针对运动控制网络的通信延时普遍小于一个控制周期的情况,基于网络延时统计模型的相关定义,建立了一种新的离散时间模型,证明网络延时的存在使得对象离散状态方程的实际输入变为u(k)、u(k-1)和u(k-1)-u(k)三项组合的形式,系数矩阵分别为B~0,B~1和ΔB,其中B~0,B~1的值与τ_D相关,视为已知量;ΔB的值与τ_J相关,为未知量,与u(k-1)-u(k)一起视为干扰处理。该模型为通过网络延时补偿和干扰抑制措施提高网络化运动控制系统性能提供了理论依据。
     针对多轴运动控制系统对同步性能的要求,对网络化控制系统的多节点同步方式进行研究,对节点驱动方式、信号采样方式以及反馈通道延时等问题进行讨论,建立了网络化多轴运动控制系统闭环控制的增广状态方程,为控制系统的分析和综合提供了基础。
     其次,网络节点之间的同步精度对于提高多轴协同运动精度至关重要,采用网络延时补偿是提高节点同步精度的有效措施。
     网络化运动控制系统中,运动控制器与各执行器节点、传感器节点之间精密时间同步是实现多轴协同运动的基础。根据τ_D和τ_J的不同特点,提出了一种新的方法:通过对τ_D实旌补偿以进一步提高网络节点同步精度,而将τ_J的影响视为干扰,通过干扰抑制措施予以克服。
     针对以上目的,基于遗传算法设计了网络延时辨识器,为大于一个周期的网络延迟时间提供了在线辨识方法,仿真实验证明该延时辨识器具有非常高的辨识精度。对网络延时的精密测量方法进行探讨,基于数理统计的相关理论对延时测量数据进行处理,为延时补偿的实施提供了基础。
     对网络延时补偿的方法进行了研究,提出了基于定时器的延时补偿策略。通过延时补偿,控制器节点到各执行器和传感器节点的网络延时将具有相同的数学期望τ_D,从而进一步提高节点之间的同步精度,并简化运动控制模型。
     网络延时抖动τ_J无法精确获得,在对象离散模型中将抖动对系统造成的影响视为附加干扰,基于灰色系统理论设计了灰色辨识器,对该干扰项进行辨识。仿真实验证明,基于灰色辨识器的估计结果,采用补偿控制可以对该干扰项实现良好的抑制。
     为了确保网络化多轴运动控制系统中反馈报文的延时满足建模条件,设计了一个RBF神经网络预估器,对反馈通道上超过规定时间期限的信息进行预估,将延迟时间不确定的反馈信息转变为时间确定、误差有界的估计信息,确保反馈报文延时在设定的时间范围内。仿真实验证明该预估器具有良好的预估精度和多步预估能力。
     再次,网络化运动控制系统中,多轴协同运动精度不但决定于运动控制网络节点之间的同步精度,还与电机驱动装置、运动执行机构的动态特性以及各轴之间的参数匹配状况密切相关,因此,还需要从控制算法的角度对多轴协同运动控制进行深入研究。
     提高单轴驱动系统的跟随精度可以间接提高多轴协同运动精度,针对这一目标,提出了一种用于交流伺服系统的自适应模糊控制算法,结合模糊控制的优点和自适应控制的学习能力,具有较强的抗参数摄动和抗扰动能力,仿真证明该算法具有较好的跟随精度。
     耦合控制是提高多轴系统同步运动精度、改善系统抗扰能力的有效控制方法。针对多轴耦合控制,提出了一种基于虚拟参考轴的同步控制算法,采用滑模控制理论设计了多轴耦合控制器,实现多轴速度和位置耦合控制。对控制算法的收敛性和稳定性进行了严密的数学证明,采用仿真实验验证了该控制算法的有效性。
     在数控系统中,交叉耦合控制算法可以有效地提高轮廓加工精度,但是复杂曲线的轮廓误差估计十分困难,严重制约了交叉耦合控制的应用。针对现代数控系统的输出特点,提出了一种新的空间轮廓误差估计算法,采用数控插补器输出的“刀位点”计算轮廓误差矢量,不需要被加工曲线的数学模型,计算精度稳定,适用于任何空间曲线。
     基于上述轮廓误差估计模型,设计了一个由轮廓闭环控制和位置闭环控制构成的“双闭环”控制系统,对伺服系统中每个单轴的位置以及合成运动的轮廓同时实施闭环控制,有效地提高了多轴位置协同运动精度。仿真实验证明,该控制器在不改变单轴伺服系统位置跟随精度的情况下,可以明显地提高轮廓精度,尤其在各伺服轴参数失配较大的情况下,对轮廓精度的改善十分明显。
     最后,伺服系统的响应速度对于改善多轴系统的动态协同性能意义重大,直接转矩控制(DTC)可以显著提高电机的转矩响应速度和动态性能,但是存在转矩脉动较大的问题。本文基于永磁同步电机电磁转矩与转矩角之间的函数关系,提出了一种新的直接转矩控制算法,将转矩误差直接映射为三相电压源逆变器功率开关的导通时间,实现任意电压空间矢量的输出,从而产生圆形的定子磁链矢量轨迹,达到减小转矩脉动、提高转矩输出精度的目的。该算法计算简单,避免了传统DTC和SVM(空间矢量调制)控制中复杂的扇区判别和逻辑运算。仿真实验证明该算法可以达到优于±0.5%的转矩纹波。
     由于转矩-转矩角之间的映射是一种非线性关系,这种非线性特征使得参数固定的普通转矩调节器不能在整个转矩工作范围内获得稳定一致的控制精度,因此基于RBF神经网络设计了一个参数自整定PI转矩调节器。仿真结果表明,当电机输出转矩在0~T_(emax)范围内变化时,使用该调节器可以获得比较稳定的转矩控制精度。
Motion control(MC)is an important pillar of modern electro-mechanical equipments.The coordinated motion(CM)for multi-axis is the key elements for equipments to implement complicate functions and to improve product quality.With the rapid progress of the modern equipments in the direction of super-speed and high-accuracy,firmer requirements are proposed for motion control systems(MCS).The wide application of networked motion control systems(NMCS)not only brings great convenience for multi-axis MCS,but also puts forward challenges for CM with high speed and high precision.
     To deal with the challenges NMCS faced,this thesis focuses its goal on the relative problems for multi-axis NMCS to improve its CM precision.
     Firstly,since network time delay(NTD)has great influence on the performance of NMCS,researching on its action characteristics of NTD to control systems is the basis to solve multi-axis synchronization problems.
     Based on the analysis of NTD arising mechanism and its characteristics, a NTD model is presented with statistics principle,which divided the NTD into two parts of delay time expectationτ_D and delay time jitterτ_J.Whereτ_D is the mathematics expectation of NTD andτ_J is considered as bounded stochastic disturbance with zero mean value.
     From the perspective of transfer function,the influence of NTD on control signal is analyzed,and by combining together networks with control target,the discrete time mathematical model between them is built on the condition of time delay randomly,which provided a theoretical basis to analyze the influence of NTD on control systems.
     Aiming at the instance that the communication delay is less than a control cycle of motion control network,based on the relative definition about network delay statistics model,a new discrete time model is presented,which proved that the being of network delay changes the discrete state equation's real inputs into three items combination of u(k),u(k-1)and u(k-1)-u(k), and the coefficient matrices are B~0,B~1 and△B respectively.Where the value of B~0,B~1 is correlated withτ_D and can be considered as known parameters;△B is correlated withτ_J and is an unknown parameter,and can be processed with u(k-1)-u(k)simultaneously as disturbance.The model provides a theoretical basis to improve the performance of NMCS by compensation of network delay and interference suppression.
     Aiming at the synchronized performance of multi-axis NMCS,the multi-node synchronization mode of NCSs is studied and the node driven mode,signal sampling mode and time delay of feedback channel are discussed. The extended state equation for closed loop multi-axis NMCS is presented, which built a foundation for analysis and synthesis of the control systems.
     Secondly,the network nodes synchronized precision plays an important role in the improving of multi-axis synchronized motion accuracy,and it is an effective way to improve node synchronization precision by network time delay compensation.
     In NMCS,precise time synchronization among motion controller node, actuator nodes and sensor nodes is the basis for multi-axis synchronization. According to the different characteristics ofτ_D andτ_J,a new method is proposed.The synchronization precision of network nodes is further improved by compensation ofτ_D,while considers the influence ofτ_J as a disturbance and eliminates it by disturbance suppression.
     According to the objective above mentioned,a network delay identifier is designed based on genetic algorithm,which presents an online identification method for networks with time delay greater than one cycle,and the simulation experiments demonstrated that the identifier provides very high identification precision.The network time delay precise measurement is studied,the measurement data of time delay is processed based on the correlative theory of mathematical statistic,which provided a basis for the implementation of time delay compensation.
     Through researching of the network time delay compensation method,a compensation strategy based on timer is presented.By the method of delay compensation,the network delay from controller node to actuators and sensor nodes will have the same mathematic expectationτ_D and it will improve the synchronization precision further and simplify the motion control model.
     The network time delay jitterτ_J cannot be obtained precisely.In the object discrete model,the influence of jitter on control systems is considered as an attached disturbance,and a grey estimator is worked out based on grey system theory,which is used to identify the disturbance item.The simulation result proved that the disturbance item can be restrained very well by compensation control based on the identified results of the grey estimator.
     In order to ensure the satisfaction of modeling condition of the feedback message's delay in networked multi-axis control systems,a RBF neural network predictor is designed.The information in feedback channels that exceed the scheduled time deadline is predicted and the feedback information with uncertain time delay are changed into estimated information with determined time and bounded error by the predictor,to ensure the delay of feedback messages in their setting time range.The simulation showed that the predictor had favorable prediction precision and multi-step prediction ability.
     Furthermore,in networked motion control systems,the multi-axis coordinated motion precision are not only determined by the time synchronization precision of each network node but also closely related to the dynamic characteristics of motor driven device and motion executing mechanism and the parameters matching status among axis.Therefore,the multi-axis synchronized motion control need to be further studied on the side of control algorithms.
     The improvement of tracking accuracy for single-axis driven system can improve the coordinated motion accuracy for multi-axis indirectly.According to the purpose,a self-adaptive fuzzy control algorithm for AC servo system is proposed,which combines with the merits of fuzzy control and the study ability of self-adaptive control system,and has strong ability of withstanding parameter perturbation and restraining disturbance.Simulation results demonstrated that the algorithm gives a good tracking precision.
     Coupling control is an effective control method for improving multi-axis systems' coordinated motion precision and disturbances rejection ability. Aiming at the multi-axis coupling control,a novel coordinated control algorithms based on virtual reference axis is presented.A multi-axis coupling controller with sliding model control theory is designed to achieve multi-axis velocity and position coupling control.The algorithm's convergence and stability is justified rigorously with mathematics,and the simulation results show the effectiveness of the control algorithm.
     In computer numerical control(CNC)systems,the cross-coupled control algorithm can improve the contour accuracy effectively.But it is very difficult to estimate the contour errors of complex curves and that restricted the application of cross-coupled control algorithm seriously.According to the output characteristics of modern CNC,a new space contour error algorithm is established,which uses the "cutter locations" outputted by interpolator of numerical controller to computing the contour error vectors and no mathematical model of the machined curve is needed.The calculating precision of the model is stable and it can be applied to any space curve.
     Based on the contour errors calculating model above mentioned,a double closed loops controller consisted of contour loop and position loop is designed, to implement the closed loop control for each single axis' position and their synthetic motion contour of servo system,which improved the multi-axis position coordinated precision efficiently.The simulation results show that the controller can improve contour accuracy obviously in the condition of unchanging the single-axis servo system's position tracking precision, especially for the parameters of servo axles are relative large mismatched,the proposed controller can improve contour precision significantly.
     At last,the response rate of servo systems has great importance in improving the dynamic synchronized performance for multi-axis system,and direct torque control(DTC)can improve motor's torque response rate and dynamic performance greatly,but it has the shortcoming of greater torque ripple.This thesis presented a new DTC algorithm based on the function relationship between the electromagnetic torque and torque angle of permanent magnet synchronous motor(PMSM).The torque error is directly mapped into the conduction time of the power switches of three-phase voltage source inverter to achieve arbitrary space voltage vector output by the proposed algorithm,and a perfect circular track of stator flux linkage vector can be generated,therefore it can reach the target of reducing torque ripple and improving torque output precision.The method is simple in computation and can avoid complicated sector discrimination and logical calculation in traditional DTC and SVM(Space Vector Modulation)control methods.The algorithm can achieve less than±0.5%torque ripple by the simulation results.
     Because the map between the torque and torque angle takes the relationship as nonlinear,which makes the normal torque controller with fixed parameters cannot give stable and uniform control precision in the full torque working range.Therefore,a parameter self-tuning PI torque controller is designed based on RBF neural networks.The simulation results indicated that the controller can keep lower torque ripple in the full torque output range of a PMSM,and a high torque control precision can be achieved as the output torque varies between 0~T_(emax).
引文
1.王家军,齐冬莲.运动控制系统的发展与展望.电气时代,2004(10):54-56
    2.陈先锋,舒志兵.现代运动控制系统的数字及网络化.电气时代,2005(3):140-142
    3.叶莘,多轴运动控制系统和实时通信网络.自动化博览,2007(4):48-52
    4.叶莘,Ethernet Powerlink一实时的工业以太网.自动化博览,2004(4):43-45
    5.T.C.Yang,H.Yu,M.R.Fei,et al.Networked control systems:A historical review and current research topics.Measurement and Control,2005,38(1):12-16
    6.陈海东,开放透明的自动化通信解决方案-Profinet实时工业以太网简介.自动化博览,2004(4):32-34
    7.缪学勤.论六种实时以太网的通信协议.自动化仪表,2005(04):1-6
    8.时玉娟,赵建,方海燕等.IEEE1588同步时钟的分析与应用.仪表技术,2007(9):12-14
    9.阮於东.IEEE1588和高精度时间同步的方法.国内外机电一体化技术,2006(06):25-28
    10.古枫.数控技术和装备发展趋势及对策.机电信息,2005(17):11-14
    11.陈蕾,谈峰,戴娟.数控机床的发展趋势.机械设计与制造,2005(9):175-176
    12.李莉.造纸业变频改造市场前景.电器工业,2006(6):28-34
    13.Machines:Bigger and Better.经济导报.纸业技术(数字版),2007(1):12-18
    14.徐创文,穆玺清.进给伺服系统特性对加工精度的影响分析.航空精密制造技术,2002,38(5):43-46
    15.虞文华,吴昭同,杨世锡.伺服系统动态特性对数控机床圆轨迹加工精度影响的机理.中国机械工程,1995,6(1):21-23
    16.丛爽,刘宜.多轴协调运动中的交叉耦合控制.机械设计与制造.2006(10):166-168
    17.孙文焕,程善美,王晓翔等.多电机协调控制的发展.电气传动,1999(6):3-6
    18.王广炎,方宗德.多自由度运动的协同控制.机床与液压,2002(4):77-79
    19.S.S.Yeh,P.L.Hsu.Analysis and design of integrated control for multi-axis motion systems.IEEE Transactions on Control Systems Technology,2003,11(3):375-382
    20.Y.Koren.Cross-coupled Biaxial Computer Control for Manufacturing Systems.Journal of Dynamic Systems,Measurement and Control,Transactions of the ASME,1980,102(4):265-272
    21.K.Srinivasan,R.Fosdick.Multivariable Analysis and Controller Design for Coordinated Multi-axial Motion Control.Proceedings of the American Control Conference,United States.1988:95-101
    22.张秋菊.多轴CNC机床耦合轮廓误差补偿方法.组合机床与自动化加工技术,2001(12):21-24
    23.陈金成,徐志明,钟廷修等.机床沿曲线高速加工时的运动学与动力学特性分析.机械工程学报,2002,38(1):31-34
    24.严爱珍,李宏胜.机床数控原理与系统.北京:机械工业出版社,2002年
    25.谢宝昌,任永德编著.电机的DSP控制技术及其应用.北京:北京航空航天大学出版社,2005年
    26.尔桂花,窦日轩.运动控制系统.北京:清华大学出版社,2002年
    27.云利军,孙鹤旭,雷兆明等.运动控制网络的研究现状及发展趋势.控制工程,2006,13(4):289-293
    28.云利军.网络化运动控制系统行为特性的研究。河北工业大学博士学位论文,2006年
    29.黄怡暾.PC-Based SSCNET运动控制系统与发展趋势.工业控制计算机。2003(07):62-64
    30.张兴成,范伟嫒.基于SSCNET伺服控制系统的应用.林业机械与木工设备,2005(10):40-41
    31.王建波,杨林.基于以太网的实时通信系统SERCOSⅢ.电气时代,2007(04):24-25
    32.康存锋,陈卫福,黄旭东.基于SERCOS技术实现高速高精度运动控制.制造技术与机床,2002(06):8-9-47
    33.陈志彤,邢高田.SynqNet运动控制总线和直接驱动技术在数控系统中的应用.软件,Contr01 Engineering China,2007(05):48-51
    34.云利军,孙鹤旭,雷兆明.基于SynqNet的网络化运动控制器研究.制造技术与机床,2006(02):40-43
    35.徐洁兰.PROFIBUS和PROFINET最新技术进展.制造技术与机床,2006(10):8
    36.德国倍福公司.实时以太网:I/0层超高速以太网.自动化博览,2004(08):48-50
    37.冯冬芹,金建祥,褚健.EPA实时以太网标准化,自动化博览,2004(4):29-31
    38.桂康,杨佃福,谷海波.工业测控EPA网络系统的时间同步分析与实现.武汉理工大学学报,2006,28(2):65-69
    39.白涛,吴智铭,杨根科.网络化的控制系统.控制理论与应用,2004,21(4):584-590
    40.M.S.Branicky,S.M.Phillips,W.Zhang.Stability of networked control systems:Explicit analysis of delay.Proc American Control Conference.Chicago,2000:2352-2357
    41.G.C.Walsh,H.Ye.Scheduling of networked control systems.IEEE Control Systems Magazine,2001,21(1):57-65
    42.F.L.Lian,J.R.Moyne,D.M.Tibury.Performance evaluation of control networks:Ethernet,control net and device net.IEEE Contr Syst Mag,2001,21(1):177-186
    43.陈幼平,陈冰,谢经明,艾武,周祖德.网络化控制系统的科学问题与应用展望.控制与决策,2004,19(9):961-966
    44.谢林柏,方华京,王华.网络化控制系统的信息调度与稳定性研究.控制与决策,2004,19(5):589-591
    45.H.Rehbinder,M.Sanfridson.Scheduling of a limited communication channel for optimal control.Proc of the 39th IEEE Conf on Decision and Control.Sydney,2000:2342-2346
    46.Radu Dobrin,Gerhard Fohler.Implementing off-line message scheduling on controller area network(CAN).Proc of Emerging Technologies and Factory Automation.Antibes-Juan Les Pins,2001:241-245
    47.D.N.Marco.Scheduling the CAN Bus With Earliest Deadline Techniques.21st IEEE Real-time Systems Symposium,Orlando,FL,USA,2000:259-268
    48.樊卫华,蔡骅,陈庆伟,胡维礼.时延网络控制系统的稳定性.控制理论与应用,2004,21(6):880-884
    49.刘玉忠,于海斌.具有大时延的网络控制系统的稳定性分析.控制与决策,2004,19(10):1133-1136
    50.Nilsson J.,Bernhardsson B.,Wittenmark B.Stochastic analysis and control of real-time systems with random time delays.Automatica,1998,34(1):57-64
    51.Y.Yang,D.Xu,M.Tan,et al.Stochastic Stability Analysis and Control of Networked Control Systems with Randomly Varying Long Time-delays. Proc of the 5th World Congress on Intelligent Control and Automation,2004:1391-1395
    52.邱占芝,张庆灵,刘明.有时延和数据包丢失的网络控制系统控制器设计.控制与决策,2006,21(6):625-635
    53.朱其新,胡寿松,刘亚.无限时间长时延网络控制系统的随机最优控制.控制理论与应用,2004,21(3):321-326
    54.Z.X.Yu,H.T.then,Y.J.Wang.Research on Control of Network System with Markov Delay Characteristic.Proc of the 3rd World Congress on Intelligent Control and Automation.Hefei,China:2000:3636-3640
    55.李春茂.网络化控制系统自适应预测控制方法研究.西南交通大学博士学位论文,2006年
    56.Luck Roqelio,Ray Asok.An observer-based compensator for distributed delays.Automatica,1990,26(5):903-908
    57.Tipsuwan Yodyium,Chow Mo-Yuen.Control methodologies in networked control systems.ControlEngineeringPractice,2003,11(10):1099-1111
    58.A.Ray,Y.Halevi.Integrated communication and control systems:Analysis and Design consideration.ASME Jof Dynamic System Measurement & Control,1988:367-381
    59.H.Chan,U.Ozguner.Closed-loop control of systems over a communication network with queues.Proceedings of the American Control Conference.Baltimore,MD:AACC,1994:811-815
    60.S.H.Hong.Bandwidth allocation scheme for cyclic-service fieldbus networks.IEEE Trans on Mechatronics,2001,6(2):197-204
    61.白涛,吴智铭,杨根科.网络化控制系统中的抖动优化调度算法.控制与决策,2004,19(4):397-401
    62.H.Ouyang,G.P.Liu,D.Rees,et al.Predictive control of networked non-linear control systems.Proceedings of the Institution of Mechanical Engineers.Part Ⅰ:Journal of Systems and Control Engineering,2007,221(3):453-463
    63.G.P.Liua,D.Rees,S.C.Chai,et al.Design,simulation and implementation of networked predictive control systems.Measurement and Control,2005,38(1):17-21
    64.G.P.Liu,Y.Q.Xia,D.Rees,et al.Design and stability criteria of networked predictive control systems with random network delay in the feedback channel.IEEETransactionsonSystems,Man and Cybernetics Part C:Applications and Reviews,2007,37(2):173-184
    65.J.X.Mu,G.P.Liu,D.Rees.Design of robust networked predictive control systems.Proceedings of the American Control Conference,2005(v1):638-643
    66.Tang P.L.,De Silva C.W.Stability validation of a constrained model predictive networked control system with future input buffering.International Journal of Control,2007,80(12):1954-1970
    67.索格罗,阳宪惠.网络传输迟延与丢包的补偿及系统稳定性分析.控制与决策,2006,21(2):201-209
    68.陈鹏,戴连奎.自适应Smith补偿器在基于IP的网络控制系统中的应用.控制理论与应用,2006,23(1):115-118
    69.张奇智,张卫东.网络控制系统中的时戳预测函数控制.控制理论与应用,2006,23(1):126-130
    70.关守平,孙兰香.长延时网络控制系统的建模与控制.控制与决策,2006,21(3):311-314
    71.钱艳平,李奇.大时滞网络自适应预测PI主动队列管理算法.控制与决策,2006,21(8):937-940
    72.余义斌,曹长修,李昌兵.基于神经模型预测控制的主动队列管理算法.控制与决策,2006,21(9):1042-1049
    73.王宝仁。张承瑞。史大光等.基于RBF神经网络的时滞信息预估补偿器设计.吉林大学学报(工学版),2007,37(s):238-242
    74.熊远生,俞立,余世明.网络控制系统的滑模多步预估控制.控制理论与应用,2005,22(2):301-306
    75.梅生伟,申铁龙,刘康志.现代鲁棒控制理论与应用.北京:清华大学出版社,2003年
    76.J.J.Yan,J.S.Tsai,F.C.Kung.A new result on the robust stability of uncertain systems with time-varying delay.IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications,2001,48(7):914-916
    77.Yu Mei,Tan Wen.Robust stabilization of networked control systems:An LMI approach.Proceedings of the 26th Chinese Control Conference,CCC 2007:59-63
    78.T.J.Su,C.Y.Lu,J.S.Tsai.LMI Approach to delay-dependent robust stability for uncertain time-delay systems.IEEE Proceedings:Control Theory and Applications,2001,148(3):209-212
    79.Suh Young SoD,Lee Chang Won,Lee Hong nee,et al.H_2 networked servo control systems with time-varying delays.Proceedings of the American Control Conference,2005(vl):644-649
    80.Ji Kun,KimWon-Jong.Robustcontrolfornetworkedcontrol systems with admissible parameter uncertainties.International Journal of Control,Automation and Systems,2007,5(4):372-378
    81.Yue Oong,Han Qing-Long,Lam James.Network-based robust H_∞ control of systems with uncertainty.Automatica,2005,41(6):999-1007
    82.谢林柏,方华京,纪志成等.时延网络化控制系统的H_2/H_∞混合控制.控制理论与应用,2004,21(6):1020-1024
    83.Wang Yan,Hu Weili,Fan Weihua.Fuzzy robust H_∞ control for networked control systems.Proceedings of the World Congress on Intelligent Control and Automation(WCICA),2006(v1):4448-4452
    84.Mills DavidL.Internet time synchronization:The network time protocol.IEEE Transactions on Communications,1991,39(10):1482-1493
    85.Mills David L.Improved algorithms for synchronizing computer network clocks.IEEE/ACM Transactions on Networking,1995,3(3):245-254
    86.傅磊,戴冠中,何鹏举.基于以太网的控制系统时间同步机制研究.计算机测量与控制,2007,15(1):62-65
    87.彭杰,李秀元,应启戛.工业以太网的时钟同步协议对比分析.低压电器,2006(9):45-47
    88.黄文君,遇彬.基于FPGA的精确时钟同步方法.浙江大学学报(工学版),2007,41(10):1697-1742
    89.王勇,李智君.网络化测控设备间的时间同步.仪器仪表学报,2006,27(9):1085-1089
    90.Mills David L.Adaptive hybrid clock discipline algorithm for the network time protocol.IEEE/ACM Transactions on Networking,1998,6(5):505-514
    91.徐叶淮,姜健,张蓉.现场总线控制系统中GPS精确校时的实现.兵工自动化。 2002(06):52-54
    92.杨卫华,康文广,周喜超.基于DSP的同步相量测量装置的研究.单片机与嵌入式系统应用,2006(10):50-52
    93.王宝仁,张承瑞,史大光.基于CAN总线的分布式伺服系统通信协议的研究.组合机床与自动化加工技术,2007(02):32-37
    94.王宝仁,张承瑞,王科.基于CAN总线的三轴数控系统设计.组合机床与自动化加工技术,2007(1):50-53
    95.蒋宏江,陈国定,沈林武.网络控制系统中在线时延测量及时延补偿.控制工程,2006,13(s1):121-124
    96.夏春和,潘红莲,朱建鹏等.端到端单向时延主动测量工具的设计与实现.计算机工程与应用,2004(18):144-148
    97.沈远海,杨震.网络端端传输延时的测试和相应统计方法的研究.计算机仿真,2005,22(2):130-132
    98.范霖,范超.基于延时测量的端到端路径性能检测.计算机工程与应用,2004(8):129-132
    99.Hu Wenshan,Liu,G.P.,Rees David.Design and implementation of networked predictive control systems based on round trip time delay measurement.Proceedings of the American Control Conference,2006:674-679
    100.周晓兵,费敏锐,李力雄.基于应用层的以太网网络诱导延时测量及其统计分析.信息与控制,2005,34(6):641-646
    101.刘鲁源,王晓欣,刘昆等.分布式系统高精度时钟同步算法及其实现.天津大学学报,200639(8):923-927
    102.陈冰,陈幼平,谢经明等.运动控制网络的时钟同步.中国机械工程,2007,18(3):331-334
    103.肖本贤,多轴运动下的轮廓跟踪误差控制与补偿方法研究.合肥工业大学博士学位论文,2004年
    104.朱年军,王文,季国顺.数控伺服系统跟踪及轮廓误差分析.机床与液压.2006(10):20-21,23
    105.刘福才,刘学莲,刘立伟.多级电机传动系统同步控制理论与应用研究.控制工程,2002,9(4):78-82
    106.王金榜,李振中,杨长安等.数字锁相环直流多电机拖动电轴同步系统的实验研究.电气传动,1990,20(1):12-18
    107.刘福才,方一鸣,王洪斌等.全数字直流调速系统在型材辊压生产线自动控制系统中的应用.自动化技术与应用,2000,19(1):3-5
    108.刘海东,王宪,朱建鸿等.基于USS协议的计算机控制多电机调速系统的设计与实现.电气传动,2002(1):28-31
    109.林伟,尹冬至.基于自由通信协议的多电机的同步控制.自动化仪表,2007,28(8):65-69
    110.王晓燕,臧利林.基于PCC的分布式多电机同步传动控制系统研究.电气传动自动化,2005,27(1):33-35
    111.崔玲玲,于海生.基于DSP和CAN的电机同步控制系统与通信.微计算机信息,2007,23(6-2):52-54
    112.杨珂.基于CAN总线的分布式多电机同步控制系统.西安工业学院学报,2004,24(2):152-154
    113.陈德传,黎琦.一种新型的多电机同步变频传动控制系统.杭州电子科技大学学报,2005,25(1):68-70
    114.张新华。李伟.多伺服电机的同步控制.机床与液压,2003(4):90-91
    115.成玲,何勇.印染机械多电机同步控制系统.纺织学报,2005,26(1):97-99
    116.张莉,李彦明,马培荪等.基于模糊PID控制器的多电机同步控制装置的应用.工业仪表与自动化装置,2003(4):11-13
    117.沙琳,黄琦兰,杨公源.基于变参数智能控制的多电机同步控制系统.天津工业大学学报,2007,26(5):58-60
    118.韩绍坤,张立华.多电机传动系统的典型功能模块及控制算法分析.电机与控制学报,1999,3(4):255-257
    119.R.Richard,W.George.Internal model based tracking and disturbance rejection for stable well-posed systems.Automatica,2003,39(9):1555-1569.
    120.陈庆伟,郭毓,胡维礼.一种具有高阶无静差特性的内模控制器.兵工学报,2001,22(2):210-213
    121.肖卫国,胡赤兵,谭伟明等.基于模糊控制器的无静差跟踪控制方法研究.机械工程学报,2000,36(1):24-26
    122.Yamada Manabu,Funahashi Yasuyuki,Riadh Zaier.Generalized Optimal Zero Phase Error TrackingControllerDesign.JournalofDynamicSystems,Measurement,and Control,Transactions of the ASME,1999,121(2):165-170
    123.向兵,丁天增,冯冬青.无超调无静差系统的最优控制.郑州大学学报(工学版),2002,23(3):78-80
    124.唐功友,张洪云,李超.具有控制时滞系统的最优无静差正弦扰动抑制.控制与决策,2007,22(7):817-820
    125.M.Bodson.Performance of an adaptive algorithm for sinusoidal disturbance rejection in high noise.Automatica,2001,37(7):1133-1140.
    126.R.Marine,G.L.Santosuosso,P.Tomei.Robust adaptive compensation of biased sinusoidal disturbances with unknown frequency.Automatica,2003,39(10):1755-1761.
    127.Mustafa M.M,Yaacob N.R,Mohamed N.A.Nik.Adaptive zero-phase error-tracking controllers with advance learning.Control and Intelligent Systems,2004,32(2):116-125
    128.吕刚,焦留成.多模自适应模糊控制器及其在精密伺服系统中的应用.控制理论与应用,2005,22(1):47-51
    129.王宝仁,张承瑞,贾磊.基于模糊逻辑的交流伺服系统位置自适应控制器研究.国际智能控制及自动化会议(wCICA)论文集,2006:8132-8135
    130.周以齐,艾兴,曾广周.交流伺服进给系统滑模变结构扰动观测补偿控制.中国机械工程.2001,10(11):1204-1207
    131.马聘,冯之敬,赵广木.零相位误差跟踪控制器.清华大学学报,2000,40(5):44-46
    132.邓忠华,张乃胜,程善美等.零相位跟踪控制的交流位置伺服系统研究.电工技术学报,1998,13(6):13-16
    133.Masayoshi Tomizuka.Zero Phase Error Tracking Algorithm for Digital Control.Journal of Dynamic Systems,Measurement and Control,1987,Vol.109:65-68
    134.G.Y.Tang.Feedforward and feedhack optimal control for linear systems with sinusoidal disturbances.High Technology Letters,2001,7(4):16-19
    135.Yamada Manabu,Funahashi Yasuyuki,Riadh Zaier.Generalized Optimal Zero Phase Error Tracking Controller Design.Journal of Dynamic Systems,Measurement,and Control,Transactions of the ASME,1999,121(2):165-170
    136.Mustafa M.M,Yaacob N.R,Mohamed N.A.Nik.Adaptive zero-phase error-tracking controllers with advance learning.Control and Intelligent Systems,2004,32(2):116-125
    137.Syh-Shiuh Yeh,Pau-Lo Hsu.An Optimal and Adaptive Design of the Feedforward Motion Controller.IEEE/ASME Transactions on Mechtronics,1999,4(4):428-439
    138.Manabu Yamada and Yasuyuki Funahashi.Zero Phase Error Tracking System With Arbitrary Specified Gain Characteristics.Transaction of ASME,1997,Vol.119:260-264
    139.张乃胜,程善美,李叶松等.变增益相位跟踪控制交流位置伺服系统研究.华中理工大学学报,1998,26(1):21-23
    140.吴焱明,王治森.带前馈的模糊积分控制器在伺服系统中的应用.合肥工业大学学报.1997,20(6):41-46
    141.富强,吴云洁.基于QFT和ZPETC的高精度鲁棒跟踪控制器设计.自动化技术与应用,2004,23(8):1-3
    142.王立松,张飞虎,苏宝库等.基于有限带宽期望模型的超精密机床伺服跟踪控制研究.中国机械工程,2001,12(5):565-568
    143.Yeh Syh-Shiuh,Hsu Pau-Lo.Perfectly matched feedback control and its integrated design for multi-axis motion systems.Journal of Dynamic Systems,Measurement and Control,Transactions of the ASME,2004,126(3):547-557
    144.赵希梅,郭庆鼎,陈冬兰.通过直线伺服鲁棒跟踪控制方法提高轮廓加工精度.机械工程学报,2006,42(6):166-169
    145.赵希梅,郭庆鼎.为提高轮廓加工精度采用DOB和ZPETC的直线伺服鲁棒跟踪控制.电工技术学报,2006,21(06):111-126
    146.Srinivasan K.,Kulkarni P.K.Cross-coupled Control of Biaxial Feed Drive Servomechanisms.Journal of Dynamic Systems,Measurement and Control,Transactions ASME.1990,112(2):225-232
    147.Tarng Y.S.,Chuang H.Y.,Hsu W.T.Intelligent cross-coupled fuzzy feedrate controller design for CNC machine tools based on genetic algorithms.International Journal of Machine Tools and Manufacture,1999,39(10):1673-1692
    148.X.Ye,Chen X,Li X and Huang S.A Cross-Coupled Path Precompensation Algorithm for Rapid Prototyping and Manufacturing.International Journal of Advanced Manufacturing Technology,2002,20(1):39-43
    149.曲永印,赵希梅,郭庆鼎.基于零相位误差跟踪控制器的轮廓误差交叉耦合控制.中国机械工程.2006(11):1135-1137
    150.李宏胜.轮廓跟踪运动控制系统关键技术的研究.东南大学博士学位论文,2005年
    151.赵国勇.数控系统运动平滑处理、伺服控制及轮廓控制技术研究.大连理工大学博士学位论文,2006年
    152.朱年军,王文,季国顺.数控伺服系统跟踪及轮廓误差分析.机床与液压,2006(10):20-23
    153.Yeh Syh-Shiuh,Hsu Pau-Lo.Estimation of the Contouring Error Vector for the Cross-coupled Control Design.IEEE/ASME Transactions on Mechatronics,2002,7(1):44-51.
    154.Li.Perry Y.Coordinated Contour Following Control for Machining Operations-a survey.Proceedings of the American Control Conference,1999(6):4543-4547.
    155.P.L.Hsu and Y.C.Houng.An integrated controller design for precise CNC motion control.CIRP Proc.Manufacture Syst.1995,25(1):109-118
    156.Chiu George T.C.,Tomizuka Masayoshi.Contouring Control of Machine Tool Feed Drive Systems A task Coordinate Frame Approach.IEEE Transactions of Control Systems Technology.2001,9(1):130-139.
    157.Y.Koren,C.C.Lo.Variable-gain Cross-coupling Controller for Contouring.Annals of the CIRP.1991,40(1):371-374
    158.李圣怡,张云洲,张明亮等.超精密机床的变增益交叉耦合控制研究.基础自动化,2000,7(2):25-28
    159.孙宜标,宋杨,郭庆鼎.XY平台直线伺服系统的IP变增益交叉耦合控制.组合机床与自动化加工技术,2007,11:40-43
    160.赵希梅,郭庆鼎.提高轮廓加工精度的零相位自适应鲁棒交叉耦合控制.电工技术学报,2007,22(12):170-174
    161.Yan Mu-Tian,Lee Ming-Hung,Yen Ping-Lang.Theory and application of a combined self-tuning adaptive control and cross-coupling control in a retrofit milling machine.Mechatronics,2005,15(2):193-211
    162.肖本贤,陈荣保.模糊控制用于高精度CNC系统多轴轨迹联动研究.合肥工业大学学报.1998,21(4):55-60
    163.Shin D.J.,Ryu H.S.,Huh U.Y.Fuzzy Logic Control for the Contouring Accuracy of XY Positioning System.IEEE International Symposium on Industrial Electronics,2001(2):1248 - 1252.
    164.张秋菊,李宏.模糊推理耦合轮廓误差补偿方法的研究.中国机械工程.1995(02):19-21,78
    165.王波,梁迎春,董申.超精密机床模糊轮廓控制技术研究.哈尔滨工业大学学报,2005,37(6):830-832
    166.肖本贤,郭福权,王群京等.基于模糊神经网络的轮廓误差附加补偿控制研究.系统仿真学报,2003,15(12):1733-1736
    167.耿丽荣,周凯.基于时间序列预测技术的数控机床轮廓误差实时补偿方法研究.制造技术与机床,2004(6):22-25.
    168.吴海,于锡纯,徐心和.基于轮廓最优预见的机床进给伺服控制研究.中国机械工程,1998,9(9):22-25
    169.Yeh Syh-Shiuh,Hsu Pau-Lo.Analysis and Design of the Integrated Controller for Precise Motion System.IEEE Transaction on control systems technology,1999,7(6):706-717
    170.肖本贤,郭福权,邓红辉等.基于干扰观测器的轮廓误差耦合控制研究.系统仿真学报,2004,16(4):787-793.
    171.Dong Sun.Position synchronization of multiple motion axes with adaptive coupling control.Automatica,2003(39):997-1005
    172.J.F.Perez-Pinal,C.Nunez,R.Alvarez,et al.Comparison of multi-motor synchronization techniques.IECON(Industrial Electronics Conference)Proceedings,2004(2):1670-1675
    173.Xiong Wanli,Duan Zhishan,Wen Bangchun.Characteristics of electromechanical coupling self-synchronization of a multi-motor vibration transmission system.Chinese Journal of Mechanical Engineering(English Edition),2001,14(3):275-278
    174.刘福才,张学莲.基于补偿原理多电机同步协调运转的内模控制.电气传动,2002,32(3):23-25
    175.李伟光,刘其洪,王元聪等.应用NUM数控系统参数实现双轴同步控制.伺服控制,2006(1):53-55.
    176.范岩.多电机同步控制策略的改进.机电工程,2007,24(6):65-82
    177.R.G.Anderson,A.J.Meyer,M.A.Valenzhuela,at al.Web Machine Coordinated Motion Control Via electronic line shafting.IEEE Transactions on Industry Applications,2001,37(1):247-254
    178.K.Payette.Synchronized Motion Control with the Virtual Shaft Control Algorithm and Acceleration Feedback.Proceedings of the American Control Conference,1999(3):2102-2106
    179.J.F.Perez-Pinal,C.Nunez,R.Alvarez.Multi-motor synchronization technique applied in traction devices.2005 IEEE International Conference on Electric Machines and Drives,2005:1542-1548
    180.M.Jones,E.Levi,A.Iqbal.Vector control of a five-phase series-connected two-motor drive using synchronous current controllers.Electric Power Components and Systems,2005,33(4):411-430
    181.刘伯强.多电机系统微机控制技术研究.电机与控制学报,200,4(4):247-258
    182.高晓丁,左贺,任高阳等.基于智能PI控制的多电机同步传动系统.电气传动,2007,37(11):39-41
    183.焦竹青,屈百达,徐保国.改进型单神经元PID控制多电机同步传动系统.电机与控制应用,2006,33(11):14-17
    184.Dai Xianzhong,Liu Guohai,Zhang Hao,et al.Neural network inverse synchronous control of two-motor variable frequency speed-regulating system.Proceedings of the 2006 IEEE International Conference on Networking,2006:1070-1075
    185.戴先中,刘国海.两变频调速电机系统的神经网络逆同步控制.自动化学报,2005,31(6):891-900.
    186.樊卫华,赵国峰,陈庆伟.双电机驱动伺服系统神经网络控制器的设计.电机与控制学报,2006,10(3):260-268
    187.张承慧,石庆升,程金.一种多电机同步传动模糊神经网络控制器的设计.控制与决策,2007,22(1):30-34
    188.M.Tomizuka,J.Hu,T.Chiu.Synchronization of Two Motion Control Axes Under Adaptive Feed forward Control.ASME Journal of dynamic systems,1992,114(6):196-203.
    189.王成元,周美文,郭庆鼎.矢量控制交流伺服驱动电动机,北京:机械工业出版社,1995年
    190.陈伯时.电力拖动自动控制系统(第2版).北京:机械工业出版社,2004年
    191.Tang Lixin,Zhong Limin,Muhammed Fazlur Rahman,et al.A novel direct torque controlled interior permanent magnet synchronous machine drive with low ripple in flux and torque and fixed switching frequency.IEEE Transactions on Power Electronics,2004,19(2):346-353
    192.杨家强,黄进.异步电动机直接转矩控制转矩脉动最小化方法研究.电工技术学报,2004,19(9):23-29
    193.L.Zhong,M.F.Rahman,W.Y.Hu,et al.Analysis of direct torque control in permanent magnet synchronous motor drives.IEEE Transactions on Power Electronics,1997,12(3):528-536
    194.C.A.Martins,X.Roboam,T.A.Meynard,et al.Switching frequency imposition and ripple reduction in DTC drives by using a multilevel converter.IEEE Transactions on Power Electronics,2002,17(2):286-297
    195.M.A.Prats,G.Escobar,E.Galvan,et al.A switching control strategy based on output regulation subspaces for the control of induction motors using a three-level inverter.Power Electronics Letters,IEEE,2003,1(2):29-32
    196.李先祥,肖红军,黄道平.三电平矢量控制的永磁同步伺服电动机调速系统.电工技术学报,2004,19(4):28-32
    197.冯江华,许峻峰.永磁同步电机直接转矩控制转矩调节新方法.中国电机工程学报,2006,26(13):151-157.
    198.Zhao Sheng,Peng Xiafu.A modified Direct Torque Control using Space Vector Modulation(DTC-SVM)for surface Permanent Magnet Synchronous Machine(PMSM)with modified 4-order sliding mode observer.Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation,2007:1207-1212
    199.刘军,楚小刚,白华煜.基于参考磁链电压空间矢量调制策略的永磁同步电机直接转矩控制研究.电工技术学报,2005,20(6):11-15.
    200.孙丹,贺益康.基于恒定开关频率空间矢量调制的永磁同步电机直接转矩控制.中国电机工程学报,2005,25(12):112-116.
    201.Shi Cen-wei,Qiu Jian-qi,Jin Meng-jia et al.Study on the performance of different direct torque control methods for permanent magnet synchronous machines[J].Proceedings of the Chinese Society of Electrical Engineering,2005,25(16)):141-146.
    202.Wai-Chuen Gan,Li Qiu.Torque and Velocity Ripple Elimination of AC Permanent Magnet Motor Control Systems Using the Internal Model Principle.IEEE/ASME Transaction on Mechatronics,2004,9(2):436-447.
    203.刘军,刘丁,吴浦升等.基于模糊控制调节电压矢量作用时间策略的永磁同步电机直接转矩控制仿真研究.中国电机工程学报,2004,24(10):148-152
    204.Jin Mengjia,Qiu Jianqi,Shi Cenwei,et al.A fuzzy DTC method with a SVM defuzzification to permanent magnet synchronous machine.IECON Proceedings(Industrial Electronics Conference),2004(3):3196-3199
    205.贾洪平,贺益康.永磁同步电机滑模变结构直接转矩控制.电工技术学报,2006,21(1):1-6
    206.赵争鸣,袁立强,孟朔等.通用变频器矢量控制与直接转矩控制特性比较.电工技术学报,2004,19(4):81-84,44
    207.杨丽曼,李运华,袁海斌.网络控制系统的时延分析及数据传输技术研究.控制与决策,2004,19(4):361-366,382
    208.宗晓萍,冯贺平.基于神经网络的时滞系统预测控制.自动化技术与应用,2005,24(12):6-8
    209.王军平,王安,李教等.延迟时间未知的时延系统Fuzzy-Gray预测控制.空军工程大学学报(自然科学版),2002,3(1):71-74
    210.郑大钟.线性系统理论(第二版).北京:清华大学出版社,2002年
    211.于之训,陈辉堂,王月娟.时延网络控制系统均方指数稳定的研究.控制与决策,2000,15(3):278-281,289
    212.刘金琨.先进PID控制Matlab仿真(第2版).北京:电子工业出版社,2006年
    213.刘金琨.智能控制.北京:电子工业出版社,2005年
    214.K.Furuta.Sliding mode control of a discrete system.System & Control Letters,1990,14(2):145-152
    215.刘金琨.滑模变结构控制Matlab仿真.北京:清华大学出版社,2005年
    216.周扬忠,胡育文,田蕉.永磁同步电机控制系统中变比例系数转矩调节器设计研究.中国电机工程学报,2004,24(9):204-208

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700