稀土掺杂半导体纳米晶及全色荧光粉的合成与性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用水热法制备了共掺杂的全色Zn2SiO4:Ti, Mn, Eu发光粉,SnO2:Eu3+纳米晶,ZnO:Eu3+(0.5.at.%)纳米晶。采用X射线衍射仪(XRD),荧光光谱仪进行分析,研究了发光粉的晶体结构和发光性质。
     采用水热法制备了不同掺杂浓度的Zn2SiO4:Ti, Mn, Eu系列荧光粉,不同掺杂浓度的Zn2-xSiO4:xTi4+系列荧光粉以及白色荧光粉Zn2SiO4:Ti, Mn, Eu系列。XRD表明样品均为纯相硅锌矿结构的Zn2SiO4。荧光光谱检测表明:Zn2-xSiO4:xMn2+系列发光粉的激发谱由Zn2SiO4基质吸收带和Mn2+的电荷迁移带组成,发射谱由Mn2+的4T1-6A1跃迁发射形成,Zn2-xSiO4:xMn2+发光强度随Mn2+掺杂浓度增加而增强,当样品掺杂浓度高于3.0 at.%时出现浓度淬灭。Zn2-xSiO4:xTi4+系列样品的激发谱由属于Ti4+电荷迁移带的宽激发带组成,发射光谱起源于Ti4+的2E-1T跃迁。当Ti4+掺杂浓度在2.5at.%时出现浓度淬灭。通过对不同掺杂离子浓度的调节,实现了En, Mn, Ti共掺杂Zn2SiO4发光粉的白光发射。
     采用水热法合成了SnO2:Eu3+纳米晶,并在不同温度下对此样品进行热处理。XRD表明实验制备得到的样品均为纯相金红石结构的SnO2。样品的颗粒随热处理温度的升高而增大。光谱研究表明,热处理后的样品激发谱中除含有Eu3+的f-f跃迁的特征激发峰外还有O2--Eu3+电荷迁移带,但未经热处理的样品不出现电荷迁移带,发光强度热处理温度成反比。
     采用水热法合成了ZnO:Eu3+(0.5.at.%)纳米晶,通过改变实验条件实现了纳米晶尺寸的完全可控。XRD分析表明样品均为纯相纤锌矿结构的ZnO。颗粒越小,样品的发光强度越大,经过热处理后,ZnO:Eu3+(0.5.at.%)纳米晶发光强度明显减弱,发射峰产生红移。
The full-color emitting Zn2SiO4:Ti, Mn, Eu phosphors, red-emitting SnO2:Eu3+and ZnO:Eu3+ nanocrystals were prepared by hydrothermal method. The phosphor crystal structures were analysised by X-ray diffraction (XRD) and their optical properties were studied by PL.
     The crystal structures of the Zn2SiO4:Ti, Mn, Eu phosphors prepared by hydrothermal method with different conditions show the same pure Zn2SiO4 structure. The excitation spectra of Zn2-xSiO4:x Mn are consist of an intense charage transfer band and host absorption. The PL spectra, excited at 247 nm, are consist of the 4T1-6A1 emission transitions of Mn2+. The PL intensities of the phosphors are dependent on Mn2+ concentration and quenched for the Mn2+concentration of 3.0 at.%. The excitation spectra of Zn2-xSiO4:x Ti4+ is consist of an intense O2--Ti4+charage transfer band and the PL spectra , excited at 220 nm, are consist of the 2E-1T emissions of Ti4+. Their PL intensity are dependent on Ti4+ concentration and quenched for the Ti4+concentration of 2.5 at.%. The white light-emitting phosphors obtained by codoping Ti, Mn and Eu in Zn2SiO4.
     SnO2:Eu3+ nanophosphors were prepared by hydrothermal method. XRD analysis showed the formation of pure tetragonal rutile crystalline phase of tin oxide. Some samples were sintered at different temperatures. The sizes of SnO2:Eu3+ nanocrystals grew bigger when heat treatment temperature increased. The PL intensities of SnO2:Eu3+ nanocrystal are reduced by the heat treatment. The excitation spectra of SnO2:Eu3+ nanocrystal are consist of f-f transitions of Eu3+.
     ZnO:Eu3+ nanophosphors were prepared by hydrothermal method. XRD analysis showed the formation of pure wurtzite crystalline phase of zinc oxide. The ZnO:Eu3+ nanocrystals with the different sizes can be obtained by controlling Zn2+ concentration. we found that the smaller the size of the ZnO:Eu3+ nanophosphor the stronger the light emission. The PL intensities of the ZnO:Eu3+ nanophosphors decrease significantly with the heat treatment. There is the red shift of emission peak at 699nm after the heat treatment.
引文
[1]张凯刘河洲胡文彬.白光LED用荧光粉的研究进展[J]材料导报2005,9(19):51-54。
    [2] Chongfeng Guo, Dexiu Huang, Qiang Su.Methods to improve the fluorescence intensity of CaS:Eu2+ red-emitting phosphor for white LED[J]. Materials Science and Engineering: B, Volume 130, Issues 1-3, 15 June 2006, Pages 189-193.
    [3] R.S. Ningthoujam, V. Sudarsan, S.K. Kulshreshtha .SnO2:Eu nanoparticles dispersed in silica: A low-temperature synthesis and photoluminescence study[J]. Journal of Luminescence, Volume 127, Issue 2, December 2007, Pages 747-756.
    [4] Xiaoyan Fu, Shuyun Niu, Hongwu Zhang,etal.Photoluminescence enhancement of SnO2:Eu by Mg2+ doping[J].. Materials Science and Engineering: B, Volume 123, Issue 1, 15 November 2005, Pages 45-49.
    [5]Hongwu Zhang, Xiaoyan Fu, Shuyun Niu, etal.Luminescence properties of Li+ doped nanosized SnO2:Eu [J]. Journal of Luminescence, Volume 115, Issues 1-2, October 2005, Pages 7-12.
    [6] Xiaoyan Fu, Hongwu Zhang, Shuyun Niu, etal.Synthesis and luminescent properties of SnO2:Eu nanopowder via polyacrylamide gel method[J]. Journal of Solid State Chemistry, Volume 178, Issue 3, March 2005, Pages 603-607.
    [7] Evandro A. de Morais, Luis V.A. Scalvi, Alberto A. Cavalheiro, etal.Rare earth centers properties and electron trapping in SnO2 thin films produced by sol–gel route[J].Journal of Non-Crystalline Solids, Volume 354, Issues 42-44, 1 November 2008, Pages 4840-4845.
    [8] Te-Hua Fang, Yee-ShinChang, Liang-WenJi, etal. Photoluminescence characteristics of ZnO doped with Eu3+ powders[J].Journal of Physics and Chemistry of Solids, Volume 70, Issue 6, June 2009, Pages 1015-1018. [9.] L. Robindro Singh, R.S. Ningthoujam, V. Sudarsan, etal. Probing of surface Eu3+ ions present in ZnO:Eu nanoparticles by covering ZnO:Eu core with Y2O3 shell[J].Luminescence study. Journal of Luminescence, Volume 128, Issue 9, September 2008, Pages 1544-1550.
    [10] Mingya Zhong, Guiye Shan, Yajun Li,etal.Synthesis and luminescence properties of Eu3+-doped ZnO nanocrystals by a hydrothermal process[J].Materials Chemistry and Physics, Volume 106, Issues 2-3, 15 December 2007, Pages 305-309.
    [11] Suparna Sadhu, Tapasi Sen, Amitava Patra. Shape controlled synthesis and luminescence properties of ZnO:Eu3+ nanostructures[J].Chemical Physics Letters, Volume 440, Issues 1-3, 25 May 2007, Pages 121-124.
    [12]A. Ishizumia, Y. Taguchia, A. Yamamotoa etal.Luminescence properties of ZnO and Eu3+-doped ZnO nanorod [J]. Thin Solid Films.Volume 486, Issues 1-2, 22 August 2005, Pages 50-52 .
    [13] Y. Terai, K. Yamaoka, K. Yoshida,etal. Photoluminescence properties of Eu-doped ZnO films grown by sputtering-assisted metalorganic chemical vapor deposition. Physica E: Low-dimensional Systems and Nanostructures. In Press, Corrected Proof, Available online 12 March 2010.
    [1] Hang Hong, Guo-Ping Ji, Dong-Qing Ye .International Journal of Gynecology & Obstetrics, Volume 106, Issue 1, July 2009, Pages 69-70.
    [2] Chaofeng Zhua, Xiaoluan Lianga, Yunxia Yanga ,etal. Journal of Luminescence Volume 130, Issue 1, January 2010, Pages 74-77.
    [3] Xiang-you Lu, Tse-Chao Huaa, Mei-jing Liua etal. Thermochimica Acta Volume 493, Issues 1-2, 10 September 2009, Pages 25-29 .
    [4] Huanting Chena, Yijun Lua, Yulin Gaoa, etal. Thermochimica Acta Volume 488, Issues 1-2, 5 May 2009, Pages 33-38.
    [5] Yunsheng Hua, Weidong Zhuanga, Hongqi Yeb, etal.Journal of Luminescence Volume 111, Issue 3, 1 February 2005, Pages 139-145.
    [6] Liangzhun Yanga, Xibin Yu, Shiping Yanga,etal. Materials Letters Volume 62, Issues 6-7, 15 March 2008, Pages 907-910.
    [7] Ji-Young Jina, Hyung-Gu Kimb, Chang-Hee Hongb, etal. Synthetic Metals Volume 157, Issues 2-3, 15 February 2007, Pages 138-141.
    [8] Germano Veras, Edvan Cirino Silva,Wellington Silva Lyra,etal. Talanta,Volume 77, Issue 3, 15 January 2009, Pages 1155-1159.
    [9] A. Kobayashi, Y. Dohmen.International Congress Series, Volume 1282, September 2005, Pages 627-630.
    [10] Kai YU, Xue-cheng ZOU, Shuang LONG,etal. The Journal of China Universities of Posts and Telecommunications, Volume 16, Issue 1, February 2009, Pages 95-99.
    [11] Xiaoyuan Sun, Jiahua Zhang, Xia Zhang,etal. Journal of Luminescence, Volumes 122-123, January-April 2007, Pages 955-957.
    [12] H. P. Ho, S. Y. Wu, M. Yang,etal.Sensors and Actuators B: Chemical, Volume 80, Issue 2, 20 November 2001, Pages 89-94.
    [13] Xiaoxia Zhao, Xiaojun Wang, Baojiu Chen,etal.Optical Materials, Volume 29,Issue 12, August 2007, Pages 1680-1684.
    [14] Fang Yinga,Zhuang Weidonga, Hu Yunshenga,etal.Journal of Rare Earths Volume 25, Issue 5, October 2007, Pages 573-577.
    [15] Xu Li, Zhiping Yanga, Li Guana,etal.Journal of Alloys and Compounds Volume 464, Issues 1-2, 22 September 2008, Pages 565-568.
    [1] LI Bao-zeng, GUO Hai, CHEN Xue-sheng, et al.Up-conversion Luminescence of Er3+ and Er3+/Yb3+ Ions Doped PLZT for Active Electrooptical Applications. [J] Chin. J. Lumin.(发光学报), 2007,28(1):62-66 (in Chinese).
    [2] HE Zhi-yi, CHEN Ming-song. Carrier Trapping Centers in Alkaline-earth Sulfide Crystals Doped with Rare-earths. [J] Chin. J. Lumin.(发光学报), 2008,29(1):75-80 (in Chinese).
    [3] WU Lili, WU Youshi, ZOU Ke, et al. Photoluminescent Properties of La and Ce Doped ZnO Nanocrystals . [J] Chin. J. Lumin.(发光学报), 2008,29(3):523-526 (in Chinese).
    [4] WANG Yan,QIN Wei-ping, ZHANG Ji-sen, et. al.Synthesis and Photoluminescence of Tb(Asprin)3Phen/SiO2 core/shell Nanospheres. [J] Chin. J. Lumin.(发光学报),2008,29(6):1081- 1085(in Chinese).
    [5] Zhang Hongwu, Fu Xiaoyan, Niu Shuyun, Fu Gongquan et al. Luminescence properties of Li+ doped nanosized SnO2:Eu.[J]Journal of Luminescence. 2005, 115 (1-2): 7-12.
    [6] Zhang Hongwu, Fu Xiaoyan, Niu Shuyun ,et al. Synthesis and luminescent properties of SnO2: Eu nanopowder via polyacrylamide gel method [J] Journal of Solid State Chemistry. 2005,178 (3) : 603-607 .
    [7] R.S . Ningthoujam , V . Sudarsan and S .K . Kulshreshtha. SnO2: Eu nanoparticles dispersed in silica : A low-temperature synthesis and photoluminescence study .[J]Journal of Luminescence . 2007 ,127 (2) : 747-756 .
    [8] Chang Sung-Sik and M .S . Jo . Luminescence properties of Eu - doped SnO2 . [J] Ceramics International .2007 ,33(4) : 511– 514 .
    [9] He Yunpu, Li Yadong, Yu Juan ,et al. Chemical control synthesis of nanocrystalline SnO2 by hydrothermal reaction. [J] Materials Letters. 1999, 40(1) : 23– 26.
    [10] Geng Lina, Zhao Yingqiang, Huang Xueliang, et al. Characterization and gas sensitivity study of polyaniline/SnO2 hybrid material prepared by hydrothermal route [J]. Sensors and Actuators B: Chemical. 2007,120 (2):568 -572.
    [11] Jin Haiying, Xu Yaohua, Pang Guangsheng,et al. Al - doped SnO2 nanocrystals from hydrothermal systems. [J] Materials Chemistry and Physics 2004, 85(1): 58 - 62.
    [12] Guo Caixin, Cao Minhua and Hu Changwen . A novel and low - temperature hydrothermal synthesis of SnO2 nanorods. [J] Inorganic Chemistry Communications. 2004, 7(7):929-931.
    [13] Alan G. Jolya, Wei Chenb, Jun Zhangc,et al.. Electronic energy relaxation and luminescence decay dynamics of Eu3+ in Zn2SiO4:Eu3+ phosphors. [J] Journal of Luminescence. 2007,126 (2) :491-496.
    [14] Zhanga Qing-li, Guoa Chang-xin, Shi Chao-shu,et al. High-resolution photoluminescence spectrum of GdVO4:Eu [J].Journal of Alloys and Compounds.2000, 309(1-2): 10-15.
    [15] R.N. Bhargava, Gallaghera and T. Welkerb. Doped nanocrystals of semiconductors - a new class of luminescent materials. [J].Journal of Luminescence. 1994, 60-61:275-280.
    [16] Pramod K. Sharma, M. H. Jilavi, R. Nass, et al.. Tailoring. the particle size fromμm→nm scale by using a surface modifier and their size effect on the fluorescence properties of europium doped yttria [J] Journal of Luminescence. 1999,82 (3) :187-193.
    [1] You Jin Lee, No-Kuk Park, Gi Bo Han,etal.The preparation and desulfurization of nano-size ZnO by a matrix-assisted method for the removal of low concentration of sulfur compounds[J]..Current Applied Physics, Volume 8, Issue 6, October 2008, Pages 746-751.
    [2] Ki-Yeon Yang, Kyung-Min Yoon, Kyung-Woo Choi, etal.The direct nano-patterning of ZnO using nanoimprint lithography with ZnO-sol and thermal annealing[J].Microelectronic Engineering, Volume 86, Issue 11, November 2009, Pages 2228-2231.
    [3] Xin Zhou, Shulin Gu, Zhe Wu, etal.Photoluminescence study of ZnO nano-islands[J]..Applied Surface Science, Volume 253, Issue 4, 15 December 2006, Pages 2226-2229.
    [4] Bin Zhao, Huilan Chen.Synthesis novel multi-petals ZnO nano-structure by a cyclodextrin assisted solution route[J]..Materials Letters, Volume 61, Issue 27, November 2007, Pages 4890-4893.
    [5] Jianzhang Shi, Quanxi Cao, Yunge Wei, etal.ZnO varistor manufactured by composite nano-additives[J]..Materials Science and Engineering B, Volume 99, Issues 1-3, 25 May 2003, Pages 344-347.
    [6] S. Venkatachalam, Yoshinori Kanno.Preparation and characterization of nano and microcrystalline ZnO thin films by PLD[J]..Current Applied Physics, Volume 9, Issue 6, November 2009, Pages 1232-1236.
    [7] Hongbin Cheng, Jiping Cheng, Yunjin Zhang,etal.Large-scale fabrication of ZnO micro-and nano-structures by microwave thermal evaporation deposition[J]..Journal of Crystal Growth, Volume 299, Issue 1, 1 February 2007, Pages 34-40.
    [8] Yuke Li, Guorong Li, Qingrui Yin.Preparation of ZnO[J]. varistors by solution nano-coating technique.Materials Science and Engineering: B, Volume 130, Issues 1-3, 15 June 2006, Pages 264-268.
    [9] L. Luo, L. Gong, Y.F.etal.Enhanced ultraviolet lasing from europium-doped zinc oxide nanocrystals.Optical Materials, In Press, Corrected Proof, Available online 17 March 2010.
    [10] Suparna Sadhu, Tapasi Sen, Amitava Patra.Shape controlled synthesis and luminescence properties of ZnO: Eu3+ nanostructures[J]..Chemical Physics Letters, Volume 440, Issues 1-3, 25 May 2007, Pages 121-124.
    [11] Meili Wang, Changgang Huang, Zhi Huang, etal.Synthesis and photoluminescence of Eu-doped ZnO microrods prepared by hydrothermal method[J]..Optical Materials, Volume 31, Issue 10, August 2009, Pages 1502-1505.
    [12]Jinghai Yang, Ming Gao, Lili Yang, etal.Low-temperature growth and optical properties of Ce-doped ZnO nanorods[J]..Applied Surface Science, Volume 255, Issue 5, Part 2, 30 December 2008, Pages 2646-2650.
    [13]Junying Zhang, Haibing Feng, Weichang Hao, etal.Luminescent properties of ZnO sol and film doped with Tb3+ ion[J]..Materials Science and Engineering: A, Volume 425, Issues 1-2, 15 June 2006, Pages 346-348.
    [14] Seung Chul Lyua, Ye Zhanga, Hyun Ruhb, etal.Low temperature growth and photoluminescence of well-aligned zinc oxide nanowires[J].Chemical Physics Letters.Volume 363, Issues 1-2, 2 September 2002, Pages 134-138. [15 ]R.N. Bhargava, Gallaghera and T. Welkerb. Doped nanocrystals of semiconductors - a new class of luminescent materials. [J].Journal of Luminescence. 1994, 60-61:275-280.
    [16] Pramod K. Sharma, M. H. Jilavi, R. Nass, et al.. Tailoring. the particle size fromμm→nm scale by using a surface modifier and their size effect on the fluorescence properties of europium doped yttria [J] Journal of Luminescence. 1999,82 (3) :187-193.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700