Parkin和Interleukin-1β在帕金森病中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分
     Parkin基因的突变与常染色体青少年帕金森症密切相关,而且早发性PD中超过50%的病例发现有Parkin基因的突变。Parkin蛋白是一种E3泛素连接酶,它紧密联系着参与PD进程的蛋白泛素化修饰和泛素蛋白酶体系统。目前发现的Parkin底物有:CDCrel-1,CDCrel-2a,synphilin-1,糖基化的α-synuclein,Pael-R,错误折叠的DJ-1和Hsp70等。大量研究显示Parkin对于由底物蛋白过表达(如突变形式的α-synuclein、Pael-R、CDCrel-1和错误折叠的DJ-1等)造成的细胞毒性有明显的保护作用。其神经保护作用同样见于MPTP或6-OHDA诱导的PD动物模型中。另外,在内质网应激、蛋白酶体抑制、海人藻酸引起的兴奋性毒和神经酰胺诱导的线粒体凋亡等情况下,Parkin的高表达同样能挽救受损的神经元。因此Parkin在多巴胺能神经元存活方面发挥重要作用。但是Parkin剔除小鼠脑内并未发现多巴胺能神经元的改变,却显示出线粒体功能的异常。
     为研究Parkin在体内的PD进程中的保护作用和机制,我们构建了神经元特异性表达Parkin的转基因小鼠,并分析了这种小鼠对于MPTP的神经毒性是否具有抵抗作用及其相关机制。研究结果如下:
     1.Parkin转基因小鼠在mRNA和蛋白水平都有转基因Parkin的表达。
     我们分别从转录水平和蛋白水平检测各Founder子代小鼠脑内转基因的表达情况,最终得到两株转基因小鼠品系。转录水平上,转基因Parkin在小鼠皮层、海马、纹状体和黑质部都有表达,且Parkin蛋白在转基因小鼠各脑区表达增加。焦油紫(CV)染色显示转基因与野生型小鼠之间没有明显的形态改变。
     2.青年和老年Parkin转基因小鼠对于MPTP诱导多巴胺神经毒性都具有保护作用。
     青年和老年转基因及野生型小鼠在MPTP注射后1天和3天后,我们观察了脑内纹状体TH蛋白的表达和黑质区TH阳性细胞的数量。结果显示青年Parkin转基因小鼠与野生型小鼠相比,在MPTP注射3天后纹状体TH蛋白呈现显著升高的表达,而在MPTP注射1天后黑质区TH阳性细胞数量的降低明显减小。MPTP在老年Parkin转基因小鼠脑内引起的TH蛋白和TH阳性细胞数量的下降幅度明显低于野生型小鼠。该结果提示Parkin在各年龄小鼠脑内均具有神经保护作用。
     3.青年Parkin转基因与野生型小鼠之间纹状体内DA及其代谢产物的含量没有明显差异。
     HPLC用于检测青年小鼠脑内纹状体DA及其代谢产物的含量,结果显示MPTP引起纹状体DA及其代谢产物含量的减少,Parkin转基因和野生型小鼠之间未见明显差异。说明Parkin可能不影响DA的代谢过程。
     4.MPTP所引起的黑质区线粒体损伤在Parkin转基因小鼠脑内明显降低。
     MPTP的神经毒性作用首先损伤线粒体功能,Parkin是否可以改善由MPTP引发的线粒体损伤,为此,我们利用电镜观察了黑质致密部神经元内线粒体的形态变化。结果显示MPTP在野生型小鼠脑内引起的线粒体肿胀、空泡和嵴减少等损伤现象在Parkin转基因小鼠脑内有明显的改善。说明Parkin可对毒性物质造成的线粒体损伤产生保护作用。
     5.Parkin转基因小鼠黑质区呈现bcl-2,bax,iNOS和DJ-1等基因在转录水平上的改变。
     我们进一步检测了线粒体功能相关基因bcl-2、bax、DJ-1和PINK1,炎症相关因子iNOS和TNFα,及其他相关基因CHIP和UCH-L1的转录水平变化。结果显示bcl-2和DJ-1的表达在青年Parkin转基因小鼠脑内显著上调,而老年转基因小鼠在MPTP注射3天后出现bcl-2的表达上调、bax和CHIP的表达下调。提示Parkin的神经保护作用可能与bcl-2和DJ-1的上调或bax等基因的下调有关。
     6.α-synuclein蛋白的表达在老年转基因小鼠的纹状体显著降低;而Hsp70的表达在各组之间没有明显改变。
     Hsp70是与Parkin相互作用的蛋白,还可以通过上调bcl-2或下调bax等机制抑制线粒体相关的凋亡通路。我们检测了各组小鼠纹状体Hsp70的表达,结果并没有发现Hsp70蛋白表达的显著改变。而与PD进程中Lewy Body的形成密切相关的蛋白α-synuclein却在老年Parkin转基因小鼠脑内出现显著的下调。以上结果提示Parkin在老年小鼠脑内可能部分通过下调α-synuclein的表达从而减少脑内的蛋白聚集以达到保护DA神经元的作用。
     结论:
     1.Parkin通过减少线粒体损伤改善MPTP引起的多巴胺能神经退行性改变。
     2.Parkin并不影响MPTP导致的纹状体DA及其代谢物的含量下降。
     3.Parkin在老年小鼠脑内下调α-synuclein的表达,可部分解释Parkin的神经保护作用。
     第二部分
     神经免疫是一种重要的PD发病机制。在PD病人和MPTP诱导的动物模型脑内发现有大量小胶质细胞和星形胶质细胞的激活。胶质细胞释放的细胞因子IL-1β在中枢神经系统损伤情况下可以调节细胞的反应。PD病人脑内黑质和纹状体区都检测到IL-1β的增加,提示IL-1β可能参与PD进程。但目前对于IL-1β在大脑损伤过程中的确切作用仍无定论。PD的流行病学研究发现男性的发病率明显高于女性,雌激素被认为是发挥神经保护作用的物质,在人和PD小鼠模型中都证明了这一点,说明雌激素是PD发病率中雌雄差异的基础之一。
     为探究PD发病中IL-1β的变化规律及IL-1β和老年雌性与雄性小鼠PD发病差异之间的相关性,我们利用一种人IL-1β基因的启动子驱动萤火虫酶表达的转基因报告小鼠建立了MPTP诱导的亚急性PD模型,研究老年雌性与雄性小鼠中IL-1β的表达模式,研究结果如下:
     1.MPTP引起老年雄鼠脑内急剧升高的萤火虫酶表达,并呈现明显波动变化,而雌鼠脑内的升高变化趋于平稳。
     在MPTP或生理盐水注射过程中不同的时间点进行萤火虫酶活性的检测。MPTP均引起雌性与雄性小鼠脑内酶活性的增加,49h雌鼠脑内的信号已回复至基础水平,而雄鼠仍然维持在较高水平。量化后的信号显示在雌性和雄性小鼠脑内MPTP引起的萤火虫酶升高呈现不同的变化趋势,雄鼠变化急剧且波动明显,雌鼠的变化则较缓与平稳。
     2.MPTP在老年雌鼠脑内引起的多巴胺神经毒性较雄鼠减小。
     MPTP末次注射后65h,老年雌性和雄性小鼠纹状体TH蛋白的表达都明显下降,且雄鼠的下降幅度比雌鼠更大。MPTP引起的雄鼠脑内黑质部TH阳性神经细胞数量的显著减少,而雌鼠脑内TH阳性神经细胞数量的变化却不明显。
     3.黑质部几种炎症因子和凋亡相关分子的转录水平表达在各组之间差异不大。我们用实时定量PCR的方法检测了MPTP末次注射65h后,黑质部多种基因在转录水平上的表达变化,包括细胞因子TNF-α和IL-6,促炎分子iNOS,及凋亡相关分子bcl-2和bax。结果显示在这个时间点除IL-6在雌鼠MPTP注射和生理盐水对照组之间的p值等于0.07外,其余基因在各组之间均无显著变化。
     4.MPTP引起雌性和雄性小鼠纹状体GFAP蛋白表达显著升高,BDNF的表达在各组之间无明显变化。
     我们通过Western blot检测MPTP末次注射65h后纹状体GFAP和BDNF蛋白的表达变化。结果显示MPTP引起老年雌性和雄性鼠GFAP蛋白的显著上升,雌雄之间无明显差异;BDNF在各组之间无显著变化。
     结论:
     1.老年雄鼠脑内MPTP诱导的升高且变化剧烈波动的IL-1β可能会导致DA神经元对MPTP易感性增加。
     2.MPTP在老年雌鼠脑内引起的神经毒性明显低于雄鼠。
PartⅠ
     Mutations in the Parkin gene are associated with autosomal recessive juvenile parkinsonism(AR-JP),accounting for more than 50%of early onset PD cases.Parkin, as an ubiquitin E3 ligase,provides an important link between protein ubiquitination and the ubiquitin-proteasome system(UPS) in the pathogenesis of PD.A number of Parkin substrates have been identified,including CDCrel-1,CDCrel-2a,synphilin-1, glycosylatedα-synuclein,Pael-R,misfolded DJ-1,Hsp70,etc.Several recent papers have shown that expression of parkin is beneficial to dopaminergic neurons as it protects them from a number of damaging events such as overexpression of mutant forms ofα-synuclein,Pael-R,CDCrel-1,misfolded DJ-1 or neurotoxin MPTP and 6-OHDA.Parkin is also reported to be protective against ER stress,proteasomal inhibition,kainic acid 'excitotoxicity' and ceramide-induced mitochondrial apoptosis. However,Parkin deficient mice display little or no alteration in dopamine neuron survival,but show reduced mitochondrial function.
     To determine the protective effect of parkin in PD process in vivo,we generated Parkin transgenic mice in which the expression of parkin is confined to neurons.We examined whether MPTP induced less neurotoxicity in Parkin transgenic mice,the results are summarized as follows:
     1.Transgenic mice showed transgene expression at mRNA and protein levels.
     Offsprings of different founder mice were screened for transgene expression at both mRNA and protein levels,we finally got two transgenic mouse lines.The transgenic mice showed exogenous Parkin transcription and elevated Parkin protein expression in the cortex,hippocampus,striatum and substantia nigra.Creysl violet staining of different brain regions revealed no change between transgenic mice and wild type littermates.
     2.Young and old Parkin transgenic mice displayed different protection patterns of dopamine neurons after MPTP administration.
     We examined TH protein expression in the striatum and TH positive neurons in the substantia nigra after MPTP administration.Compared to wild type litermates,young Parkin transgenic mice showed less reduction of TH protein expression in the striatum 3 days after MPTP toxication,while TH positive cells in the SN were less decreased 1day after MPTP treatment.MPTP induced less neurotoxicity both at 1 day and 3 days after MPTP administration in old transgenic mice.These data indicate that Parkin protects DA neurons from MPTP toxicity.
     3.DA and its metabolites didn't show significant change in young Parkin transgenic mice and wild type littermates.
     Measured by HPLC,striatal DA and its metabolites showed decreased concentrations after MPTP treatment.No significant change was observed between Parkin transgenic mice and wild type littermates.It suggests Parkin may be not involved in DA metabolism.
     4.MPTP elicited less mitochondrial impairment in Parkin transgenic mice.
     MPTP is reported to impair mitochondrial function.In order to examine whether Parkin could protect mitochondria,we observed morphology of mitochondria in the substantia nigra pars compacta after MPTP administration.Electron microscopy showed increased abnormal mitochondria with numerous vacuoles and fragmented cristae in wild type mice after MPTP treatment,while less impaired mitochondria were found in Parkin transgenic mice.This indicates that Parkin can protect mitochondria from MPTP toxicity.
     5.Transcriptional expression of bcl-2,bax,iNOS and DJ-1 altered within groups.
     We then examined the transcriptional expression of mitochondrial related genes, such as bcl-2,bax,DJ-1 and PINK1,pro-inflammation molecules iNOS and TNFα, and other related genes such as CHIP and UCH-L1.We found that bcl-2 and DJ-1 remained up-regulated in the young Parkin transgenic mice,while the up-regulation of bcl-2 and down-regulation of bax and CHIP were detected in the old Parkin transgenic mice 3 days after MPTP administration.These data may in part explain the beneficial role of Parkin.
     6.α-synuclein protein expression in the striatum was reduced in old Parkin transgenic mice,while Hsp70 expression remained unchanged.
     As one of the substrate proteins of Parkin,Hsp70 can inhibit mitochondrial apoptosis.Thus,we detected the protein expression of Hsp70 in the striatum within groups and revealed no significant change,α-synuclein,which is involved in the formation of Lewy Body in PD,showed decreased protein expression in old Parkin transgenic mice.This may in part explain that Parkin protects DA neurons through down regulatingα-synuclein to reduce protein aggregation during PD process.
     Conclusion:
     1.Parkin attenuates dopaminergic neurodegeneration induced by MPTP through protection of mitochondria.
     2.MPTP-induced depletion of the striatal DA and its metabolites is not protected by Parkin.
     3.Downregulation ofα-synuclein protein expression in the old Parkin transgenic mice may in part explain the protection of Parkin.
     PartⅡ
     There is increasing evidence that recognition of the possible role of neuroinflammation is a causative factor in the pathogenesis of PD.Glial reaction, which is featured by activation of microglia and astrocytes,is observed in brain tissues of postmortem PD patients and MPTP-induced animal models.IL-1β,an inflammatory cytokine released mainly from glial cells,plays important roles in mediating cellular responses to injuries in the central nerve system.The expression of IL-1βhas been reported to be elevated in the striatum and substantia nigra of PD patients,suggesting its association with PD.However,findings about the role of IL-1βduring brain damage were contradictoryreported.Moreover,greater prevalence of PD in men compared to women is reported.Estrogen is conceived reported to exert dopaminergic neuroprotection both in human and PD mice model,this may be one of the explanations of the gender difference in PD.
     To determine the changes of IL-1βexpression and the association between the IL-1βexpression and the prevalence of PD in aged mice.By using a sensitive transgenic mice model in which the expression of luciferase reporter gene is under the control of human IL-1β.gene promoter,we examined the IL-1βgene expression pattern in vivo after subacute MPTP toxication in old male and female mice.The results are summarized as follows:
     1.Old male mice showed dramatically elevated luciferase signals in a flexuous manner at early period of time,meanwhile,the changes of luciferase signals in female were more moderate.
     Old male and female mice were screened for luciferase expression at different time points during and after MPTP or saline administration.The luciferase activity increased in both MPTP groups.By 49h,the enzyme activity in female mice treated with MPTP had returned back to baseline,while the activity in male mice still sustained at a higher level.Data quantification showed different patterns of MPTP-induced luciferase signals between male and female.Though both sexes revealed significant higher levels of luciferase expression,the changes in male mice were especially vigorous,but quite moderate in female.
     2.MPTP elicited less dopaminergic toxicity in old female mice than male ones.
     65h after MPTP administration,we observed a significant depletion of striatal TH protein expression in both sexes,however,TH reduction was significantly greater in old male mice when compared to female.The TH positive neurons in the substantia nigra of old female mice didn't show prominent difference between the saline and MPTP group,while significant decrease of TH positive cells was seen in male MPTP intoxicated mice
     3.The transcriptions of some inflammatory and apoptotic molecules in the substantia nigra showed no significant change between groups.
     65h after the last MPTP injection,transcriptional levels of cytokine TNF-αand IL-6,pro-inflammatory molecule iNOS,together with apoptosis related molecules bcl-2 and bax in the substantia nigra were detected by real-time PCR.The expression of these genes showed no significant alteration between groups at this time point, although IL-6 gene trancription was increased after MPTP administration,the p-value of IL-6 between the control and MPTP group in female mice was 0.07.
     4.MPTP intoxication increased GFAP protein expression,but didn't change BDNF expression in the striatum of both old male and female mice.
     GFAP and BDNF protein expression in the striatum was were measured through western blot analysis.MPTP intoxication induced robust increase of GFAP expression in both sexes 65h after the last MPTP injection.Only slightly higher expression of BDNF was observed in old female mice,however,no significant difference was observed obtained between groups.
     Conclusion:
     1.Elevated and dramatic changes of IL-1βgene expression in old male mice at early period of time may be responsible for the DA neuron susceptibility to MPTP in old male mice.
     2.MPTP elicited less dopaminergic toxicity in old female than male mice.
引文
1. Forno LS. Neuropathology of Parkinson's disease. J Neuropathol Exp Neurol,1996, 55:259-272.
    
    2. Stiasny-Kolster K, Doerr Y, Moller JC, et al. Combination of 'idiopathic1 REM sleep behaviour disorder and olfactory dysfunction as possible indicator for alpha-synucleinopathy demonstrated by dopamine transporter FP-CIT-SPECT.Brain,2005,128:126-137.
    
    3. Ponsen MM, Staffers D, Booij J, van Eck-Smit BL, Wolters E, Berendse HW.Idiopathic hyposmia as a preclinical sign of Parkinson's disease. Ann Neurol,2004, 56:173-181.
    
    4. Becker G, Muller A, Braune S, et al. Early diagnosis of Parkinson's disease. J Neurol,2002,249 Suppl 3:111/40-48.
    
    5. Duvoisin RC. Genetic and environmental factors in Parkinson's disease. Adv Neurol,1999, 80:161-163.
    
    6. Le Couteur DG, Muller M, Yang MC, Mellick GD, McLean AJ.Age-environment and gene-environment interactions in the pathogenesis of Parkinson's disease. Rev Environ Health,2002,17:51-64.
    
    7. Mizuno Y, Shimoda-Matsubayashi S, Matsumine H, Morikawa N, Hattori N,Kondo T. Genetic and environmental factors in the pathogenesis of Parkinson's disease. Adv Neurol,1999, 80:171-179.
    
    8. de Rijk MC, Launer LJ, Berger K, et al. Prevalence of Parkinson's disease in Europe: A collaborative study of population-based cohorts. Neurologic Diseases in the Elderly Research Group. Neurology,2000, 54:S21-23.
    
    9. Langston JW, Ballard P, Tetrud JW, Irwin I. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science,1983,219:979-980.
    
    10. Brown TP, Rumsby PC, Capleton AC, Rushton L, Levy LS. Pesticides and Parkinson's disease-is there a link? Environ Health Perspect,2006,114:156-164.
    
    11. Polymeropoulos MH, Lavedan C, Leroy E, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson's disease.Science, 1997,276:2045-2047.
    
    12. Kruger R, Kuhn W, Muller T, et al. Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson's disease. Nat Genet,1998,18:106-108.
    
    13. Singleton AB, Farrer M, Johnson J, et al. alpha-Synuclein locus triplication causes Parkinson's disease. Science,2003, 302:841.
    
    14. Ibanez P, Bonnet AM, Debarges B, et al. Causal relation between alpha-synuclein gene duplication and familial Parkinson's disease.Lancet,2004,364:1169-1171.
    
    15. Leroy E, Boyer R, Auburger G, et al. The ubiquitin pathway in Parkinson's disease. Nature,1998, 395:451-452.
    
    16. Paisan-Ruiz C, Jain S, Evans EW, et al. Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease. Neuron,2004,44:595-600.
    
    17. Kitada T, Asakawa S, Hattori N, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature, 1998, 392:605-608.
    
    18. Bonifati V, Rizzu P, van Baren MJ, et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science,2003,299:256-259.
    
    19. Healy DG, Abou-Sleiman PM, Valente EM, et al. DJ-1 mutations in Parkinson's disease. J Neurol Neurosurg Psychiatry,2004, 75:144-145.
    
    20. Valente EM, Abou-Sleiman PM, Caputo V, et al. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science,2004,304:1158-1160.
    
    21. Hampshire DJ, Roberts E, Crow Y, et al. Kufor-Rakeb syndrome,pallido-pyramidal degeneration with supranuclear upgaze paresis and dementia, maps to 1p36. J Med Genet,2001, 38:680-682.
    
    22. Ramirez A, Heimbach A, Grundemann J, et al. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet,2006, 38:1184-1191.
    
    23. Strauss KM, Martins LM, Plun-Favreau H, et al. Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson's disease. Hum Mol Genet,2005,14:2099-2111.
    
    24. Zetterstrom RH, Solomin L, Jansson L, Hoffer BJ, Olson L, Perlmann T.Dopamine neuron agenesis in Nurrl-deficient mice. Science, 1997,276:248-250.
    
    25. Greenamyre JT, Hastings TG. Biomedicine. Parkinson's-divergent causes,convergent mechanisms. Science,2004, 304:1120-1122.
    
    26. Shimura H, Hattori N, Kubo S, et al. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet,2000,25:302-305.
    
    27. Shimura H, Schlossmacher MG, Hattori N, et al. Ubiquitination of a new form of alpha-synuclein by parkin from human brain: implications for Parkinson's disease. Science,2001,293:263-269.
    
    28. Chung KK, Zhang Y, Lim KL, et al. Parkin ubiquitinates the alpha-synuclein-interacting protein, synphilin-1: implications for Lewy-body formation in Parkinson disease. Nat Med,2001, 7:1144-1150.
    
    29. Imai Y, Soda M, Inoue H, Hattori N, Mizuno Y, Takahashi R. An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Parkin. Cell,2001,105:891-902.
    
    30. Zhang Y, Gao J, Chung KK, Huang H, Dawson VL, Dawson TM. Parkin functions as an E2-dependent ubiquitin- protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. Proc Natl Acad Sci U S A,2000, 97:13354-13359.
    
    31. Choi P, Snyder H, Petrucelli L, et al. SEPT5_v2 is a parkin-binding protein.Brain Res Mol Brain Res,2003,117:179-189.
    
    32. Olzmann JA, Li L, Chudaev MV, et al. Parkin-mediated K63-linked polyubiquitination targets misfolded DJ-1 to aggresomes via binding to HDAC6. J Cell Biol,2007,178:1025-1038.
    
    33. Staropoli JF, McDermott C, Martinat C, Schulman B, Demireva E, Abeliovich A. Parkin is a component of an SCF-like ubiquitin ligase complex and protects postmitotic neurons from kainate excitotoxicity. Neuron,2003, 37:735-749.
    
    34. Huynh DP, Scoles DR, Nguyen D, Pulst SM. The autosomal recessive juvenile Parkinson disease gene product, parkin, interacts with and ubiquitinates synaptotagmin XL Hum Mol Genet,2003,12:2587-2597.
    
    35. Corti O, Hampe C, Koutnikova H, et al. The p38 subunit of the aminoacyl-tRNA synthetase complex is a Parkin substrate: linking protein biosynthesis and neurodegeneration. Hum Mol Genet,2003,12:1427-1437.
    
    36. Ko HS, von Coelln R, Sriram SR, et al. Accumulation of the authentic parkin substrate aminoacyl-tRNA synthetase cofactor, p38/JTV-l, leads to catecholaminergic cell death. J Neurosci,2005, 25:7968-7978.
    
    37. Ren Y, Zhao J, Feng J. Parkin binds to alpha/beta tubulin and increases their ubiquitination and degradation. J Neurosci,2003,23:3316-3324.
    
    38. Okui M, Yamaki A, Takayanagi A, Kudoh J, Shimizu N, Shimizu Y. Transcription factor single-minded 2 (SIM2) is ubiquitinated by the RING-IBR-RING-type E3 ubiquitin ligases. Exp Cell Res,2005, 309:220-228.
    
    39. Moore DJ, West AB, Dikeman DA, Dawson VL, Dawson TM. Parkin mediates the degradation-independent ubiquitination of Hsp70. J Neurochem,2008,105:1806-1819.
    
    40. Ko HS, Kim SW, Sriram SR, Dawson VL, Dawson TM. Identification of far upstream element-binding protein-1 as an authentic Parkin substrate. J Biol Chem,2006,281:16193-16196.
    
    41. Urn JW, Min DS, Rhim H, Kim J, Paik SR, Chung KC. Parkin ubiquitinates and promotes the degradation of RanBP2. J Biol Chem,2006,281:3595-3603.
    
    42. Fallon L, Belanger CM, Corera AT, et al. A regulated interaction with the UIM protein Eps15 implicates parkin in EGF receptor trafficking and PI(3)K-Akt signalling. Nat Cell Biol,2006, 8:834-842.
    
    43. Joch M, Ase AR, Chen CX, et al. Parkin-mediated monoubiquitination of the PDZ protein PICK1 regulates the activity of acid-sensing ion channels. Mol Biol Cell,2007, 18:3105-3118.
    
    44. Choi P, Ostrerova-Golts N, Sparkman D, Cochran E, Lee JM, Wolozin B.Parkin is metabolized by the ubiquitin/proteosome system. Neuroreport,2000,11:2635-2638.
    
    45. Junn E, Lee SS, Suhr UT, Mouradian MM. Parkin accumulation in aggresomes due to proteasome impairment. J Biol Chem,2002,277:47870-47877.
    
    46. Palacino JJ, Sagi D, Goldberg MS, et al. Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J Biol Chem,2004,279:18614-18622.
    
    47. Greene JC, Whitworth AJ, Andrews LA, Parker TJ, Pallanck LJ. Genetic and genomic studies of Drosophila parkin mutants implicate oxidative stress and innate immune responses in pathogenesis. Hum Mol Genet,2005,14:799-811.
    
    48. Lo Bianco C, Schneider BL, Bauer M, et al. Lentiviral vector delivery of parkin prevents dopaminergic degeneration in an alpha-synuclein rat model of Parkinson's disease. Proc Natl Acad Sci U S A,2004,101:17510-17515.
    
    49. Yang Y, Nishimura I, Imai Y, Takahashi R, Lu B. Parkin suppresses dopaminergic neuron-selective neurotoxicity induced by Pael-R in Drosophila.Neuron,2003,37:911-924.
    50. Munoz-Soriano V, Paricio N. Overexpression of Septin 4, the Drosophila homologue of human CDCrel-1, is toxic for dopaminergic neurons. Eur J Neurosci,2007,26:3150-3158.
    
    51. Darios F, Corti 0, Lucking CB, et al. Parkin prevents mitochondrial swelling and cytochrome c release in mitochondria-dependent cell death. Hum Mol Genet,2003,12:517-526.
    
    52. Clark IE, Dodson MW, Jiang C, et al. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature,2006,441:1162-1166.
    
    53. Park J, Lee SB, Lee S, et al. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature,2006,441:1157-1161.
    
    54. Paterna JC, Leng A, Weber E, Feldon J, Bueler H. DJ-1 and Parkin modulate dopamine-dependent behavior and inhibit MPTP-induced nigral dopamine neuron loss in mice. Mol Ther,2007,15:698-704.
    
    55. Manfredsson FP, Burger C, Sullivan LF, Muzyczka N, Lewin AS, Mandel RJ.rAAV-mediated nigral human parkin over-expression partially ameliorates motor deficits via enhanced dopamine neurotransmission in a rat model of Parkinson's disease. Exp Neurol,2007, 207:289-301.
    
    56. Bartfai T, Schultzberg M. Cytokines in neuronal cell types. Neurochem Int,1993,22:435-444.
    
    57. Hunot S, Dugas N, Faucheux B, et al. FcepsilonRII/CD23 is expressed in Parkinson's disease and induces, in vitro, production of nitric oxide and tumor necrosis factor-alpha in glial cells. J Neurosci,1999,19:3440-3447.
    
    58. Mogi M, Harada M, Narabayashi H, Inagaki H, Minami M, Nagatsu T.Interleukin (IL)-l beta, IL-2, IL-4, IL-6 and transforming growth factor-alpha levels are elevated in ventricular cerebrospinal fluid in juvenile parkinsonism and Parkinson's disease. Neurosci Lett, 1996,211:13-16.
    
    59. Mogi M, Harada M, Kondo T, et al. Interleukin-1 beta, interleukin-6,epidermal growth factor and transforming growth factor-alpha are elevated in the brain from parkinsonian patients. Neurosci Lett, 1994, 180:147-150.
    
    60. Arai H, Furuya T, Yasuda T, Miura M, Mizuno Y, Mochizuki H. Neurotoxic effects of lipopolysaccharide on nigral dopaminergic neurons are mediated by microglial activation, interleukin-1beta, and expression of caspase-11 in mice.J Biol Chem,2004, 279:51647-51653.
    61. Arai H, Furuya T, Mizuno Y, Mochizuki H. Inflammation and infection in Parkinson's disease. Histol Histopathol,2006,21:673-678.
    
    62. Ferrari CC, Pott Godoy MC, Tarelli R, Chertoff M, Depino AM, Pitossi FJ.Progressive neurodegeneration and motor disabilities induced by chronic expression of IL-1beta in the substantia nigra. Neurobiol Dis,2006,24:183-193.
    
    63. Beal MF. Mitochondria, oxidative damage, and inflammation in Parkinson's disease. Ann N YAcad Sci,2003,991:120-131.
    
    64. Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature,2006,443:787-795.
    
    65. Dawson TM, Dawson VL. Molecular pathways of neurodegeneration in Parkinson's disease. Science,2003, 302:819-822.
    
    66. Keeney PM, Xie J, Capaldi RA, Bennett JP, Jr. Parkinson's disease brain mitochondrial complex I has oxidatively damaged subunits and is functionally impaired and misassembled. J Neurosci,2006,26:5256-5264.
    
    67. Beal MF. Mitochondria take center stage in aging and neurodegeneration. Ann Neurol,2005, 58:495-505.
    
    68. Bender A, Krishnan KJ, Morris CM, et al. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet,2006,38:515-517.
    
    69. Kraytsberg Y, Kudryavtseva E, McKee AC, Geula C, Kowall NW, Khrapko K.Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat Genet,2006, 38:518-520.
    
    70. Goldberg MS, Fleming SM, Palacino JJ, et al. Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J Biol Chem,2003,278:43628-43635.
    
    71. Silvestri L, Caputo V, Bellacchio E, et al. Mitochondrial import and enzymatic activity of PINK1 mutants associated to recessive parkinsonism. Hum Mol Genet,2005,14:3477-3492.
    
    72. Kim RH, Smith PD, Aleyasin H, et al. Hypersensitivity of DJ-1 -deficient mice to l-methyl-4-phenyl-l,2,3,6-tetrahydropyrindine (MPTP) and oxidative stress.Proc Natl Acad Sci U S A,2005,102:5215-5220.
    
    73. Canet-Aviles RM, Wilson MA, Miller DW, et al. The Parkinson's disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization. Proc Natl Acad Sci U S A,2004,101:9103-9108.
    
    74. Yang Y, Gehrke S, Imai Y, et al. Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. Proc Natl Acad Sci U S A,2006,103:10793-10798.
    
    75. Poole AC, Thomas RE, Andrews LA, McBride HM, Whitworth AJ, Pallanck LJ. The PINK 1/Parkin pathway regulates mitochondrial morphology. Proc Natl Acad Sci U S A,2008,105:1638-1643.
    
    76. Nikulina EM, Skrinskaya JA, Avgustinovich DF, Popova NK. Dopaminergic brain system in the quaking mutant mouse. Pharmacol Biochem Behav,1995,50:333-337.
    
    77. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M.Alpha-synuclein in Lewy bodies. Nature,1997, 388:839-840.
    
    78. Abeliovich A, Schmitz Y, Farinas I, et al. Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron,2000,25:239-252.
    
    79. Yavich L, Jakala P, Tanila H. Abnormal compartmentalization of norepinephrine in mouse dentate gyrus in alpha-synuclein knockout and A30P transgenic mice. J Neurochem,2006, 99:724-732.
    
    80. Yavich L, Tanila H, Vepsalainen S, Jakala P. Role of alpha-synuclein in presynaptic dopamine recruitment. J Neurosci,2004,24:11165-11170.
    
    81. Giasson BI, Murray IV, Trojanowski JQ, Lee VM. A hydrophobic stretch of 12 amino acid residues in the middle of alpha-synuclein is essential for filament assembly. J Biol Chem,2001,276:2380-2386.
    
    82. Conway KA, Harper JD, Lansbury PT. Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nat Med,1998,4:1318-1320.
    
    83. Pandey N, Schmidt RE, Galvin JE. The alpha-synuclein mutation E46K promotes aggregation in cultured cells. Exp Neurol,2006,197:515-520.
    
    84. Petrucelli L, O'Farrell C, Lockhart PJ, et al. Parkin protects against the toxicity associated with mutant alpha-synuclein: proteasome dysfunction selectively affects catecholaminergic neurons. Neuron,2002, 36:1007-1019.
    
    85. Masliah E, Rockenstein E, Veinbergs I, et al. Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science,2000, 287:1265-1269.
    86. Kahle PJ, Neumann M, Ozmen L, et al. Subcellular localization of wild-type and Parkinson's disease-associated mutant alpha -synuclein in human and transgenic mouse brain. J Neurosci,2000, 20:6365-6373.
    
    87. Lee MK, Stirling W, Xu Y, et al. Human alpha-synuclein-harboring familial Parkinson's disease-linked Ala-53 --> Thr mutation causes neurodegenerative disease with alpha-synuclein aggregation in transgenic mice. Proc Natl Acad Sci U S A,2002, 99:8968-8973.
    
    88. Nieto M, Gil-Bea FJ, Dalfo E, et al. Increased sensitivity to MPTP in human alpha-synuclein A30P transgenic mice. Neurobiol Aging,2006, 27:848-856.
    
    89. Klivenyi P, Siwek D, Gardian G, et al. Mice lacking alpha-synuclein are resistant to mitochondrial toxins. Neurobiol Dis,2006,21:541-548.
    
    90. Dauer W, Kholodilov N, Vila M, et al. Resistance of alpha -synuclein null mice to the parkinsonian neurotoxin MPTP. Proc Natl Acad Sci U S A,2002,99:14524-14529.
    
    91. Schluter OM, Fornai F, Alessandri MG, et al. Role of alpha-synuclein in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in mice. Neuroscience,2003,118:985-1002.
    
    92. Drolet RE, Behrouz B, Lookingland KJ, Goudreau JL. Mice lacking alpha-synuclein have an attenuated loss of striatal dopamine following prolonged chronic MPTP administration. Neurotoxicology,2004,25:761-769.
    
    93. Dong Z, Wolfer DP, Lipp HP, Bueler H. Hsp70 gene transfer by adeno-associated virus inhibits MPTP-induced nigrostriatal degeneration in the mouse model of Parkinson disease. Mol Ther,2005, 11:80-88.
    
    94. Klucken J, Shin Y, Masliah E, Hyman BT, McLean PJ. Hsp70 Reduces alpha-Synuclein Aggregation and Toxicity. J Biol Chem,2004,279:25497-25502.
    
    95. Stichel CC, Augustin M, Kuhn K, et al. Parkin expression in the adult mouse brain. Eur J Neurosci,2000, 12:4181-4194.
    
    96. Shimura H, Hattori N, Kubo S, et al. Immunohistochemical and subcellular localization of Parkin protein: absence of protein in autosomal recessive juvenile parkinsonism patients. Ann Neurol,1999,45:668-672.
    
    97. Cookson MR, Lockhart PJ, McLendon C, O'Farrell C, Schlossmacher M,Farrer MJ. RING finger 1 mutations in Parkin produce altered localization of the protein. Hum Mol Genet,2003,12:2957-2965.
    1. Li L, Fei Z, Ren J, et al. Functional imaging of interleukin 1 beta expression in inflammatory process using bioluminescence imaging in transgenic mice.BMC Immunol,2008,9:49.
    
    2. Lepagnol-Bestel AM, Maussion G, Ramoz N, Moalic JM, Gorwood P,Simonneau M. Nrsf silencing induces molecular and subcellular changes linked to neuronal plasticity. Neuroreport,2007,18:441-446.
    
    3. Diamond SG, Markham CH, Hoehn MM, McDowell FH, Muenter MD. An examination of male-female differences in progression and mortality of Parkinson's disease. Neurology, 1990,40:763-766.
    
    4. Van Den Eeden SK, Tanner CM, Bernstein AL, et al. Incidence of Parkinson's disease: variation by age, gender, and race/ethnicity. Am J Epidemiol,2003,157:1015-1022.
    
    5. Wooten GF, Currie LJ, Bovbjerg VE, Lee JK, Patrie J. Are men at greater risk for Parkinson's disease than women? J Neurol Neurosurg Psychiatry,2004,75:637-639.
    
    6. Miller DB, Ali SF, O'Callaghan JP, Laws SC. The impact of gender and estrogen on striatal dopaminergic neurotoxicity. Ann N Y Acad Sci,1998,844:153-165.
    
    7. Tsang KL, Ho SL, Lo SK. Estrogen improves motor disability in parkinsonian postmenopausal women with motor fluctuations. Neurology,2000,54:2292-2298.
    
    8. Benedetti MD, Maraganore DM, Bower JH, et al. Hysterectomy, menopause,and estrogen use preceding Parkinson's disease: an exploratory case-control study. Mov Disord,2001,16:830-837.
    
    9. Grandbois M, Morissette M, Callier S, Di Paolo T. Ovarian steroids and raloxifene prevent MPTP-induced dopamine depletion in mice.Neuroreport,2000,11:343-346.
    
    10. Callier S, Morissette M, Grandbois M, Di Paolo T. Stereospecific prevention by 17beta-estradiol of MPTP-induced dopamine depletion in mice.Synapse,2000, 37:245-251.
    
    11. Dluzen DE, McDermott JL, Liu B. Estrogen alters MPTP-induced neurotoxicity in female mice: effects on striatal dopamine concentrations and release. JNeurochem,1996, 66:658-666.
    
    12. Dluzen DE, McDermott JL, Liu B. Estrogen as a neuroprotectant against MPTP-induced neurotoxicity in C57/B1 mice. Neurotoxicol Teratol,1996,18:603-606.
    
    13. Ramirez AD, Liu X, Menniti FS. Repeated estradiol treatment prevents MPTP-induced dopamine depletion in male mice. Neuroendocrinology,2003,77:223-231.
    
    14. Callier S, Morissette M, Grandbois M, Pelaprat D, Di Paolo T.Neuroprotective properties of 17beta-estradiol, progesterone, and raloxifene in MPTP C57B1/6 mice. Synapse,2001,41:131-138.
    
    15. D'Astous M, Morissette M, Tanguay B, Callier S, Di Paolo T.Dehydroepiandrosterone (DHEA) such as 17beta-estradiol prevents MPTP-induced dopamine depletion in mice. Synapse,2003, 47:10-14.
    
    16. Ekue A, Boulanger JF, Morissette M, Di Paolo T. Lack of effect of testosterone and dihydrotestosterone compared to 17beta-oestradiol in 1-methyl-4-phenyl-l,2,3,6, tetrahydropyridine-mice. J Neuroendocrinol,2002,14:731-736.
    
    17. Kuiper GG, Carlsson B, Grandien K, et al. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology, 1997,138:863-870.
    
    18. Kuppers E, Beyer C. Expression of estrogen receptor-alpha and beta mRNA in the developing and adult mouse striatum. Neurosci Lett, 1999, 276:95-98.
    
    19. Mitra SW, Hoskin E, Yudkovitz J, et al. Immunolocalization of estrogen receptor beta in the mouse brain: comparison with estrogen receptor alpha.Endocrinology,2003,144:2055-2067.
    
    20. Zhao L, O'Neill K, Diaz Brinton R. Selective estrogen receptor modulators (SERMs) for the brain: current status and remaining challenges for developing NeuroSERMs. Brain Res Brain Res Rev,2005,49:472-493.
    
    21. Sanchez R, Nguyen D, Rocha W, White JH, Mader S. Diversity in the mechanisms of gene regulation by estrogen receptors. Bioessays,2002,24:244-254.
    
    22. Toran-Allerand CD. Estrogen and the brain: beyond ER-alpha and ER-beta.Exp Gerontol,2004, 39:1579-1586.
    
    23. Kumar V, Chambon P. The estrogen receptor binds tightly to its responsive element as a ligand-induced homodimer. Cell, 1988,55:145-156.
    
    24. Kushner PJ, Agard DA, Greene GL, et al. Estrogen receptor pathways to AP-1.J Steroid Biochem Mol Biol,2000, 74:311-317.
    
    25. Sukovich DA, Mukherjee R, Benfield PA. A novel, cell-type-specific mechanism for estrogen receptor-mediated gene activation in the absence of an estrogen-responsive element. Mol Cell Biol,1994,14:7134-7143.
    
    26. Paech K, Webb P, Kuiper GG, et al. Differential ligand activation of estrogen receptors ERalpha and ERbeta at AP1 sites. Science,1997, 277:1508-1510.
    
    27. Kalaitzidis D, Gilmore TD. Transcription factor cross-talk: the estrogen receptor and NF-kappaB. Trends Endocrinol Metab,2005,16:46-52.
    
    28. Dhandapani KM, Brann DW. Protective effects of estrogen and selective estrogen receptor modulators in the brain. Biol Reprod,2002, 67:1379-1385.
    
    29. Garcia-Segura LM, Azcoitia I, DonCarlos LL. Neuroprotection by estradiol.Prog Neurobiol,2001,63:29-60.
    
    30. Mattson MP. Apoptosis in neurodegenerative disorders. Nat Rev Mol Cell Biol,2000,1:120-129.
    
    31. Langston JW, Forno LS, Tetrad J, Reeves AG, Kaplan JA, Karluk D.Evidence of active nerve cell degeneration in the substantia nigra of humans years after l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine exposure. Ann Neurol,1999,46:598-605.
    
    32. McGeer PL, Yasojima K, McGeer EG. Inflammation in Parkinson's disease.AdvNeurol,2001,86:83-89.
    
    33. Hunot S, Boissiere F, Faucheux B, et al. Nitric oxide synthase and neuronal vulnerability in Parkinson's disease. Neuroscience,1996, 72:355-363.
    
    34. Cassarino DS, Fall CP, Swerdlow RH, et al. Elevated reactive oxygen species and antioxidant enzyme activities in animal and cellular models of Parkinson's disease. Biochim Biophys Acta,1997,1362:77-86.
    
    35. Kohutnicka M, Lewandowska E, Kurkowska-Jastrzebska I, Czlonkowski A,Czlonkowska A. Microglial and astrocytic involvement in a murine model of Parkinson's disease induced by l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine (MPTP). Immunopharmacology,1998, 39:167-180.
    
    36. McGuire SO, Ling ZD, Lipton JW, Sortwell CE, Collier TJ, Carvey PM.Tumor necrosis factor alpha is toxic to embryonic mesencephalic dopamine neurons. Exp Neurol,2001,169:219-230.
    37. Wu DC, Jackson-Lewis V, Vila M, et al. Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J Neurosci,2002,22:1763-1771.
    
    38. Batchelor PE, Liberatore GT, Wong JY, et al. Activated macrophages and microglia induce dopaminergic sprouting in the injured striatum and express brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor. JNeurosci,1999, 19:1708-1716.
    
    39. Eddleston M, Mucke L. Molecular profile of reactive astrocytes—implications for their role in neurologic disease. Neuroscience,1993, 54:15-36.
    
    40. Teismann P, Schulz JB. Cellular pathology of Parkinson's disease: astrocytes,microglia and inflammation. Cell Tissue Res,2004, 318:149-161.
    
    41. Garcia-Segura LM, Naftolin F, Hutchison JB, Azcoitia I, Chowen JA. Role of astroglia in estrogen regulation of synaptic plasticity and brain repair. J Neurobiol,1999,40:574-584.
    
    42. Rozovsky I, Wei M, Stone DJ, et al. Estradiol (E2) enhances neurite outgrowth by repressing glial fibrillary acidic protein expression and reorganizing laminin. Endocrinology,2002,143:636-646.
    
    43. Sortino MA, Chisari M, Merlo S, et al. Glia mediates the neuroprotective action of estradiol on beta-amyloid-induced neuronal death.Endocrinology,2004, 145:5080-5086.
    
    44. Tripanichkul W, Sripanichkulchai K, Finkelstein DI. Estrogen down-regulates glial activation in male mice following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine intoxication. Brain Res,2006,1084:28-37.
    
    45. Hebert G, Arsaut J, Dantzer R, Demotes-Mainard J. Time-course of the expression of inflammatory cytokines and matrix metalloproteinases in the striatum and mesencephalon of mice injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, a dopaminergic neurotoxin.Neurosci Lett,2003, 349:191-195.
    
    46. Benisty S, Boissiere F, Faucheux B, Agid Y, Hirsch EC. trkB messenger RNA expression in normal human brain and in the substantia nigra of parkinsonian patients: an in situ hybridization study. Neuroscience,1998, 86:813-826.
    
    47. Spina MB, Squinto SP, Miller J, Lindsay RM, Hyman C. Brain-derived neurotrophic factor protects dopamine neurons against 6-hydroxydopamine and N-methyl-4-phenylpyridinium ion toxicity: involvement of the glutathione system. J Neurochem,1992, 59:99-106.
    
    48. Mocchetti I, Bachis A, Nosheny RL, Tanda G. Brain-derived neurotrophic factor expression in the substantia nigra does not change after lesions of dopaminergic neurons. Neurotox Res,2007,12:135-143.
    
    49. Ferrari CC, Pott Godoy MC, Tarelli R, Chertoff M, Depino AM, Pitossi FJ.Progressive neurodegeneration and motor disabilities induced by chronic expression of IL-1beta in the substantia nigra. Neurobiol Dis,2006,24:183-193.
    
    50. Bartfai T, Schultzberg M. Cytokines in neuronal cell types. Neurochem Int,1993, 22:435-444.
    
    51. Giulian D, Baker TJ, Shin LC, Lachman LB. Interleukin 1 of the central nervous system is produced by ameboid microglia. J Exp Med,1986,164:594-604.
    
    52. Hetier E, Ayala J, Denefle P, et al. Brain macrophages synthesize interleukin-1 and interleukin-1 mRNAs in vitro. J Neurosci Res,1988,21:391-397.
    
    53. Lieberman AP, Pitha PM, Shin HS, Shin ML. Production of tumor necrosis factor and other cytokines by astrocytes stimulated with lipopolysaccharide or a neurotropic virus. Proc Natl Acad Sci U S A,1989, 86:6348-6352.
    
    54. Jones NC, Prior MJ, Burden-Teh E, Marsden CA, Morris PG, Murphy S.Antagonism of the interleukin-1 receptor following traumatic brain injury in the mouse reduces the number of nitric oxide synthase-2-positive cells and improves anatomical and functional outcomes. Eur J Neurosci,2005,22:72-78.
    
    55. Lu KT, Wang YW, Yang JT, Yang YL, Chen HI. Effect of interleukin-1 on traumatic brain injury-induced damage to hippocampal neurons. J Neurotrauma,2005, 22:885-895.
    
    56. Wang X, Li X, Currie RW, Willette RN, Barone FC, Feuerstein GZ.Application of real-time polymerase chain reaction to quantitate induced expression of interleukin-1 beta mRNA in ischemic brain tolerance. J Neurosci Res,2000, 59:238-246.
    
    57. Shaftel SS, Carlson TJ, Olschowka JA, Kyrkanides S, Matousek SB, O'Banion MK. Chronic interleukin-1 beta expression in mouse brain leads to leukocyte infiltration and neutrophil-independent blood brain barrier permeability without overt neurodegeneration. J Neurosci,2007,27:9301-9309.
    58. Shaftel SS, Kyrkanides S, Olschowka JA, Miller JN, Johnson RE, O'Banion MK. Sustained hippocampal IL-1 beta overexpression mediates chronic neuroinflammation and ameliorates Alzheimer plaque pathology. J Clin Invest,2007, 117:1595-1604.
    
    59. Mason JL, Suzuki K, Chaplin DD, Matsushima GK. Interleukin-1beta promotes repair of the CNS. J Neurosci,2001,21:7046-7052.
    
    60. Mogi M, Harada M, Narabayashi H, Inagaki H, Minami M, Nagatsu T.Interleukin (IL)-1 beta, IL-2, IL-4, IL-6 and transforming growth factor-alpha levels are elevated in ventricular cerebrospinal fluid in juvenile parkinsonism and Parkinson's disease. Neurosci Lett,1996,211:13-16.
    
    61. Mogi M, Harada M, Kondo T, et al. Interleukin-1 beta, interleukin-6,epidermal growth factor and transforming growth factor-alpha are elevated in the brain from parkinsonian patients. Neurosci Lett, 1994,180:147-150.
    
    62. Hunot S, Dugas N, Faucheux B, et al. FcepsilonRII/CD23 is expressed in Parkinson's disease and induces, in vitro, production of nitric oxide and tumor necrosis factor-alpha in glial cells. J Neurosci, 1999,19:3440-3447.
    
    63. Wang J, Bankiewicz KS, Plunkett RJ, Oldfield EH. Intrastriatal implantation of interleukin-1. Reduction of parkinsonism in rats by enhancing neuronal sprouting from residual dopaminergic neurons in the ventral tegmental area of the midbrain. J Neurosurg,1994, 80:484-490.
    
    64. Parish CL, Finkelstein DI, Tripanichkul W, Satoskar AR, Drago J, Horne MK.The role of interleukin-1, interleukin-6, and glia in inducing growth of neuronal terminal arbors in mice. J Neurosci,2002,22:8034-8041.
    
    65. Ho A, Blum M. Regulation of astroglial-derived dopaminergic neurotrophic factors by interleukin-1 beta in the striatum of young and middle-aged mice.Exp Neurol,1997,148:348-359.
    
    66. Saura J, Pares M, Bove J, et al. Intranigral infusion of interleukin-1beta activates astrocytes and protects from subsequent 6-hydroxydopamine neurotoxicity. J Neurochem,2003, 85:651-661.
    
    67. Nishimura M, Mizuta I, Mizuta E, Yamasaki S, Ohta M, Kuno S. Influence of interleukin-lbeta gene polymorphisms on age-at-onset of sporadic Parkinson's disease. Neurosci Lett,2000, 284:73-76.
    
    68. Arai H, Furuya T, Yasuda T, Miura M, Mizuno Y, Mochizuki H. Neurotoxic effects of lipopolysaccharide on nigral dopaminergic neurons are mediated by microglial activation,interleukin-1 beta,and expression of caspase-11 in mice.J Biol Chem,2004,279:51647-51653.
    1.Whitton PS.Inflammation as a causative factor in the aetiology of Parkinson's disease.Br J Pharmacol,2007,150:963-976.
    2.Greenamyre JT,Hastings TG.Biomedicine.Parkinson's—divergent causes,convergent mechanisms.Science,2004,304:1120-1122.
    3.Wyss-Coray T,Mucke L.Inflammation in neurodegenerative disease—a double-edged sword.Neuron,2002,35:419-432.
    4.McGeer PL,McGeer EG.Inflammation and the degenerative diseases of aging. Ann N Y Acad Sci,2004,1035:104-116.
    5.Marchetti B,Abbracchio MP.To be or not to be(inflamed)—is that the question in anti-inflammatory drug therapy of neurodegenerative disorders?Trends Pharmacol Sci,2005,26:517-525.
    6.Hunot S,Hirsch EC.Neuroinflammatory processes in Parkinson's disease.Ann Neurol,2003,53 Suppl 3:S49-58;discussion S58-60.
    7.McGeer PL,Yasojima K,McGeer EG.Inflammation in Parkinson's disease.Adv Neurol,2001,86:83-89.
    8.Langston JW,Forno LS,Tetrud J,Reeves AG,Kaplan JA,Karluk D.Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure.Ann Neurol,1999,46:598-605.
    9.Hunot S,Dugas N,Faucheux B,et al.FcepsilonRII/CD23 is expressed in Parkinson's disease and induces,in vitro,production of nitric oxide and tumor necrosis factor-alpha in glial cells.J Neurosci,1999,19:3440-3447.
    10.Boka G,Anglade P,Wallach D,Javoy-Agid F,Agid Y,Hirsch EC.Immunocytochemical analysis of tumor necrosis factor and its receptors in Parkinson's disease.Neurosci Lett,1994,172:151-154.
    11.Hirsch EC,Hunot S,Damier P,Faucheux B.Glial cells and inflammation in Parkinson's disease:a role in neurodegeneration? Ann Neurol,1998,44:S115-120.
    12.Mogi M,Harada M,Kondo T,Riederer P,Nagatsu T.Brain beta 2-microglobulin levels are elevated in the striatum in Parkinson's disease.J Neural Transm Park Dis Dement Sect,1995,9:87-92.
    13.Sugama S,Yang L,Cho BP,et al.Age-related microglial activation in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)-induced dopaminergic neurodegeneration in C57BL/6 mice.Brain Res,2003,964:288-294.
    14.McGeer PL,Schwab C,Parent A,Doudet D.Presence of reactive microglia in monkey substantia nigra years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine administration.Ann Neurol,2003,54:599-604.
    15.Dauer W,Przedborski S.Parkinson's disease:mechanisms and models.Neuron,2003,39:889-909.
    16.Nagatsu T,Sawada M.Inflammatory process in Parkinson's disease:role for cytokines. Curr Pharm Des,2005, 11:999-1016.
    
    17. Mogi M, Togari A, Tanaka K, Ogawa N, Ichinose H, Nagatsu T. Increase in level of tumor necrosis factor (TNF)-alpha in 6-hydroxydopamine-lesioned striatum in rats without influence of systemic L-DOPA on the TNF-alpha induction. Neurosci Lett,1999,268:101-104.
    
    18. Castano A, Herrera AJ, Cano J, Machado A. Lipopolysaccharide intranigral injection induces inflammatory reaction and damage in nigrostriatal dopaminergic system. J Neurochem,1998, 70:1584-1592.
    
    19. Gao HM, Jiang J, Wilson B, Zhang W, Hong JS, Liu B. Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson's disease. J Neurochem,2002,81:1285-1297.
    
    20. Carvey PM, Chang Q, Lipton JW, Ling Z. Prenatal exposure to the bacteriotoxin lipopolysaccharide leads to long-term losses of dopamine neurons in offspring: a potential, new model of Parkinson's disease. Front Biosci,2003, 8:s826-837.
    
    21. Chen H, Jacobs E, Schwarzschild MA, et al. Nonsteroidal antiinflammatory drug use and the risk for Parkinson's disease. Ann Neurol,2005, 58:963-967.
    
    22. Chen H, Zhang SM, Hernan MA, et al. Nonsteroidal anti-inflammatory drugs and the risk of Parkinson disease. Arch Neurol,2003, 60:1059-1064.
    
    23. Warmer AD, Bronstein JM, Bordelon YM, Ritz B. Nonsteroidal anti-inflammatory drugs may protect against Parkinson disease.Neurology,2007, 69:1836-1842.
    
    24. Teismann P, Tieu K, Choi DK, et al. Cyclooxygenase-2 is instrumental in Parkinson's disease neurodegeneration. Proc Natl Acad Sci U S A,2003,100:5473-5478.
    
    25. Esposito E, Di Matteo V, Benigno A, Pierucci M, Crescimanno G, Di Giovanni G. Non-steroidal anti-inflammatory drugs in Parkinson's disease. Exp Nemol,2007,205:295-312.
    
    26. Hirsch EC, Breidert T, Rousselet E, Hunot S, Hartmann A, Michel PP. The role of glial reaction and inflammation in Parkinson's disease. Ann N Y Acad Sci,2003,991:214-228.
    
    27. He Y, Appel S, Le W. Minocycline inhibits microglial activation and protects nigral cells after 6-hydroxydopamine injection into mouse striatum. Brain Res,2001,909:187-193.
    
    28. Kim SU, de Vellis J. Microglia in health and disease. J Neurosci Res,2005,81:302-313.
    
    29. Milligan CE, Cunningham TJ, Levitt P. Differential immunochemical markers reveal the normal distribution of brain macrophages and microglia in the developing rat brain. J Comp Neurol,1991,314:125-135.
    
    30. Barron KD. The microglial cell. A historical review. J Neurol Sci, 1995,134 Suppl:57-68.
    
    31. Kreutzberg GW. Microglia: a sensor for pathological events in the CNS.Trends Neurosci, 1996,19:312-318.
    
    32. Raivich G, Bohatschek M, Kloss CU, Werner A, Jones LL, Kreutzberg GW.Neuroglial activation repertoire in the injured brain: graded response,molecular mechanisms and cues to physiological function. Brain Res Brain Res Rev,1999, 30:77-105.
    
    33. Aloisi F, Ria F, Adorini L. Regulation of T-cell responses by CNS antigen-presenting cells: different roles for microglia and astrocytes. Immunol Today,2000,21:141-147.
    
    34. Hunot S, Boissiere F, Faucheux B, et al. Nitric oxide synthase and neuronal vulnerability in Parkinson's disease. Neuroscience,1996, 72:355-363.
    
    35. Cassarino DS, Fall CP, Swerdlow RH, et al. Elevated reactive oxygen species and antioxidant enzyme activities in animal and cellular models of Parkinson's disease. Biochim Biophys Acta,1997,1362:77-86.
    
    36. Kohutnicka M, Lewandowska E, Kurkowska-Jastrzebska I, Czlonkowski A,Czlonkowska A. Microglial and astrocytic involvement in a murine model of Parkinson's disease induced by l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine (MPTP). Immunopharmacology,1998,39:167-180.
    
    37. McGuire SO, Ling ZD, Lipton JW, Sortwell CE, Collier TJ, Carvey PM.Tumor necrosis factor alpha is toxic to embryonic mesencephalic dopamine neurons. Exp Neurol,2001,169:219-230.
    
    38. Wu DC, Jackson-Lewis V, Vila M, et al. Blockade of microglial activation is neuroprotective in the l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J Neurosci,2002, 22:1763-1771.
    
    39. Arai H, Furuya T, Yasuda T, Miura M, Mizuno Y, Mochizuki H. Neurotoxic effects of lipopolysaccharide on nigral dopaminergic neurons are mediated by microglial activation, interleukin-1beta, and expression of caspase-11 in mice.J Biol Chem,2004, 279:51647-51653.
    
    40. Bessler H, Djaldetti R, Salman H, Bergman M, Djaldetti M. IL-1 beta, IL-2,IL-6 and TNF-alpha production by peripheral blood mononuclear cells from patients with Parkinson's disease. Biomed Pharmacother,1999, 53:141-145.
    
    41. Giulian D, Baker TJ, Shih LC, Lachman LB. Interleukin 1 of the central nervous system is produced by ameboid microglia. J Exp Med,1986,164:594-604.
    
    42. Rousselet E, Callebert J, Parain K, et al. Role of TNF-alpha receptors in mice intoxicated with the parkinsonian toxin MPTP. Exp Neurol,2002,177:183-192.
    
    43. Aloisi F, Serafini B, Adorini L. Glia-T cell dialogue. J Neuroimmunol,2000,107:111-117.
    
    44. Aloisi F. Immune function of microglia. Glia,2001, 36:165-179.
    
    45. Batchelor PE, Liberatore GT, Wong JY, et al. Activated macrophages and microglia induce dopaminergic sprouting in the injured striatum and express brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor. JNeurosci,1999,19:1708-1716.
    
    46. Wilms H, Rosenstiel P, Sievers J, Deuschl G, Zecca L, Lucius R. Activation of microglia by human neuromelanin is NF-kappaB dependent and involves p38 mitogen-activated protein kinase: implications for Parkinson's disease. Faseb J,2003, 17:500-502.
    
    47. Zucca FA, Giaveri G, Gallorini M, et al. The neuromelanin of human substantia nigra: physiological and pathogenic aspects. Pigment Cell Res,2004,17:610-617.
    
    48. Kim YS, Joh TH. Microglia, major player in the brain inflammation: their roles in the pathogenesis of Parkinson's disease. Exp Mol Med,2006,38:333-347.
    
    49. Zecca L, Zucca FA, Albertini A, Rizzio E, Fariello RG. A proposed dual role of neuromelanin in the pathogenesis of Parkinson's disease. Neurology,2006,67:S8-11.
    
    50. Lawson LJ, Perry VH, Dri P, Gordon S. Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience,1990,39:151-170.
    51. Kim WG, Mohney RP, Wilson B, Jeohn GH, Liu B, Hong JS. Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia. J Neurosci,2000,20:6309-6316.
    
    52. Klegeris A, Giasson BI, Zhang H, Maguire J, Pelech S, McGeer PL.Alpha-synuclein and its disease-causing mutants induce ICAM-1 and IL-6 in human astrocytes and astrocytoma cells. Faseb J,2006,20:2000-2008.
    
    53. Gates MA, O'Brien TF, Faissner A, Steindler DA. Neuron-glial interactions during the in vivo and in vitro development of the nigrostriatal circuit. J Chem Neuroanat,1993, 6:179-189.
    
    54. Ridet JL, Malhotra SK, Privat A, Gage FH. Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci,1997, 20:570-577.
    
    55. Teismann P, Schulz JB. Cellular pathology of Parkinson's disease: astrocytes,microglia and inflammation. Cell Tissue Res,2004, 318:149-161.
    
    56. Chadi G, Cao Y, Pettersson RF, Fuxe K. Temporal and spatial increase of astroglial basic fibroblast growth factor synthesis after 6-hydroxydopamine-induced degeneration of the nigrostriatal dopamine neurons. Neuroscience,1994,61:891-910.
    
    57. Cintra A, Cao YH, Oellig C, et al. Basic FGF is present in dopaminergic neurons of the ventral midbrain of the rat. Neuroreport,1991,2:597-600.
    
    58. Ho A, Gore AC, Weickert CS, Blum M. Glutamate regulation of GDNF gene expression in the striatum and primary striatal astrocytes. Neuroreport,1995,6:1454-1458.
    
    59. Stromberg I, Bjorklund L, Johansson M, et al. Glial cell line-derived neurotrophic factor is expressed in the developing but not adult striatum and stimulates developing dopamine neurons in vivo. Exp Neurol,1993,124:401-412.
    
    60. Meiners S, Powell EM, Geller HM. A distinct subset of tenascin/CS-6-PG-rich astrocytes restricts neuronal growth in vitro. J Neurosci,1995, 15:8096-8108.
    
    61. McKeon RJ, Schreiber RC, Rudge JS, Silver J. Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes. J Neurosci,1991,11:3398-3411.
    
    62. Lieberman AP, Pitha PM, Shin HS, Shin ML. Production of tumor necrosis factor and other cytokines by astrocytes stimulated with lipopolysaccharide or a neurotropic virus. Proc Natl Acad Sci U S A,1989, 86:6348-6352.
    
    63. Gayle DA, Ling Z, Tong C, Landers T, Lipton JW, Carvey PM.Lipopolysaccharide (LPS)-induced dopamine cell loss in culture: roles of tumor necrosis factor-alpha, interleukin-lbeta, and nitric oxide. Brain Res Dev Brain Res,2002,133:27-35.
    
    64. Carvey PM, Chen EY, Lipton JW, Tong CW, Chang QA, Ling ZD.Intra-parenchymal injection of tumor necrosis factor-alpha and interleukin 1-beta produces dopamine neuron loss in the rat. J Neural Transm,2005,112:601-612.
    
    65. Breder CD, Tsujimoto M, Terano Y, Scott DW, Saper CB. Distribution and characterization of tumor necrosis factor-alpha-like immunoreactivity in the murine central nervous system. J Comp Neurol,1993, 337:543-567.
    
    66. Nagatsu T, Mogi M, Ichinose H, Togari A. Cytokines in Parkinson's disease. J Neural Transm Suppl,2000:143-151.
    
    67. Sriram K, Matheson JM, Benkovic SA, Miller DB, Luster MI, O'Callaghan JP.Mice deficient in TNF receptors are protected against dopaminergic neurotoxicity: implications for Parkinson's disease. Faseb J,2002,16:1474-1476.
    
    68. Ferger B, Leng A, Mura A, Hengerer B, Feldon J. Genetic ablation of tumor necrosis factor-alpha (TNF-alpha) and pharmacological inhibition of TNF-synthesis attenuates MPTP toxicity in mouse striatum. J Neurochem,2004, 89:822-833.
    
    69. Mogi M, Harada M, Riederer P, Narabayashi H, Fujita K, Nagatsu T. Tumor necrosis factor-alpha (TNF-alpha) increases both in the brain and in the cerebrospinal fluid from parkinsonian patients. Neurosci Lett, 1994,165:208-210.
    
    70. Mogi M, Togari A, Kondo T, et al. Caspase activities and tumor necrosis factor receptor R1 (p55) level are elevated in the substantia nigra from parkinsonian brain. J Neural Transm,2000, 107:335-341.
    
    71. Nagatsu T, Mogi M, Ichinose H, Togari A. Changes in cytokines and neurotrophins in Parkinson's disease. J Neural Transm Suppl,2000:277-290.
    
    72. McCoy MK, Martinez TN, Ruhn KA, et al. Blocking soluble tumor necrosis factor signaling with dominant-negative tumor necrosis factor inhibitor attenuates loss of dopaminergic neurons in models of Parkinson's disease. J Neurosci,2006,26:9365-9375.
    
    73. De Smaele E, Zazzeroni F, Papa S, et al. Induction of gadd45beta by NF-kappaB downregulates pro-apoptotic JNK signalling. Nature,2001,414:308-313.
    
    74. Papa S, Zazzeroni F, Bubici C, et al. Gadd45 beta mediates the NF-kappa B suppression of JNK signalling by targeting MKK7/JNKK2. Nat Cell Biol,2004,6:146-153.
    
    75. Liu ZG. Molecular mechanism of TNF signaling and beyond. Cell Res,2005,15:24-27.
    
    76. Liu B, Du L, Hong JS. Naloxone protects rat dopaminergic neurons against inflammatory damage through inhibition of microglia activation and superoxide generation. J Pharmacol Exp Ther,2000, 293:607-617.
    
    77. Marchetti L, Klein M, Schlett K, Pfizenmaier K, Eisel UL. Tumor necrosis factor (TNF)-mediated neuroprotection against glutamate-induced excitotoxicity is enhanced by N-methyl-D-aspartate receptor activation.Essential role of a TNF receptor 2-mediated phosphatidylinositol 3-kinase-dependent NF-kappa B pathway. J Biol Chem,2004,279:32869-32881.
    
    78. Sriram K, Matheson JM, Benkovic SA, Miller DB, Luster MI, O'Callaghan JP.Deficiency of TNF receptors suppresses microglial activation and alters the susceptibility of brain regions to MPTP-induced neurotoxicity: role of TNF-alpha. Faseb J,2006,20:670-682.
    
    79. Leng A, Mura A, Feldon J, Ferger B. Tumor necrosis factor-alpha receptor ablation in a chronic MPTP mouse model of Parkinson's disease. Neurosci Lett,2005,375:107-111.
    
    80. Duke DC, Moran LB, Pearce RK, Graeber MB. The medial and lateral substantia nigra in Parkinson's disease: mRNA profiles associated with higher brain tissue vulnerability. Neurogenetics,2007, 8:83-94.
    
    81. Tansey MG, McCoy MK, Frank-Cannon TC. Neuroinflammatory mechanisms in Parkinson's disease: potential environmental triggers, pathways, and targets for early therapeutic intervention. Exp Neurol,2007,208:1-25.
    
    82. Nishimura M, Mizuta I, Mizuta E, et al. Tumor necrosis factor gene polymorphisms in patients with sporadic Parkinson's disease. Neurosci Lett,2001,311:1-4.
    83.Kruger R,Hardt C,Tschentscher F,et al.Genetic analysis of immunomodulating factors in sporadic Parkinson's disease.J Neural Transm,2000,107:553-562.
    84.Wahner AD,Sinsheimer JS,Bronstein JM,Ritz B.Inflammatory cytokine gene polymorphisms and increased risk of Parkinson disease.Arch Neurol,2007,64:836-840.
    85.Bartfai T,Schultzberg M.Cytokines in neuronal cell types.Neurochem Int,1993,22:435-444.
    86.Hetier E,Ayala J,Denefle P,et al.Brain macrophages synthesize interleukin-1and interleukin-1 mRNAs in vitro.J Neurosci Res,1988,21:391-397.
    87.Jones NC,Prior MJ,Burden-Teh E,Marsden CA,Morris PG,Murphy S.Antagonism of the interleukin-1 receptor following traumatic brain injury in the mouse reduces the number of nitric oxide synthase-2-positive cells and improves anatomical and functional outcomes.Eur J Neurosci,2005,22:72-78.
    88.Lu KT,Wang YW,Yang JT,Yang YL,Chen HI.Effect ofinterleukin-1 on traumatic brain injury-induced damage to hippocampal neurons.J Neurotrauma,2005,22:885-895.
    89.Shaftel SS,Carlson TJ,Olschowka JA,Kyrkanides S,Matousek SB,O'Banion MK.Chronic interleukin-1 beta expression in mouse brain leads to leukocyte infiltration and neutrophil-independent blood brain barrier permeability without overt neurodegeneration.J Neurosci,2007,27:9301-9309.
    90.Shaftel SS,Kyrkanides S,Olschowka JA,Miller JN,Johnson RE,O'Banion MK.Sustained hippocampal IL-1 beta overexpression mediates chronic neuroinflammation and ameliorates Alzheimer plaque pathology.J Clin Invest,2007,117:1595-1604.
    91.Wang X,Li X,Currie RW,Willette RN,Barone FC,Feuerstein GZ.Application of real-time polymerase chain reaction to quantitate induced expression of interleukin-1 beta mRNA in ischemic brain tolerance.J Neurosci Res,2000,59:238-246.
    92.Saavedra A,Baltazar G,Duarte EP.Interleukin-1 beta mediates GDNF up-regulation upon dopaminergic injury in ventral midbrain cell cultures.Neurobiol Dis,2007,25:92-104.
    93.Mogi M,Harada M,Narabayashi H,Inagaki H,Minami M,Nagatsu T.Interleukin(IL)-1 beta,IL-2,IL-4,IL-6 and transforming growth factor-alpha levels are elevated in ventricular cerebrospinal fluid in juvenile parkinsonism and Parkinson's disease. Neurosci Lett, 1996,211:13-16.
    
    94. Mogi M, Harada M, Kondo T, et al. Interleukin-1 beta, interleukin-6,epidermal growth factor and transforming growth factor-alpha are elevated in the brain from parkinsonian patients. Neurosci Lett, 1994,180:147-150.
    
    95. Nishimura M, Mizuta I, Mizuta E, Yamasaki S, Ohta M, Kuno S. Influence of interleukin-1 beta gene polymorphisms on age-at-onset of sporadic Parkinson's disease. Neurosci Lett,2000,284:73-76.
    
    96. Nishimura M, Kuno S, Kaji R, Yasuno K, Kawakami H.Glutathione-S-transferase-1 and interleukin-1 beta gene polymorphisms in Japanese patients with Parkinson's disease. Mov Disord,2005, 20:901-902.
    
    97. Arai H, Furuya T, Mizuno Y, Mochizuki H. Inflammation and infection in Parkinson's disease. Histol Histopathol,2006, 21:673-678.
    
    98. Ferrari CC, Pott Godoy MC, Tarelli R, Chertoff M, Depino AM, Pitossi FJ.Progressive neurodegeneration and motor disabilities induced by chronic expression of IL-1beta in the substantia nigra. Neurobiol Dis,2006,24:183-193.
    
    99. Saura J, Pares M, Bove J, et al. Intranigral infusion of interleukin-1 beta activates astrocytes and protects from subsequent 6-hydroxydopamine neurotoxicity. J Neurochem,2003, 85:651-661.
    
    100. Parish CL, Finkelstein DI, Tripanichkul W, Satoskar AR, Drago J, Home MK.The role of interleukin-1, interleukin-6, and glia in inducing growth of neuronal terminal arbors in mice. J Neurosci,2002,22:8034-8041.
    
    101. Dawson VL, Dawson TM, Bartley DA, Uh1 GR, Snyder SH. Mechanisms of nitric oxide-mediated neurotoxicity in primary brain cultures. J Neurosci, 1993,13:2651-2661.
    
    102. Knott C, Stern G, Wilkin GP. Inflammatory regulators in Parkinson's disease: iNOS, lipocortin-1, and cyclooxygenases-1 and -2. Mol Cell Neurosci,2000,16:724-739.
    
    103. Qureshi GA, Baig S, Bednar I, Sodersten P, Forsberg G, Siden A. Increased cerebrospinal fluid concentration of nitrite in Parkinson's disease.Neuroreport,1995, 6:1642-1644.
    
    104. Liberatore GT, Jackson-Lewis V, Vukosavic S, et al. Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat Med,1999, 5:1403-1409.
    
    105. Dehmer T, Lindenau J, Haid S, Dichgans J, Schulz JB. Deficiency of inducible nitric oxide synthase protects against MPTP toxicity in vivo. J Neurochem,2000, 74:2213-2216.
    
    106. Hemmer K, Fransen L, Vanderstichele H, Vanmechelen E, Heuschling P. An in vitro model for the study of microglia-induced neurodegeneration:involvement of nitric oxide and tumor necrosis factor-alpha. Neurochem Int,2001, 38:557-565.
    
    107. Le W, Rowe D, Xie W, Ortiz I, He Y, Appel SH. Microglial activation and dopaminergic cell injury: an in vitro model relevant to Parkinson's disease. J Neurosci,2001, 21:8447-8455.
    
    108. Iravani MM, Kashefi K, Mander P, Rose S, Jenner P. Involvement of inducible nitric oxide synthase in inflammation-induced dopaminergic neurodegeneration. Neuroscience,2002, 110:49-58.
    
    109. Arimoto T, Bing G. Up-regulation of inducible nitric oxide synthase in the substantia nigra by lipopolysaccharide causes microglial activation and neurodegeneration. Neurobiol Dis,2003,12:35-45.
    
    110. Ischiropoulos H, Zhu L, Chen J, et al. Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase. Arch Biochem Biophys,1992,298:431-437.
    
    111. Good PF, Hsu A, Werner P, Perl DP, Olanow CW. Protein nitration in Parkinson's disease. J Neuropathol Exp Neurol,1998, 57:338-342.
    
    112. Schulz JB, Matthews RT, Muqit MM, Browne SE, Beal MF. Inhibition of neuronal nitric oxide synthase by 7-nitroindazole protects against MPTP-induced neurotoxicity in mice. J Neurochem, 1995, 64:936-939.
    
    113. Pennathur S, Jackson-Lewis V, Przedborski S, Heinecke JW. Mass spectrometric quantification of 3-nitrotyrosine, ortho-tyrosine, and o,o'-dityrosine in brain tissue of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice, a model of oxidative stress in Parkinson's disease. J Biol Chem,1999,274:34621-34628.
    
    114. Drapier JC, Hirling H, Wietzerbin J, Kaldy P, Kuhn LC. Biosynthesis of nitric oxide activates iron regulatory factor in macrophages. Embo J,1993,12:3643-3649.
    
    115. Jaffrey SR, Cohen NA, Rouault TA, Klausner RD, Snyder SH. The iron-responsive element binding protein: a target for synaptic actions of nitric oxide. ProcNatl Acad Sci U S A,1994,91:12994-12998.
    
    116. Pantopoulos K, Hentze MW. Nitric oxide signaling to iron-regulatory protein: direct control of ferritin mRNA translation and transferrin receptor mRNA stability in transfected fibroblasts. Proc Natl Acad Sci U S A,1995,92:1267-1271.
    
    117. Ju WK, Neufeld AH. Cellular localization of cyclooxygenase-1 and cyclooxygenase-2 in the normal mouse, rat, and human retina. J Comp Neurol,2002, 452:392-399.
    
    118. Schwab JM, Beschorner R, Meyermann R, Gozalan F, Schluesener HJ.Persistent accumulation of cyclooxygenase-1-expressing microglial cells and macrophages and transient upregulation by endothelium in human brain injury.J Neurosurg,2002, 96:892-899.
    
    119. Yamagata K, Andreasson KI, Kaufmann WE, Barnes C A, Worley PR Expression of a mitogen-inducible cyclooxygenase in brain neurons:regulation by synaptic activity and glucocorticoids. Neuron,1993, 11:371-386.
    
    120. Vane JR, Bakhle YS, Botting RM. Cyclooxygenases 1 and 2. Annu Rev Pharmacol Toxicol,1998, 38:97-120.
    
    121. Teismann P, Vila M, Choi DK, et al. COX-2 and neurodegeneration in Parkinson's disease. Ann N Y Acad Sci,2003, 991 -272-277.
    
    122. Hastings TG. Enzymatic oxidation of dopamine: the role of prostaglandin H synthase. J Neurochem,1995, 64:919-924.
    
    123. Gao HM, Liu B, Zhang W, Hong JS. Novel anti-inflammatory therapy for Parkinson's disease. Trends Pharmacol Sci,2003, 24:395-401.
    
    124. Figueiredo-Pereira ME, Li Z, Jansen M, Rockwell P. N-acetylcysteine and celecoxib lessen cadmium cytotoxicity which is associated with cyclooxygenase-2 up-regulation in mouse neuronal cells. J Biol Chem,2002,277:25283-25289.
    
    125. Liu B, Hong JS. Role of microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. J Pharmacol Exp Ther,2003, 304:1-7.
    
    126. Sanchez-Pernaute R, Ferree A, Cooper 0, Yu M, Brownell AL, Isacson O.Selective COX-2 inhibition prevents progressive dopamine neuron degeneration in a rat model of Parkinson's disease. J Neuroinflammation,2004,
    1.Take H,Watanabe S,Takeda K,Yu ZX,Iwata N,Kajigaya S.Cloning and characterization of a novel adaptor protein,CIN85,that interacts with c-Cb1.Biochem Biophys Res Commun,2000,268:321-328.
    2.Soubeyran P,Kowanetz K,Szymkiewicz I,Langdon WY,Dikic I.Cb1-CIN85-endophilin complex mediates ligand-induced downregulation of EGF receptors.Nature,2002,416:183-187.
    3.Gout I,Middleton G,Adu J,et al.Negative regulation of PI 3-kinase by Ruk,a novel adaptor protein.Embo J,2000,19:4015-4025.
    4.Borthwick EB,Korobko IV,Luke C,et al.Multiple domains of Ruk/CIN85/SETA/CD2BP3 are involved in interaction with p85alpha regulatory subunit of PI 3-kinase.J Mol Biol,2004,343:1135-1146.
    5.Chen B,Borinstein SC,Gillis J,Sykes VW,Bogler O.The glioma-associated protein SETA interacts with AIP1/Alix and ALG-2 and modulates apoptosis in astrocytes.J Biol Chem,2000,275:19275-19281.
    6.Narita T,Nishimura T,Yoshizaki K,Taniyama T.CIN85 associates with TNF receptor 1 via Src and modulates TNF-alpha-induced apoptosis.Exp Cell Res,2005,304:256-264.
    7.Kurosaki R,Muramatsu Y,Kato H,Araki T.Biochemical,behavioral and immunohistochemical alterations in MPTP-treated mouse model of Parkinson's disease.Pharmacol Biochem Behav,2004,78:143-153.
    8.Kim RH,Smith PD,Aleyasin H,et al.Hypersensitivity of DJ-1-deficient mice to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrindine(MPTP) and oxidative stress.Proc Natl Acad Sci U S A,2005,102:5215-5220.
    9.Czlonkowska A,Kohutnicka M,Kurkowska-Jastrzebska I,Czlonkowski A.Microglial reaction in MPTP(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)induced Parkinson's disease mice model.Neurodegeneration,1996,5:137-143.
    10.Kohutnicka M,Lewandowska E,Kurkowska-Jastrzebska I,Czlonkowski A,Czlonkowska A.Microglial and astrocytic involvement in a murine model of Parkinson's disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP).Immunopharmacology,1998,39:167-180.
    11.Liberatore GT,Jackson-Lewis V,Vukosavic S,et al.Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease.Nat Med,1999,5:1403-1409.
    1.Calderone A,Jover T,Noh KM,et al.Ischemic insults derepress the gene silencer REST in neurons destined to die.J Neurosci,2003,23:2112-2121.
    2.Spencer EM,Chandler KE,Haddley K,et al.Regulation and role of REST and REST4 variants in modulation of gene expression in in vivo and in vitro in epilepsy models.Neurobiol Dis,2006,24:41-52.
    3.Zuccato C,Tartari M,Crotti A,et al.Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes.Nat Genet,2003,35:76-83.
    4.Zuccato C,Belyaev N,Conforti P,et al.Widespread disruption of repressor element-1 silencing transcription factor/neuron-restrictive silencer factor occupancy at its target genes in Huntington's disease.J Neurosci,2007,27:6972-6983.
    1. Ciechanover A, Brundin P. The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.Neuron,2003,40:427-446.
    
    2. Georgopoulos C, Welch WJ. Role of the major heat shock proteins as molecular chaperones. Annu Rev Cell Biol,1993, 9:601-634.
    
    3. Sharp FR, Massa SM, Swanson RA. Heat-shock protein protection. Trends Neurosci,1999, 22:97-99.
    
    4. Rajdev S, Hara K, Kokubo Y, et al. Mice overexpressing rat heat shock protein 70 are protected against cerebral infarction. Ann Neurol,2000,47:782-791.
    
    5. Ousman SS, Tomooka BH, van Noort JM, et al. Protective and therapeutic role for alphaB-crystallin in autoimmune demyelination. Nature,2007,448:474-479.
    
    6. Gabai VL, Mabuchi K, Mosser DD, Sherman MY. Hsp72 and stress kinase c-jun N-terminal kinase regulate the bid-dependent pathway in tumor necrosis factor-induced apoptosis. Mol Cell Biol,2002,22:3415-3424.
    
    7. Clemons NJ, Buzzard K, Steel R, Anderson RL. Hsp72 inhibits Fas-mediated apoptosis upstream of the mitochondria in type II cells. J Biol Chem,2005,280:9005-9012.
    
    8. Zheng Z, Kim JY, Ma H, Lee JE, Yenari MA. Anti-inflammatory effects of the 70 kDa heat shock protein in experimental stroke. J Cereb Blood Flow Metab,2008,28:53-63.
    
    9. Kammanadiminti SJ, Chadee K. Suppression of NF-kappaB activation by Entamoeba histolytica in intestinal epithelial cells is mediated by heat shock protein 27. J Biol Chem,2006, 281:26112-26120.
    
    10. Auluck PK, Chan HY, Trojanowski JQ, Lee VM, Bonini NM. Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson's disease. Science,2002,295:865-868.
    
    11. Cabin DE, Shimazu K, Murphy D, et al. Synaptic vesicle depletion correlates with attenuated synaptic responses to prolonged repetitive stimulation in mice lacking alpha-synuclein. J Neurosci,2002,22:8797-8807.
    1.Borden LA.GABA transporter heterogeneity:pharmacology and cellular localization.Neurochem Int,1996,29:335-356.
    2.Radian R,Ottersen OP,Storm-Mathisen J,Castel M,Kanner BI.Immunocytochemical localization of the GABA transporter in rat brain.J Neurosci,1990,10:1319-1330.
    3.DaVanzo JP,Sydow M.Inhibition of isolation-induced aggressive behavior with GABA transaminase inhibitors.Psychopharmacology(Berl),1979,62:23-27.
    4.Poshivalov VP.Pharmaco-ethological analysis of social behaviour of isolated mice.Pharmacol Biochem Behav,1981,14 Suppl 1:53-59.
    5.Cai YQ,Cai GQ,Liu GX,et al.Mice with genetically altered GABA transporter subtype Ⅰ(GAT1) expression show altered behavioral responses to ethanol.J Neurosci Res,2006,84:255-267.
    6.Liu GX,Liu S,Cai GQ,et al.Reduced aggression in mice lacking GABA transporter subtype 1.J Neurosci Res,2007,85:649-655.
    7.Liu GX,Cai GQ,Cai YQ,et al.Reduced anxiety and depression-like behaviors in mice lacking GABA transporter subtype 1.Neuropsychopharmacology,2007,32:1531-1539.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700