新型V、Ge无机固体材料的合成、结构及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新型无机材料的合成一直是材料化学的研究热点,这些材料在分离,吸附,离子交换,催化和放射性废物处理等领域都有广泛的应用,其中锗酸盐和钒酸盐也因其结构多样性以及在各自领域广泛存在的应用价值受到许多材料合成小组的关注。本文以新型孔道锗酸盐及新颖钒酸盐的合成为目标,利用水热及溶剂热合成技术,通过调控反应条件等因素,成功地合成了11种未见报道的化合物,并通过X-射线衍射技术确定了它们的晶体结构,对它们的结构进行了表征,并利用元素分析(ICP),红外光谱(FI-IR),热重(TG)等分析手段对所合成化合物进行了性质研究。
     1.在水热条件下合成了三种新的镍配合物, [Ni(C_3N_2H_4)_6](SO_4)(H_2O)_2 1 ,Ni_3(C_(10)N_2H_8)_2(SO_4)_3(H_2O)_(11) 2和Ni_2V_4O_(12.5) (C_(10)N_2H_8)_4 (H_3O) 3,并且分别通过IR光谱,热重和单晶X射线衍射对其进行了表征。化合物1:三方晶系,空间群P-31c,a = b = 9.0029(9) (?), c = 22.937(4) (?), V = 1610.0(4) (?)~3, Z = 2。化合物2:三斜晶系,空间群P1, a = 11.1737(11) (?), b = 11.1737(11) (?), c = 11.3668(11) (?),α= 72.8220(10)°,β= 73.3880(10)°,γ= 83.6400(10)°, V = 844.09(14) (?)~3, Z = 1。化合物3:三斜晶系,空间群P-1, a = 8.995(4)(?), b = 11.282(5)(?), c = 14.966(7) (?),α= 76.262(6)°,β= 81.595(6)°,γ= 68.378(5)°, V = 1368.6(11) (?)~3, Z = 2.这三种镍配合物具有不同维度的结构,是通过调控水热及溶剂热合成条件而获得的三种简单结构的镍配合物。
     2.在溶剂热条件下合成了两种结构相似的钒硫酸盐, (C_2H_(10)N_2)_4 [GaV_3 (SO_4)_8(OH)_4]·4H_2O 4和[C_4H_(12)N_2][V~III (OH)(SO_4)_2]·H_2O 5,并且分别通过IR光谱,粉末X射线衍射,热重和单晶X射线衍射对其进行了表征。化合物4:单斜晶系,空间群P2(1)/c,a = 6.8956(15) (?), b = 10.303(2) (?), c = 15.094(3) (?),β= 90.802(3)°,V = 1073.23 (3) (?)~3, Z = 1。化合物5:单斜晶系,空间群P2(1)/c,a = 9.290(4) (?), b = 18.264(7) (?), c = 7.132(3) (?),β= 98.149(8)°,V= 1197.9(8) (?)~3, Z = 4。化合物4、5的结构都是一维的钒硫酸链的结构,-OH和SO4四面体作为桥连配体连接VO6八面体形成了无限链的骨架结构,链间分别填充的是质子化的乙二胺分子和哌嗪分子,链与模板剂之间通过氢键作用形成了三维超分子结构。
     3.在水热、溶剂热条件下合成了三种新的不同拓扑结构的锗酸盐,Ge_(10)O_(20) (H_2O)_3 6,Ge_7O_(12)(OH)_4(C_6NH_(15))_(0.5)(H_2O)_4 7和Ge_7O_(12)(OH)_4(C_3NH_9)_(0.25)(H_2O)_5 8,并且分别通过IR光谱,粉末X射线衍射,热重和单晶X射线衍射对其进行了表征。化合物6:四方晶系,空间群P4/mcc, a = b = 8.7885(18) (?) , c = 14.490(6) (?), V = 1119.2(6) (?)~3, Z = 2。化合物7:立方晶系,空间群是P-43m,a = 7.7187(1) (?), V = 459.87(1) (?)~3, Z = 1。化合物8:立方晶系,空间群是P-43m,a = 7.7198(6) (?), V = 460.06(6) (?)~3, Z = 1。化合物6是与ASU-7具有相同拓扑结构的微孔锗酸盐,沿c轴方向具有一维的12元环孔道。化合物7和8是同构的锗酸盐,它们的骨架由Ge_4(OH)_4立方烷和交替的手性双螺旋Ge-O链组成,结构中包含8元环孔道。
     4.以提高孔道锗酸盐的稳定性为目的,在溶剂热条件下合成了三种具有不同分子筛拓扑结构的微孔锗铝酸盐[C_4H_(12)N] [AlGe_3O_8] 9,KAlGe_3O_8 10和KAl_2Ge_2O_7F 11,并且分别通过IR光谱,粉末X射线衍射,热重和单晶X射线衍射对其结构进行了表征。化合物9:四方晶系,空间群I41/a, a = b = 10.7754(8) (?), c = 9.9116(14) (?), V = 1150.8(2) (?)~3, Z = 4。化合物10:正交晶系,空间群Pnma, a = 9.4336(13) (?), b = 8.7068(12) (?), c = 9.8212(14) (?), V = 806. 68 (19) (?)~3, Z = 4。化合物11:四方晶系,空间群I-42d,a = b = 7.3626(4) (?), c = 17.4940(18) (?),V = 948.31(12) (?)~3, Z = 4。化合物9是具有类似GIS分子筛的拓扑结构的有机模板微孔锗铝酸盐,它的结构中包含二维的8元环孔道结构,化合物10是具有para分子筛结构的微孔锗铝酸盐,结构中也包含二维的8元环孔道,但孔道中填充的是金属K离子,化合物11具有MON分子筛拓扑结构,结构中包含8元环孔道和5元环结构,孔道中填有金属离子。其中,化合物9表现出了很好的热稳定性,有机模板被移除后,孔道骨架仍然被保留,这将为微孔锗酸盐的应用拓宽了范围,提供更广泛的应用前景。
The synthesis of novel inorganic materials has been receiving great attention due to their widespread applications in separation, absorption, ion-exchange, catalysis and remediation of radioactive waste. Recent decades, many groups have commit themselves to the synthesis of novel germanates and vanadates because of not only the diversity of the structures but also the potential applications in different fields. In this thesis, in order to improve the thermal stability of germanates and obtain novel vanadates, eleven novel compounds have been reported, which were synthesized under hydrothermal and sovlothermal conditions by changing and adjusting different factors including the materials, solvents, temperature, concentration and so on. All of the structures were characterized by single crystal X-ray diffraction and their properties were studied by Elemental Analysis, IR, TG .
     1. Three new nickel complexes [Ni(C_3N_2H_4)_6](SO_4)(H_2O)_2 1 ,Ni_3(C_(10)N_2H_8)_2(SO_4)_3(H_2O)_(11) 2 and Ni_2V_4O_(12.5) (C_(10)N_2H_8)_4 (H_3O) 3 have been synthesized under hydrothermal conditions and characterized by IR spectroscopy, powder XRD, TG and single crystal X-ray diffraction. Compound 1 crystallizes in the Trigonal space group P-31c with a = b= 9.0029(9) (?), c = 22.937(4) (?), V = 1610.0(4) (?)~3, Z = 2. Compound 2:Triclinic,space group P1, a = 11.1737(11) (?), b = 11.1737(11) (?), c = 11.3668(11) (?),α= 72.8220(10)°,β= 73.3880(10)°,γ= 83.6400(10)°, V = 844.09(14) (?)~3, Z = 1. Compound 3:Triclinic,space group P-1, a = 8.995(4) (?), b = 11.282(5) (?), c = 14.966(7) (?),α= 76.262(6)°,β= 81.595(6)°,γ= 68.378(5)°, V = 1368.6(11) (?)~3, Z = 2. These three nickel complexes were new and obtained by adjusting the reaction conditions during experiments, which keep different dimensional strctures.
     2. Two new organic templated 1-D linear vanadium sulfates (C_2H_(10)N_2)_4 [GaV_3 (SO_4)_8(OH)_4]·4H_2O 4 and [C_4H_(12)N_2][V~III (OH)(SO_4)_2]·H_2O 5 have been synthesized under solvothermal conditions and characterized by IR spectroscopy, TG and single crystal X-ray diffraction. Compound 4 crystallizes in the Monoclinic space group P2(1)/c, a = 6.8956(15) (?), b = 10.303(2) (?), c = 15.094(3) (?),β= 90.802(3)°,V = 1073.23 (3) (?)~3, Z = 1. Compound 5:Monoclinic, P2(1)/c,a = 9.290(4) (?), b = 18.264(7) (?), c = 7.132(3) (?),β= 98.149(8)°, V = 1197.9(8) (?)~3, Z = 4. In the structure of compound 4 and 5, the OH and SO4 tetrahedra as bridging ligands connected the VO6 octahedra to generate an infinite chain, and protonated organic amines exist between the chains and involve in the hydrogen bonding interaction to generate a 3D supermolecule structure.
     3. Three new germanates Ge_(10)O_(20) (H_2O)_3 6,Ge_7O_(12)(OH)_4(C_6NH_(15))_(0.5)(H_2O)_4 7 and Ge_7O_(12)(OH)_4(C_3NH_9)_(0.25)(H_2O)_5 8 with different topology structures have been synthesized under hydrothermal and solvothermal conditions, and characterized by IR spectroscopy, powder XRD, TG and single crystal X-ray diffraction. Compound 6 crystallizes in the tetragonal space group P4/mcc, a = b = 8.7885(18) (?) , c = 14.490(6) (?), V = 1119.2(6) (?)~3, Z = 2. Compound 7: cubic, P-43m,a = 7.7187(1) (?), V = 459.87(1) (?)~3, Z = 1. Compound 8: cubic, P-43m, a = 7.7198(6) (?), V = 460.06(6) (?)~3, Z = 1. Compound 6 has the same framework as ASU-7, which presents 12-membered-ring channels along the c axis. Compounds 7 and 8 are the same structure and templated by two different organic amines, which are composed of Ge4(OH)4 cubanes and chiral intertwined Ge-O double helices, moreover, 2-D 8-membered-ring channels can be observed in the structure.
     4. In order to enhance the thermal stability of the germanates, three new microporous aluminogermanates [C_4H_(12)N] [AlGe_3O_8] 9,KAlGe_3O_8 10和KAl_2Ge_2O_7F 11 with different zeolite topologies have been synthesized under solvothermal condition and characterized by IR spectroscopy, powder XRD, TG and single crystal X-ray diffraction. Compound 9 crystallizes in the tetragonal space group I41/a, a = b = 10.7754(8) (?), c = 9.9116(14) (?), V = 1150.8(2) (?)~3, Z = 4. Compound 10: Orthorhombic, Pnma, a = 9.4336(13) (?), b = 8.7068(12) (?), c = 9.8212(14) (?), V = 806. 68 (19) (?)~3, Z = 4. Compound 11: tetragonal, I-42d,a = b = 7.3626(4) (?), c = 17.4940(18) (?),V = 948.31(12) (?)~3, Z = 4. Compound 9 as an organic templated microporous aluminogermanates has the same topology as GIS zeolite. Compound 10 has the same topology as para zeolite, while compound 11 has the same structure as MON zeolite. Specially, compound 9 shows good thermal stability by calcinations, the structure of inorganic framework is retained when the organic amine is removed by calcinations, which provides potential applications for the zeolite.
引文
[1] M. E. Davis. Ordered porous Materials for emerging applications. Nature,2002, 417,813-821.
    [2] Colin S. Cundy ,Paul A. Cox. The Hydrothermal Synthesis of Zeolites: History and Development from the Earliest Days to the Present Time. Chem. Rev. 2003, 103, 663-701.
    [3] Yi Li, Jihong Yu, Zhuopeng Wang, Jianan Zhang, Min Guo, and Ruren Xu. Design of Chiral Zeolite Frameworks with Specified Channels through Constrained Assembly of Atoms. Chem. Mater. 2005, 17, 4399-4405
    [4] Shi Z, Feng S H, Gao S, Zhang L, Yang G Y, Hua J. Inorganic-Organic Hybrid Materials Constructed from [(VO2)(HPO4)] Helical Chains and [M(4,4’-bpy)2]2+ (M=Co, Ni) Fragments. Angew. Chem. Int. Ed., 2000, 39,2325-2327.
    [5] Xiao D R, Xu Y, Hou Y, Wang E B, Wang S T, Li Y G, Xu L, Hu C W. Synthesis and Structure of an Unprecedented Layered Vanadate Complex Containing Double-Helical Chains: [{CoIII(phen)2}2V8O23]. Eur. J. Inorg. Chem., 2004, 1385- 1388.
    [6] Zheng S T, Chen Y M, Zhang J, Xu J Q, Yang G Y. Hybrid Inorganic-Organic 1D and 2D Frameworks with [As6V15O42]6- Polyoxoanions as Building Blocks. Eur. J. Inorg. Chem., 2006, 397-406.
    [7] An H Y, Wang E B, Xiao D R, Li Y G, Su Z M, Xu L. Chiral 3D Architectures with Helical Channels Constructed from Polyoxometalate Clusters and Copper-Amino Acid Complexes. Angew. Chem. Int. Ed., 2006, 45, 904-908.
    [8] Akhilesh Tripathi, Timothy Hughbanks, and Abraham Clearfield. The First Framework Solid Composed of Vanadosilicate Clusters. J. Am. Chem. Soc., 2003, 125, 10528-10529.
    [9] Bi-Zhou Lin and Shi-Xiong Liua. First hexadecavanadate compound: hydrothermal synthesis and characterization of a three-dimensional framework.. Chem.commun, 2002, 2126–2127.
    [10] M. Ishaque Khan, Elizabeth Yohannes, and Robert J. Doedens. [M3V18O42 (H2O)12 (XO4)]·24H2O (M=Fe, Co; X=V, S): Metal Oxide Based Framework Materials Composed of Polyoxovanadate Clusters. Angew. Chem. Int. Ed. 1999, 38, 1292-1294.
    [11] Yan Xu, Lin-Bo Nie, Dunru Zhu, You Song, Guang-Peng Zhou, and Wan-Sheng You. Two New Three-Dimensional Porous Polyoxometalates with Typical ACO Topological Open frameworks:{[Cu4V13IVV5VO42(NO3)(C3H10N2)8]·10H2O}n and {[Cu4V12IVV6VO42(SO4)(C3H10 N2)8·10H2O }n. Crystal Growth & Design, 2007,7, 925-929.
    [12] Geo Paul, Amitava Choudhury, R. Nagarajan, and C. N. R. Rao, Amine-Templated Linear Vanadium Sulfates with Different Chain Structures. Inorg. Chem. 2003, 42, 2004-2013.
    [13] Cheng-Ling Pan, Ji-Qing Xu, Guang-Hua Li, Xiao-Bing Cui, Ling Ye and Guang-Di Yang. A two-dimensional framework of novel vanadium clusters bridged by [Ni(en)2]2+: K{V12 IVV6 VO42 Cl [Ni(en)2]3}·8H2O. Dalton Trans. 2003, 517-518.
    [14] Synthesis and Characterization of Novel V/O/SO4 Chains Incorporating 2,2’-Bipyri dine Ligands: Crystal Structure of [V2O2(OH)2(SO4)(2,2’-bpy)2] M. Ishaque Khan, Sabri Cevik, Douglas Powell, Sichu Li, and Charles J. O’Connor. Inorg. Chem. 1998, 37, 81-86.
    [15] M. Ishaque Khan, Sabri Cevik and Robert J. Doedens Inorganic–organic hybrids derived from oxovanadium sulfate motifs: synthesis and characterization of [VIVO(μ3-SO4) (2,2’-bpy)] . Chem. Commun., 2001, 1930–1931
    [16] Chao Qin, Lin Xu, Yongge Wei, Xinlong Wang, and Fengyan Li. New Vanadium Phosphate {[(phen)VIVO]2(VV2O5)(HPO4)}n with Chiral Layer Architecture. Inorg. Chem. 2003, 42, 3107-3110.
    [17] Yan Xu, Guangpeng Zhou, and Dunru Zhu. Three New Organically Templated 1D, 2D, and 3D Vanadates: Synthesis, Crystal Structures, and Characterizations. Inorganic Chemistry. 2008, 47, 567-571.
    [18] A. K. Cheetham, G. Ferey, T. Loiseau. Open-Framework Inorganic Materials. Angew. Chem. Int. Ed, 1999, 38, 3268-3292.
    [19] D.L. Long, P.K. Ogerler, L.J. Farrugia, L. Cronin, Reaction of a {Mo16}–type poly oxometalate cluster with electrophiles: a synthetic, theoretical and magnetic investigation, J. Chem. Soc., Dalton Trans., 2005, 1372-1380.
    [20] S. Reinose, P. Vitoria, L.S. Felices, L. Lezama, Analysis of Weak Interactions in the crystal packing of Inorganic matalorganic hybrids based on Keggin polyoxometalates and Dinuclear Copper(Ⅱ)-Acetate complexes, Inorg. Chem., 2006, 45, 108-118.
    [21] S. Reinose, P. Vitoria, J.M. Gutie‘rree-Zorrilla, L. Lezama, Inorganic- Metalorganic hybrids based on Copper(Ⅱ)-Monosubstituted Keggin polyanions and Dinuclear Copper(Ⅱ)-Oxalate complexes, Synthesis, X-ray structural characterization, and Magnetic Properties, Inorg. Chem., 2005, 44, 9731-9742.
    [22] C. Daniel, H. Hartl,Neutral and Cationic VIV/VV Mixed-Valence Alkoxo- polyoxovanadium Clusters [V6O7(OR)12]n+(R=-CH3,-C2H5): Structural, Cyclovoltamme tric and IR-Spectroscopic Investigations on Mixed Valency in a Hexanuclear Core, J.Am.Chem.Soc ., 2005, 127, 13978-13987.
    [23] Y.V. Geletii, C.L. Hill, A.J. Bailey, K.I. Hardcastle, Electron exchange betweenα-Keggin tungstoaluminates and well-defined cluster-anion probe for studies in electron transfer, Inorg.Chem., 2005, 44, 8955-8966.
    [24] J. Cheng, R. Xu. Syntheses and characterization of two novel germanium dioxide frameworks with occluded ethylenediamine (EDA) and 1,3-propylenediamine (1,3-PDA). J. Chem. Soc. Chem. Commun, 1991, 483-485.
    [25] J. Cheng, R. Xu, G. Yang. Synthesis, structure and characterization of a novel germanium dioxide with occluded tetramethylammonium hydroxide. J. Chem. Soc., Dalton. Trans, 1991, 1537-1540.
    [26] R. H. Jones, J. Chen, J. M. Thomas, A. George, M. B. Hursthouse, R. Xu, S. Li, Y. Lu, G. Yang. Synthesisand structure of a new microporous anionic derivative of germanium dioxide: [Ge18O38(OH)4]8-[(C2N2H10)2+]4.cntdot.2H2O. Chem. Mater, 1992, 4, 808-812.
    [27] Hailian Li and O. M. Yaghi. Transformation of Germanium Dioxide to Microporous Germanate 4-Connected Nets J. Am. Chem. Soc. 1998, 120, 10569-10570.
    [28] Hailian Li, M. Eddaoudi, D. A. Richardson, and O. M. Yaghi. Porous Germanates: Synthesis, Structure, and Inclusion Properties of Ge7O14.5F2·[(CH3)2NH2]3(H2O)0.86.J. Am. Chem. Soc. 1998, 120, 8567-8568
    [29] Hailian Li, Mohamed Eddaoudi, and Omar M. Yaghi. An Open-Framework Germanate with Polycubane-Like Topology. Angew. Chem. Int. Ed. 1999, 38,653-655.
    [30] Hailian Li, Mohamed Eddaoudi, Jacques Ple′vert, M. O’Keeffe, and O. M. Yaghi, Ge2ZrO6F2·(H2DAB)H2O: A 4-Connected Microporous Material with“Bow Tie”Building Units and an Exceptional Proportion of 3-Rings. J. Am. Chem. Soc. 2000, 122, 12409-12410
    [31] Jacques Ple′vert, Travis M. Gentz, Aaron Laine, Hailian Li, Victor G. Young, Omar M. Yaghi, and Michael O’Keeffe. A Flexible Germanate Structure Containing 24-Ring Channels and with Very Low Framework Density. J. Am. Chem. Soc. 2001, 123, 12706-12707
    [32] Jacques Ple′vert, Rebeca Sanchez-Smith, Travis M. Gentz, Hailian Li, Thomas L. Groy, Omar M. Yaghi, and Michael O’Keeffe. Synthesis and Characterization of Zirconogermanates.Inorg. Chem. 2003, 42, 5954-5959
    [33] Yaming Zhou, Haoguo Zhu, Zhenxia Chen, Minqin Chen, Yan Xu, Haoyu Zhang, and Dongyuan Zhao. A Large 24-Membered-Ring Germanate Zeolite-Type Open- Framework Structure with Three-Dimensional Intersecting ChannelsAngew. Chem. Int. Ed. 2001, 40, 2166-2168.
    [34] Zhi-En Lin, Jie Zhang, Jing-Tai Zhao, Shou-Tian Zheng, Chun-Yang Pan, Guo-Ming Wang, and Guo-Yu Yang. A Germanate Framework Containing 24-Ring Channels, Ni_Ge Bonds, and Chiral [Ni@Ge14O24(OH)3] Cluster Motifs Transferred from Chiral Metal Complexes. Angew. Chem. Int. Ed. 2005, 44, 6881–6884.
    [35] Yan Xu, Wei Fan, S. P. Elangovan, Masaru Ogura, and Tatsuya Okubo. [Ge9O14 (OH)12](C6N2H16)2·H2O: A Novel Germanate with Ge-O Helical Chains Formed by Hydrothermal Synthesis that Can Separate trans and cis Isomers in SituEur. J. Inorg. Chem. 2004, 4547-4549
    [36] Lionel Beitone, Thierry Loiseau, and Ge′rard Fe′rey. Hydrothermal Synthesis and Structural Characterization of a New Organically Templated Germanate, Ge10O21 (OH)·N4C6H21. Inorg. Chem. 2002, 41, 3962-3966.
    [37] T. Conradsson, M.S. Dadachov, X.D. Zou. Synthesis and structure of (Me3N)6 [Ge32O64]·(H2O)4.5, a thermally stable novel zeotype with 3D interconnected 12-ring Channels. Microporous and Mesoporous Materials. 2000,41, 183-191.
    [38] Martin P. Attfield, Yousef Al-Ebini, Robin G. Pritchard, Ellen M. Andrews, Richard J. Charlesworth,Wan Hung, Ben J. Masheder, and Drew S. Royal. Synthesis and Chara- cterization of a Novel Germanate Material Containing 16-Ring Channels and Templated by a Simple Primary Amine. Chem. Mater. 2007, 19, 316-322.
    [39] Qinhe Pan, Jiyang Li, Xiaoyan Ren, Zhuopeng Wang, Guanghua Li, Jihong Yu, and Ruren Xu [Ni(1,2-PDA)3]2(HOCH2CH2CH2NH3)3(H3O)2[Ge7O14X3]3 (X= F, OH): A New 1D Germanate with 12-Ring Hexagonal Tubular Channels. Chem. Mater. 2008, 20, 370–372.
    [40] Qinhe Pan, Jiyang Li, Kirsten E. Christensen, Charlotte Bonneau, Xiaoyan Ren, Lei Shi, Junliang Sun, Xiaodong Zou, Guanghua Li, Jihong Yu, and Ruren Xu. A Germanate Built from a 68126 Cavity Cotemplated by an (H2O)16 Cluster and 2-Methylpiperazine. Angew. Chem. Int. Ed. 2008, 47, 1-5.
    [41] Xiaodong Zou, Tony Conradsson, Miia Klingstedt, Mike S. Dadachov Michael O’Keeffe. A mesoporous germanium oxide with crystalline pore walls and its chiral derivative. Nature. 2005, 437, 716-719.
    [42] X. Bu, P. Feng, G. D. Stucky. Novel Germanate Zeolite Structures with 3-Rings. J. Am. Chem. Soc, 1998, 120, 11204-11205.
    [43] Y. Xu, W. Fan, N. Chino, K. Uehara, S. Hikichi, N. Mizuno, M. Ogura, T. Okubo. The Hydrothermal Synthesis and Crystal Structure of (H2O)[Ge5O10] and [(CH3)4N][Ge10O20OH], Two Novel Porous Germanates. Chem. Lett. 2004, 33, 74-75.
    [44] R. J. Francis, A. J. Jacobson. Synthesis, Structure, and Properties of a Three- Dimensional Open-Framework Niobium Fluorogermanate (NGH-5). Chem. Mater, 2001, 13, 4676-4680.
    [45] M. O. Keeffe and O. M. Yaghi. Germanate Zeolites: Contrasting the Behavior of Germanate and Silicate Structures Built from Cubic T8O20 Units (T.Ge or Si). Chem. Eur. J. 1999, 5, 2796-2801.
    [46] Liqiu Tang, Mike S. Dadachov, and Xiaodong Zou, SU-12: A Silicon-Substituted ASU-16 with Circular 24-Rings and Templated by a Monoamine. Chem. Mater. 2005, 17, 2530-2536.
    [47] Yafeng Li and Xiaodong Zou. SU-16: A Three-Dimensional Open-Framework Boro germanate with a Novel Zeolite Topology. Angew. Chem. Int. Ed. 2005, 44, 2012–2015.
    [48] Lei Shi, Kirsten E. Christensen, Kjell Jansson, Junliang Sun, and Xiaodong Zou. Synthesis and Characterization of an Aluminogermanate SU-46 with a Zeolite Structure. Chem. Mater. 2007, 19, 5973–5979.
    [49] Kirsten E. Christensen, Charlotte Bonneau, Mikaela Gustafsson, Lei Shi, Junliang Sun, Jekabs Grins, Kjell Jansson, Isabelle Sbille, Bao-Lian Su, and Xiaodong Zou. An Open-Framework Silicogermanate with 26-Ring Channels Built from Seven-Coordinated (Ge,Si)10(O,OH)28 Clusters. J. Am. Chem. Soc, 2008, 130, 3758-3759.
    [50] Robin J. Francis and Allan J. Jacobson. The First Organically Templated Open-Framework Niobium Silicate and Germanate Phases: Low-Temperature Hydrothermal Syntheses of [(C4N2H11)Nb3SiO10] (NSH-1) and [(C4N2H11)Nb3GeO10] (NGH-1) Angew. Chem. Int. Ed. 2001, 40, 2879-2881
    [51] Teresa Blasco, Avelino Corma, Ma Jose′D?′az-Caban? as, Fernando Rey, Jose′A. Vidal-Moya, and Claudio M. Zicovich-Wilson. Preferential Location of Ge in the Double Four-Membered Ring Units of ITQ-7 ZeoliteJ. Phys. Chem. B 2002, 106, 2634-2642.
    [52] Avelino Corma, Marta Puche, Fernando Rey, Gopinathan Sankar, and Simon J. Teat. A Zeolite Structure (ITQ-13) with Three Sets of Medium-Pore Crossing Channels Formed by 9- and 10-Rings Angew. Chem. Int. Ed. 2003, 42, 1156-1160.
    [53] Avelino Corma, Maria Jose Díaz-Caba?as, Fernando Rey, Stavros Nicolopoulus and Khalid Boulahya. ITQ-15: The first ultralarge pore zeolite with a bi-directional pore system formed by intersecting 14- and 12-ring channels, and its catalytic implications.Ch em.Commun. 2004,1356-1357.
    [54] Avelino Corma, Mar?′a J. D?′az-Caban? as, Joaqu?′n Mart?′nez-Triguero, Fernando Rey, Jordi Rius. A large-cavity zeolite with wide pore windows and potential as an oil refining catalyst.Nature. 2002, 418, 514-517.
    [55] Rafael Castan?eda, Avelino Corma, Vicente Forne′, Fernando Rey, and Jordi Rius Synthesis of a New Zeolite Structure ITQ-24, with Intersecting 10- and 12-Membered Ring Pores. J. Am. Chem. Soc, 2003, 125, 7820-7821.
    [56] Thurman E. Gier, Xianhui Bu, Pingyun Feng Galen D. Stucky. Synthesis and organization of zeolite-likematerials with three-dimensional helical pores. Nature. 1998, 395, 154-157.
    [57] Xianhui Bu, Pingyun Feng, and Galen D. Stucky. Novel Germanate Zeolite Structures with 3-Rings. J. Am. Chem. Soc. 1998, 120, 11204-11205.
    [58] Xianhui Bu, Pingyun Feng, and Galen D. Stucky. Host-Guest Symmetry and Charge Matching in Two Germanates with Intersecting Three-Dimensional Channels. Chem. Mater. 2000, 12, 1505-1507.
    [59] Pingyun Feng, Xianhui Bu, and Galen D. Stucky. Transformation of 4-Connected Zeolite Topologies into a Mixed 4- and 6-Connected 3-Dimensional Open Framework. Chem. Mater. 1999, 11, 3025-3027.
    [60] C. Cascales, E. Gutie rrez-Puebla, M. A. Monge, and C. Ruíz-Valero. (NH4)2Ge7O15 : A Microporous Material Containing GeO4 and GeO6 Polyhedra in Nine-Rings. Angew. Chem. Int. Ed. 1998, 37,129-131.
    [61] Concepcion Cascales, Enrique Gutie?rrez-Puebla, Marta Iglesias, M. Angeles Monge, and Caridad Ruíz-ValeroA Germanium Zeotype Containing Intratunnel Transition Metal Complexes. Angew. Chem. Int. Ed. 1999, 38, 2436-2439.
    [62] Concepci′on Cascales, Enrique Gutierrez-Puebla, Marta Iglesias, M. Angeles Monge, Caridad Ruiz-Valero and Natalia Snejko. Ge8O16[(OH)2(MeNH3)+(MeNH2)]: one OH-templated germanium zeotype. Chem. Commun., 2000, 2145–2146.
    [63] C. Cascales, B. Gomez-Lor, E. Gutierrez-Puebla, M. Iglesias, M. A. Monge, C. Ruiz-Valero, and N. Snejko. Alternation of [Ge5O11H]- Inorganic Sheets and Dabconium Cations in a Novel Layered Germanate: Catalytic Properties. Chem. Mater. 2002, 14, 677-681.
    [64] Manuela E. Medina, Marta Iglesias, M. Angeles Monge and Enrique Gutiérrez-Puebla Cooperative directing effect of OH anions and polymerized DABCO cations in the formation of the Ge16O32(OH)2(C6H12N2H)+(C6H12N2)·1.125H2O zeotype. Chem. Commun., 2001, 2548–2549.
    [65] M. E. Medina, M. Iglesias, N. Snejko, E. Gutie′rrez-Puebla, and M. A. Monge. Chiral Germanium Zeotype with Interconnected 8-, 11-,and 11-Ring Channels. Catalytic PropertiesChem. Mater. 2004, 16, 594-599.
    [66] R. Tacke, J. Becht, A. Lopez-Mras, J. J. Sperlich. Organomet. Chem, 1993, 446, 1-8.
    [67] S. Feng, M. Tsai, M. Greenblatt. Preparation, ionic conductivity, and humidity-sensing property of crystalline microporous sodium germanates, Na3HGe7O16.cntdot.xH2O, x = 0-6. I. Chem Mater, 1992, 4, 388-393.
    [68] S. Feng, M. Greenblatt. Preparation, characterization and ionic conductivity of novel crystalline, microporous germanates, M3HGe7O16.cntdot.xH2O, M = NH4+, Li+, K+, Rb+, Cs+; x = 4-6. II . Chem Mater, 1992, 4, 462-468.
    [69] S, Feng, M, Tsai, S, Szu, M, Greenblatt. Preparation, Characterization, and Ionic Conductivity of Novel Crystalline, Microporous Silicogermanates, M3HGe,-mSim016*~H20, M = K+, Rb+, CS+; 0 < m < 3; x = 0-4. 3 Chem Mater, 1992, 4, 468-472.
    [70] Y. M. Zhou, Z. C. Liu, Z. X. Chen, L. H. Weng, D. Y. Zhao. Two Microporous Germanates Constructed by Ge10O28Units. Acta Chimica sinica. 2003, 61, 382-387.
    [71] M. A. Roberts, A. N. Fitch, A. V. Chadwick. The crystal structures of (NH4)3HGe7O16.nH2O and Li4-xHxGe7O16.nH2O determined from powder diffraction data using synchrotron radiation. Journal of Physics and Chemistry of Solids, 1995, 56,1353-1358.
    [72] T. M. Nenoff, W. T. A. Harrison, G. D. Stucky. Na3Hx(H2PO4)x[(GeO)4(GeO4)3].cntdot.4H2O: A rhombohedrally-distorted germanium pharmacosiderite analog with anion/cation exchange capabilities. Chem Mater, 1994, 6 , 525-530.
    [73] W. T. A. Harrison, T. E. Gier, G. D. Stucky. Single-crystal structure of Cs3HTi4O4(SiO4)3·4H2O, a titanosilicate pharmacosiderite analog Zeolites. 1995, 15, 408-412.
    [74] E. A. Behrens, D. M. Poojary, A. Clearfield. Syntheses, Crystal Structures, and Ion-Exchange Properties of Porous Titanosilicates, HM3Ti4O4(SiO4)3·4H2O (M = H+, K+, Cs+), Structural Analogues of the Mineral Pharmacosiderite. Chem Mater, 1996, 8, 1236-1244.
    [75] E. A. Behrens, A. Clearfield. Titanium silicates, M3HTi4O4(SiO4)3 . 4H2O (M = Na+, K+), with three-dimensional tunnel structures for the selective removal of strontium and cesium from wastewater solutions. Microporous Mater, 1997, 11, 65-75.
    [76] E. A. Behrens, D. M. Poojary, A. Clearfield. Syntheses, X-ray Powder Structures, and Preliminary Ion-Exchange Properties of Germanium-Substituted Titanosilicate Pharmacosiderites:HM3(AO)4(BO4)3·4H2O (M = K, Rb, Cs; A = Ti, Ge; B = Si, Ge). Chem Mater, 1998, 10, 959-967.
    [77] Akhilesh Tripathi, John B. Parise, Sun Jin Kim, Yongjae Lee, Geoffrey M. Johnson, and Young Sun UhStructural Changes and Cation Site Ordering in Na and K Forms of luminoger manates with the Zeolite Gismondine Topology. Chem. Mater. 2000, 12, 3760-3769.
    [78] Akhilesh Tripathi a, Sun Jin Kim b, Geoffrey M. Johnson b, John B. Parise. Synthesis and single-crystal structure of a lithium aluminogermanate with the zeolite ABW topology. Micro porous and Mesoporous Materials 34 (2000) 273–279.
    [79] A.M. Healey, P.F. Henry, G.M. Johnson, M.T. Weller, M. Webster, A.J. Genge. The synthesis and characterisation of JBW-type zeolites. Part B: Sodium/rubidium alumino germanate, Na2Rb[Al3Ge3O12]·H2O. Microporous and Mesoporous Materials 2000, 37, 165–174.
    [80] G.M. Johnson a, A. Tripathi b, J.B. PariseSynthesis and structure of a microporous aluminogermanate with the zeolite rho topologyMicroporous and Mesoporous Materials 1999, 28, 139–154.
    [81] Yongjae Lee, John B. Parise, Akhilesh Tripathi, Sun Jin Kim, Thomas Vogt. Synthesis and crystal structures of gallium and germanium variants of cancriniteMicroporous and Mesoporous Materials, 2000, 39, 445-455.
    [82] Akhilesh Tripathi, Geoffrey M. Johnson, Sun Jin Kim and John B. Parise. Na2Al2Ge3 O10·2H2O: an aluminogermanate with the tetranatrolite topologyJ. Mater. Chem., 2000, 10, 451-455.
    [83] Akhilesh Tripathia, John B. Parise. Hydrothermal synthesis and structural characterization of the aluminogermanate analogues of JBW, montesommaite, analcime and paracelsian Micro porous and Mesoporous Materials. 2002, 52 65-78.
    [84] Sheldrick, G M (1997). SHELXTL Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA
    [85] Bruker (2005). APEX2. Version 1.27. Bruker AXS Inc., Madison, Wisconson, USA

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700