Parkin与细胞结构相关蛋白相互作用:分子机制与功能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Parkin基因(也被称为PARK2)位于6号染色体的25.2-27区的脆性位点区域,是一个编码泛素连接酶的基因,能够促进蛋白底物的泛素化,使之通过蛋白酶体进行降解。多年的研究证明Parkin基因的突变是导致帕金森症发生的主要原因之一。Parkin在多种肿瘤中的表达显著降低或者不表达,并且有报道表明Parkin表达的降低主要是由于它的启动子的异常甲基化所引起的。这些实验结果表明Parkin可能是一个潜在的肿瘤抑制因子。看来,Parkin在帕金森症以及癌症发生过程中都起重要作用,其分子机制有待进一步研究。
     最近的报道表明,Parkin是一个微管结合蛋白,并且Parkin与微管的结合不受Parkin泛素连接酶活性丧失的点突变的影响。微管与Parkin的这种共定位关系有可能使Parkin锚定于细胞质中从而调节Parkin的泛素连接酶活性。考虑到微管在细胞内的多种重要作用以及微管作为肿瘤化疗靶点的研究,我们推断Parkin与微管的结合可能具有重要的生理意义,有可能会影响紫杉醇等以微管为靶点的抗肿瘤药物的敏感性。在我们的研究中发现Parkin能够结合在微管的外部,增强了微管与紫杉醇之间的结合,从而增强了由紫杉醇所诱导的微管的组装以及微管的稳定性。进一步研究的实验结果表明Parkin能够增加由紫杉醇所诱导的细胞多核化以及细胞凋亡,使得乳腺癌细胞对紫杉醇更加敏感。更为重要的是,在临床上采用紫杉醇联合用药化疗的病人组织样本中,Parkin的表达与肿瘤患者的病理反应成正相关。并且在原代培养的乳腺癌细胞中,Parkin的表达水平与紫杉醇的敏感性也是正相关的。这些研究表明Parkin可以促进乳腺癌对紫杉醇药物的敏感性,因此Parkin的表达水平可以做为一个诊断的标志,帮助预测乳腺癌患者是否适合含有紫杉醇的方案进行化疗。除此之外,我们的研究还表明,Parkin可以作为化疗药物开发的靶点,用以提高紫杉醇的敏感性。
     Parkin基因的突变是导致帕金森症发生的主要原因之一,50%以上的早发性青少年帕金森症中都检测到了Parkin的突变。Parkin的突变导致帕金森症的原因可能是由于Parkin的突变致使泛素连接酶活性丧失,使得底物蛋白不能够被泛素化通过蛋白酶体进行降解,从而在细胞内过度累积,对细胞产生了极大的毒性。近年来的研究证明帕金森症患者中线粒体的形态,动态性以及功能都会发生异常。线粒体是一个高度动态性的器官,处于不断的断裂与融合的过程中,提供生物体所需要的大部分能量。线粒体动态性的失调与神经元细胞的存活以及多种神经性疾病的发生相关。大量的实验证明Parkin在调节线粒体动态性上起到了重要的作用,它能够与线粒体动态性相关蛋白相互作用来调节线粒体的断裂或者融合,然而调节的具体机制尚未明确,并且也还没有发现有一个线粒体相关的蛋白会在帕金森症患者的脑部发生累积。
     在我们的研究中,发现Parkin能够与线粒体断裂相关蛋白Drp1相互作用,通过泛素48位赖氨酸形成的多聚泛素化链介导Drp1的泛素化,使其通过蛋白酶体进行降解。沉默细胞内的Parkin能够使Drp1的表达水平明显的升高,从而导致线粒体的片断化。除此之外,用可以诱导帕金森症模型的神经毒素处理细胞时,能够使Parkin的表达水平明显的降低,而Drp1的表达水平显著增高。当沉默细胞内Drp1的表达水平时,能够抑制由神经毒素所诱导的线粒体的片断化以及细胞凋亡,并且能够有效的抑制帕金森症小鼠脑部黑质密质层部位多巴胺神经元的丢失。更为重要的是,通过免疫组化和生化分析帕金森症病人的临床组织样本,我们发现Parkin与Drp1的表达水平是负相关的,Drp1的表达水平明显的增加,而Parkin的表达水平显著降低。这些证据表明Drp1是一个典型的Parkin的底物,Parkin表达水平的降低以及突变能够导致Drp1蛋白的累积,从而使线粒体发生片断化,功能异常。我们的研究揭示了帕金森症中Parkin基因的突变导致线粒体形态功能异常的重要机制。
Parkin is an E3 ubiquitin ligase encoded by the Parkin gene (also called PARK2, located at 6q25.2-q27) and is involved in the pathogenesis of both Parkinson's disease and the development of cancer. Reduced expression and inactivation of Parkin are frequently observed in human cancers. It is reported that Parkin expression can be epigenetically regulated; its expression can be reduced due to abnormal DNA methylation. These studies suggest that Parkin may play a role in tumour suppression. Although the precise mechanisms of how Parkin is involved in the development of Parkinson's disease and cancer remain elusive, alterations in its ubiquitin ligase activity are evident in a significant proportion of these patients.
     In addition to its function as an ubiquitin ligase, Parkin has recently been identified as a molecule capable of interacting with microtubules. However, the biological implication of the Parkin-microtubule axis has been poorly explored. In this study, we report for the first time that Parkin modulates sensitivity of the chemotherapeutic agent paclitaxel in breast cancer, via a microtubule-dependent mechanism. Our data reveal that Parkin binds to the outer surface of microtubules and increases paclitaxel-microtubule interaction, resulting in enhanced paclitaxel-induced microtubule assembly and stabilization. Our data further show that Parkin promotes the activity of paclitaxel to trigger multinucleation and apoptosis, rendering breast cancer cells more sensitive to this drug. Moreover, Parkin expression correlates with the pathological response of tumours to preoperative paclitaxel-containing chemotherapy. In addition, expression of Parkin also correlates with the sensitivity of paclitaxel in primary cultures of breast cancer cells. Our results identify Parkin as a novel mediator of paclitaxel sensitivity in breast cancer. In addition, our study suggests that patients harbouring tumours with high Parkin level would be more likely to benefit from paclitaxel-containing regimens.
     Parkin gene mutations have been implicated in autosomal-recessive early-onset parkinsonism and lead to specific degeneration of dopaminergic neurons in midbrain. A putative mechanism by which mutations of Parkin cause PD would be abnormal accumulation of its substrates due to altered E3 ligase activity for ubiquitin-proteasome dependent protein turnover. Over the past few decades, accumulating evidence has suggested that mitochondrial dysfunction and the resulting oxidative damage which occur prior to the neuronal loss are associated with PD. Mitochondria undergo frequent fission, fusion, and redistribution throughout the cytoplasm in response to the energy needs. Strong evidence has showed that Parkin plays a critical role in regulating mitochondrial fission and fusion and mitochondrial quality control. However, the precise mechanism of how parkin regulates mitochondrial dynamics remains a subject of debate, and so far, no substrate responsible for altered mitochondrial dynamics and functions was found to be accumulated due to the mutation of Parkin.
     In our study, we demonstrate that Parkin interacts with and subsequently ubiquitinates dynamin-related protein 1 (Drp1), a key molecule responsible for mitochondrial fission, for promoting its proteasome-dependent degradation. Knockdown of Parkin expression significantly increases the level of Drpl leading to mitochondrial fragmentation. In addition, neurotoxins known to induce PD reduce the level of Parkin and remarkably enhance the expression of Dip1 whereas knockdown of Drpl inhibits neurotoxin-induced cell death. Interestingly, inhibition of Drpl activity prevents MPP+-induced mitochondrial fragmentation and neuronal loss in cell and animal PD model systems. Immunohistochemical and biochemical analyses of PD patient brain samples further confirm the inverse correlation between Parkin and Drp1. These results identify Drp1 as a novel substrate of Parkin and uncover a novel mechanism linking abnormal Parkin expression to mitochondrial dysfunction in the pathogenesis of PD.
引文
[1]Hershko A, Ciechanover A. The ubiquitin system. Annu Rev Biochem. ]998;67:425-479.
    [2]Schubert U, Anton LC, Gibbs J, et al. Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature. Apr 13 2000;404(6779):770-774.
    [3]Ben-Neriah Y. Regulatory functions of ubiquitination in the immune system. Nat Immunol. Jan 2002;3(1):20-26.
    [4]Pagano M. Cell cycle regulation by the ubiquitin pathway. Faseb J. Nov 1997;11(13):1067-1075.
    [5]Tanaka K, Suzuki T, Hattori N, et al. Ubiquitin, proteasome and parkin. Biochim Biophys Acta Nov 29 2004;1695(1-3):235-247.
    [6]Dev KK, van der Putten H, Sommer B, et al. Part 1:parkin-associated proteins and Parkinson's disease. Neuropharmacology. Jul 2003;45(1):1-13.
    [7]Coux 0, Tanaka K, Goldberg AL. Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem.1996;65:801-847.
    [8]Baumeister W. Walz J, Zuhl F. et al. The proteasome:paradigm of a self-compartmentalizing protease. Cell. Feb 6 1998;92(3):367-380.
    [9]Pickart CM. Mechanisms underlying ubiquitination. Annu Rev Biochem. 2001;70:503-533.
    [10]Weissman AM. Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol. Mar 2001;2(3):169-178.
    [11]Handley PM, Mueckler M, Siegel NR, et al. Molecular cloning, sequence, and tissue distribution of the human ubiquitin-activating enzyme E1. Proc Natl Acad Sci U S A. Jan 1 1991;88(1):258-262.
    [12]Ciechanover A. The ubiquitin-proteasome pathway:on protein death and cell life. Embo J. Dec 15 1998; 17(24):7151-7160.
    [13]Voges D, Zwickl P, Baumeister W. The 26S proteasome:a molecular machine designed for controlled proteolysis. Annu Rev Biochem.1999;68:1015-1068.
    [14]Kloetzel PM. Antigen processing by the proteasome. Nat Rev Mol Cell Biol. Mar 2001;2(3):179-187.
    [15]Ogura T, Tanaka K. Dissecting various ATP-dependent steps involved in proteasomal degradation. Mol Cell. Jan 2003;11(1):3-5.
    [16]Glickman MH, Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev. Apr 2002;82(2):373-428.
    [17]Imai J, Maruya M, Yashiroda H, et al. The molecular chaperone Hsp90 plays a role in the assembly and maintenance of the 26S proteasome. Embo J. Jul 15 2003;22(14):3557-3567.
    [18]Scheffner M, Nuber U, Huibregtse JM. Protein ubiquitination involving an El-E2-E3 enzyme ubiquitin thioester cascade. Nature. Jan 5 1995;373(6509):81-83.
    [19]Borden KL. RING domains:master builders of molecular scaffolds? J Mol Biol. Feb 4 2000;295(5):1103-1112.
    [20]Jackson PK, Eldridge AG, Freed E, et al. The lore of the RINGs:substrate recognition and catalysis by ubiquitin ligases. Trends Cell Biol. Oct 2000; 10(10):429-439.
    [21]Scheel H, Hofmann K. No evidence for PHD fingers as ubiquitin ligases. Trends Cell Biol. Jun 2003;13(6):285-287; author reply 287-288.
    [22]Aravind L, Koonin EV. The U box is a modified RING finger-a common domain in ubiquitination. Curr Biol. Feb 24 2000;10(4):R132-134.
    [23]Ohi MD, Vander Kooi CW, Rosenberg JA, et al. Structural insights into the U-box, a domain associated with multi-ubiquitination. Nat Struct Biol. Apr 2003;10(4):250-255.
    [24]Risseeuw EP, Daskalchuk TE, Banks TW, et al. Protein interaction analysis of SCF ubiquitin E3 ligase subunits from Arabidopsis. Plant J. Jun 2003;34(6):753-767.
    [25]Fang S, Lorick KL, Jensen JP, et al. RING finger ubiquitin protein ligases: implications for tumorigenesis, metastasis and for molecular targets in cancer. Semin Cancer Biol. Feb 2003;13(1):5-14.
    [26]Yamamura Y, Kuzuhara S, Kondo K, et al. Clinical, pathologic and genetic studies on autosomal recessive early-onset parkinsonism with diurnal fluctuation. Parkinsonism Relat Disord. Aug 1998;4(2):65-72.
    [27]Matsumine H, Saito M, Shimoda-Matsubayashi S, et al. Localization of a gene for an autosomal recessive form of juvenile Parkinsonism to chromosome 6q25.2-27. Am J Hum Genet. Mar 1997:60(3):588-596.
    [28]Kitada T, Asakawa S, Hattori N, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature. Apr 9 1998;392(6676):605-608.
    [29]Kahle PJ, Leimer U, Haass C. Does failure of parkin-mediated ubiquitination cause juvenile parkinsonism? Trends Biochem Sci. Nov 2000;25(11):524-527.
    [30]Stichel CC, Augustin M, Kuhn K, et al. Parkin expression in the adult mouse brain. Eur J Neurosci. Dec 2000; 12(12):4181-4194.
    [31]Shimura H, Hattori N, Kubo S, et al. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet. Jul 2000;25(3):302-305.
    [32]Finney N, Walther F, Mantel PY, et al. The cellular protein level of parkin is regulated by its ubiquitin-like domain. J Biol Chem. May 2 2003;278(18):16054-16058.
    [33]Sakata E, Yamaguchi Y, Kurimoto E, et al. Parkin binds the Rpn10 subunit of 26S proteasomes through its ubiquitin-like domain. EMBO Rep. Mar 2003;4(3):301-306.
    [34]Fallon L, Moreau F, Croft BG, et al. Parkin and CASK/LIN-2 associate via a PDZ-mediated interaction and are co-localized in lipid rafts and postsynaptic densities in brain. J Biol Chem. Jan 4 2002;277(1):486-491.
    [35]Kahle PJ, Haass C. How does parkin ligate ubiquitin to Parkinson's disease? EMBO Rep. Jul 2004;5(7):681-685.
    [36]Imai Y, Soda M, Takahashi R. Parkin suppresses unfolded protein stress-induced cell death through its E3 ubiquitin-protein ligase activity. J Biol Chem. Nov 17 2000;275(46):35661-35664.
    [37]Zhang Y, Gao J, Chung KK, et al. Parkin functions as an E2-dependent ubiquitin-protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. Proc Natl Acad Sci U S A. Nov 21 2000;97(24):13354-13359.
    [38]Joazeiro CA, Weissman AM. RING finger proteins:mediators of ubiquitin ligase activity. Cell. Sep 1 2000;102(5):549-552.
    [39]Choi P, Ostrerova-Golts N, Sparkman D, et al. Parkin is metabolized by the ubiquitin/proteosome system. Neuroreport. Aug 21 2000;11(12):2635-2638.
    [40]Hyun DH, Lee M, Hattori N, et al. Effect of wild-type or mutant Parkin on oxidative damage, nitric oxide, antioxidant defenses, and the proteasome. J Biol Chem. Aug 9 2002;277(32):28572-28577.
    [41]Mengesdorf T, Jensen PH, Mies G, et al. Down-regulation of parkin protein in transient focal cerebral ischemia:A link between stroke and degenerative disease? Proc Natl Acad Sci U S A. Nov 12 2002;99(23):15042-15047.
    [42]Greene JC, Whitworth AJ, Kuo I, et al. Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc Natl Acad Sci U S A. Apr1 2003;100(7):4078-4083.
    [43]Darios F, Corti O. Lucking CB, et al. Parkin prevents mitochondrial swelling and cytochrome c release in mitochondria-dependent cell death. Hum Mol Genet Mar1 2003;12(5):517-526.
    [44]Feany MB, Pallanck L.l. Parkin:a multipurpose neuroprotective agent? Neuron. Apr 10 2003;38(1):13-16.
    [45]Morett E, Bork P. A novel transactivation domain in parkin. Trends Biochem Sci. Jum 1999;24(6):229-231.
    [46]Imai Y, Soda M, Inoue H, et al. An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Parkin. Cell. Jun 29 2001;105(7):891-902.
    [47]Staropoli JF, McDermott C, Martinat C, et al. Parkin is a component of an SCF-like ubiquitin ligase complex and protects postmitotic neurons from kainate excitotoxicity. Neuron. Mar 6 2003;37(5):735-749.
    [48]Ren Y, Zhao J, Feng J. Parkin binds to alpha/beta tubulin and increases their ubiquitination and degradation. J Neurosci. Apr 15 2003;23(8):3316-3324.
    [49]Shimura H, Schlossmacher MG, Hattori N, et al. Ubiquitination of a new form of alpha-synuclein by parkin from human brain:implications for Parkinson's disease. Science. Jul 13 2001;293(5528):263-269.
    [50]Wakabayashi K, Engelender S, Yoshimoto M, et al. Synphilin-1 is present in Lewy bodies in Parkinson's disease. Ann Neurol. Apr 2000;47(4):521-523.
    [51]Chung KK, Zhang Y, Lim KL, et al. Parkin ubiquitinates the alpha-synuclein-interacting protein, synphilin-1:implications for Lewy-body formation in Parkinson disease. Nat Med. Oct 2001;7(10):1144-1150.
    [52]Ko HS, von Coelln R, Sriram SR, et al. Accumulation of the authentic parkin substrate aminoacyl-tRNA synthetase cofactor, p38/JTV-1, leads to catecholaminergic cell death. J Neurosci. Aug 31 2005;25(35):7968-7978.
    [53]Hornykiewicz O. Biochemical aspects of Parkinson's disease. Neurology. Aug 1998;51(2 Suppl 2):S2-9.
    [54]Mizuno Y, Hattori N, Matsumine H. Neurochemical and neurogenetic correlates of Parkinson's disease. J Neurochem. Sep 1998;71(3):893-902.
    [55]Abbas N, Lucking CB, Ricard S, et al. A wide variety of mutations in the parkin gene are responsible for autosomal recessive parkinsonism in Europe. French Parkinson's Disease Genetics Study Group and the European Consortium on Genetic Susceptibility in Parkinson's Disease. Hum Mol Genet. Apr 1999;8(4):567-574.
    [56]Kitada T, Asakawa S, Matsumine H, et al. Progress in the clinical and molecular genetics of familial parkinsonism. Neurogenetics. Mar 2000;2(4):207-218.
    [57]Lucking CB, Durr A, Bonifati V, et al. Association between early-onset Parkinson's disease and mutations in the parkin gene. N Engl J Med. May 25 2000;342(21):1560-1567.
    [58]Hayashi S, Wakabayashi K, Ishikawa A, et al. An autopsy case of autosomal-recessive juvenile parkinsonism with a homozygous exon 4 deletion in the parkin gene. Mov Disord. Sep 2000:15(5):884-888.
    [59]Mori H, Kondo T, Yokochi M, et al. Pathologic and biochemical studies of juvenile parkinsonism linked to chromosome 6q. Neurology. Sep 1998;51(3):890-892.
    [60]Farrer M, Chan P, Chen R, et al. Lewy bodies and parkinsonism in families with parkin mutations. Ann Neurol. Sep 2001;50(3):293-300.
    [61]Forno LS. Neuropathology of Parkinson's disease. J Neuropathol Exp Neurol. Mar 1996;55(3):259-272.
    [62]Knight SJ, Flannery AY, Hirst MC, et al. Trinucleotide repeat amplification and hypermeihylation of a CpG island in FRAXE mental retardation. Cell. Jul 16 1993;74(1):127-134.
    [63]Jones C, Penny L, Mattina T, et al. Association of a chromosome deletion syndrome with a fragile site within the proto-oncogene CBL2. Nature. Jul 13 1995;376(6536):145-149.
    [64]Oberle I, Rousseau F, Heitz D, et al. Instability of a 550-base pair DNA segment and abnormal methylation in fragile X syndrome. Science. May 24 1991;252(5010):1097-1102.
    [65]Limongi MZ, Pelliccia F, Rocchi A. Characterization of the human common fragile site FRA2G. Genomics. Feb 2003;81(2):93-97.
    [66]Wilke CM, Hall BK, Hoge A, et al. FRA3B extends over a broad region and contains a spontaneous HPV16 integration site:direct evidence for the coincidence of viral integration sites and fragile sites. Hum Mol Genet. Feb 1996;5(2):187-195.
    [67]Huang H, Qian C, Jenkins RB, et al. Fish mapping of YAC clones at human chromosomal band 7q31.2:identification of YACS spanning FRA7G within the common region of LOH in breast and prostate cancer. Genes Chromosomes Cancer. Feb 1998;21(2):152-159.
    [68]Huang H, Qian J, Proffit J, et al. FRA7G extends over a broad region:coincidence of human endogenous retroviral sequences (HERV-H) and small polydispersed circular DNAs (spcDNA) and fragile sites. Oncogene. May 7 1998;16(18):2311-2319.
    [69]Mishmar D, Rahat A, Scherer SW, et al. Molecular characterization of a common fragile site (FRA7H) on human chromosome 7 by the cloning of a simian virus 40 integration site. Proc Natl Acad Sci U S A. Jul 7 1998;95(14):8141-8146.
    [70]Krummel KA, Roberts LR, Kawakami M, et al. The characterization of the common fragile site FRA16D and its involvement in multiple myeloma translocations. Genomics. Oct 1 2000;69(1):37-46.
    [71]Mangelsdorf M, Ried K, Woollatt E, et al. Chromosomal fragile site FRA16D and DNA instability in cancer. Cancer Res. Mar 15 2000;60(6):1683-1689.
    [72]Paige AJ, Taylor KJ, Stewart A, et al. A 700-kb physical map of a region of 16q23.2 homozygously deleted in multiple cancers and spanning the common fragile site FRA16D. Cancer Res. Mar 15 2000;60(6):1690-1697.
    [73]Arlt MF, Miller DE, Beer DG, et al. Molecular characterization of FRAXB and comparative common fragile site instability in cancer cells. Genes Chromosomes Cancer. Jan 2002;33(1):82-92.
    [74]Callahan G, Denison SR, Phillips LA, et al. Characterization of the common fragile site FRA9E and its potential role in ovarian cancer. Oncogene. Jan 30 2003;22(4):590-601.
    [75]Denison SR, Wang F. Becker NA, et al. Alterations in the common fragile site gene Parkin in ovarian and other cancers. Oncogene. Nov 13 2003;22(51):8370-8378.
    [76]Wang F, Denison S, Lai JP. et al. Parkin gene alterations in hepatocellular carcinoma. Genes Chromosomes Cancer. Jun 2004;40(2):85-96
    [77]Denison SR, Callahan G, Becker NA, et al. Characterization of FRA6E and its potential role in autosomal recessive juvenile parkinsonism and ovarian cancer. Genes Chromosomes Cancer. Sep 2003;38(1):40-52.
    [78]Picchio MC, Martin ES, Cesari R, et al. Alterations of the tumor suppressor gene Parkin in non-small cell lung cancer. Clin Cancer Res. Apr 15 2004;10(8):2720-2724.
    [79]Cesari R, Martin ES, Calin GA, et al. Parkin, a gene implicated in autosomal recessive juvenile parkinsonism, is a candidate tumor suppressor gene on chromosome 6q25-q27. Proc Natl Acad Sci U S A. May 13 2003;100(10):5956-5961.
    [80]Oakley BR. An abundance of tubulins. Trends Cell Biol. Dec 2000;10(12):537-542.
    [81]Desai A, Mitchison TJ. Microtubule polymerization dynamics. Annu Rev Cell Dev Biol.1997;13:83-117.
    [82]Downing KH, Nogales E. New insights into microtubule structure and function from the atomic model of tubulin. Eur Biophys J.1998;27(5):431-436.
    [83]Nogales E. Structural insights into microtubule function. Annu Rev Biochem 2000;69:277-302.
    [84]Conde C, Caceres A. Microtubule assembly, organization and dynamics in axons and dendrites. Nat Rev Neurosci. May 2009;10(5):319-332.
    [85]Amos LA, Schlieper D. Microtubules and maps. Adv Protein Chem 2005;71:257-298.
    [86]Vale RD. Microtubule-based motor proteins. Curr Opin Cell Biol. Feb 1990;2(1):15-22.
    [87]Hayashi 1, Ikura M. Crystal structure of the amino-terminal microtubule-binding domain of end-binding protein 1 (EB1). J Biol Chem. Sep 19 2003;278(38):36430-36434.
    [88]Waterman-Storer CM, Karki S, Holzbaur EL. The p150Glued component of the dynactin complex binds to both microtubules and the actin-related protein centractin (Arp-1). Proc Natl Acad Sci U S A. Feb 28 1995;92(5):1634-1638.
    [89]Pierre P, Pepperkok R, Kreis TE. Molecular characterization of two functional domains of CLIP-170 in vivo. J Cell Sci. Jul 1994; 107 (Pt 7):1909-1920.
    [90]Dumontet C, Sikic BI. Mechanisms of action of and resistance to antitubulin agents: microtubule dynamics, drug transport, and cell death. J Clin Oncol. Mar 1999; 17(3):1061-1070.
    [91]Drukman S, Kavallaris M. Microtubule alterations and resistance to tubulin-binding agents (review). Int J Oncol. Sep 2002;21(3):621-628.
    [92]George A, Morse HC,3rd, Justice MJ. The homeobox gene Hex induces T-cell-derived lymphomas when overexpressed in hematopoietic precursor cells. Oncogene. Oct 2 2003;22(43):6764-6773.
    [93]Orr GA, Verdier-Pinard P, McDaid H, et al. Mechanisms of Taxol resistance related to microtubules. Oncogene. Oct 20 2003;22(47):7280-7295.
    [94]Gottesman MM. Mechanisms of cancer drug resistance. Annu Rev Med. 2002;53:615-627.
    [95]Blagosklonny MV, Fojo T. Molecular effects of paclitaxel:myths and reality (a critical review). Int J Cancer. Oct 8 1999;83(2):151-156.
    [96]Kavallaris M, Burkhart CA, Horwitz SB. Antisense oligonucleotides to class Ⅲ beta-tubulin sensitize drug-resistant cells to Taxol. Br J Cancer. Jun 1999;80(7):1020-1025.
    [97]Kavallaris M, Kuo DY, Burkhart CA, et al. Taxol-resistant epithelial ovarian tumors are associated with altered expression of specific beta-tubulin isotypes. J Clin Invest. Sep 1 1997;100(5):1282-1293.
    [98]Berrieman HK, Lind MJ, Cawkwell L. Do beta-tubulin mutations have a role in resistance to chemotherapy? Lancet Oncol. Mar 2004;5(3):158-164.
    [99]Yaffe MP. The machinery of mitochondrial inheritance and behavior. Science. Mar 5 1999;283(5407):1493-1497.
    [100]Bogaerts V, Theuns J, van Broeckhoven C. Genetic findings in Parkinson's disease and translation into treatment:a leading role for mitochondria? Genes Brain Behav. Mar 2008;7(2):129-151.
    [101]Bereiter-Hahn J, Voth M. Dynamics of mitochondria in living cells:shape changes, dislocations, fusion, and fission of mitochondria. Microsc Res Tech. Feb 15 1994;27(3):198-219.
    [102]Bleazard W, McCaffery JM, King EJ, et al. The dynamin-related GTPase Dnml regulates mitochondrial fission in yeast. Nat Cell Biol. Sep 1999;1(5):298-304.
    [103]Sesaki H, Jensen RE. Division versus fusion:Dnmlp and Fzolp antagonistically regulate mitochondrial shape. J Cell Biol. Nov 15 1999;147(4):699-706.
    [104]Chen H, Chan DC. Emerging functions of mammalian mitochondrial fusion and fission. Hum Mol Genet. Oct 15 2005; 14 Spec No.2:R283-289.
    [105]Clark-Walker GD, Miklos GL. Complementation in cytoplasmic petite mutants of yeast to form respiratory competent cells. Proc Natl Acad Sci U S A. Jan 1975;72(1):372-375.
    [106]Chen H, Chomyn A, Chan DC. Disruption of fusion results in mitochondrial heterogeneity and dysfunction.J Biol Chem. Jul 15 2005;280(28):26185-26192.
    [107]Chen H, Detmer SA, Ewald AJ, et al. Mitofusins Mfnl and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol. Jan 20 2003;160(2):189-200.
    [108]Cipolat S, Martins de Brito O, Dal Zilio B, et al. OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc Natl Acad Sci U S A. Nov 9 2004; 101 (45):15927-15932.
    [109]Eura Y, Ishihara N, Yokota S, et al. Two mitofusin proteins, mammalian homologues of FZO, with distinct functions are both required for mitochondrial fusion. J Biochem. Sep 2003;134(3):333-344.
    [110]Ishihara N, Jofuku A, Eura Y, et al. Regulation of mitochondrial morphology by membrane potential, and DRP1-dependent division and FZO1-dependent fusion reaction in mammalian cells. Biochem Biophys Res Commun. Feb 21 2003;301(4):891-898.
    [111]Legros F, Lombes A, Frachon P. et al. Mitochondrial fusion in human cells is efficient, requires the inner membrane potential, and is mediated by mitofusins. Mol Biol Cell. Dec 2002:13(12):4343-4354.
    [112]Rojo M, Legros F, Chateau D, et al. Membrane topology and mitochondrial targeting of mitofusins, ubiquitous mammalian homologs of the transmembrane GTPase Fzo. J Cell Sci. Apr 15 2002:115(Pt 8):1663-1674.
    [113]Santel A. Frank S, Gaume B, et al. Mitofusin-1 protein is a generally expressed mediator of mitochondrial fusion in mammalian cells. J Cell Sci. Jul] 2003;116(Pt 13):2763-2774.
    [114]Santel A, Fuller MT. Control of mitochondrial morphology by a human mitofusin. J Cell Sci. Mar 2001;114(Pt 5):867-874.
    [115]Olichon A, Emorine LJ, Descoins E, et al. The human dynamin-related protein OPA1 is anchored to the mitochondrial inner membrane facing the inter-membrane space. FEBS Lett. Jul 17 2002:523(1-3):171-176.
    [116]Satoh M, Hamamoto T, Seo N, et al. Differential sublocalization of the dynamin-related protein OPA1 isoforms in mitochondria. Biochem Biophys Res Commun. Jan 10 2003;300(2):482-493.
    [117]Herlan M, Vogel F, Bornhovd C, et al. Processing of Mgml by the rhomboid-type protease Pcpl is required for maintenance of mitochondrial morphology and of mitochondrial DNA. J Biol Chem. Jul 25 2003;278(30):27781-27788.
    [118]McQuibban GA, Saurya S, Freeman M. Mitochondrial membrane remodelling regulated by a conserved rhomboid protease. Nature. May 29 2003;423(6939):537-541.
    [119]Sesaki H, Southard SM, Hobbs AE, et al. Cells lacking Pcplp/Ugo2p, a rhomboid-like protease required for Mgmlp processing, lose mtDNA and mitochondrial structure in a Dnmlp-dependent manner, but remain competent for mitochondrial fusion. Biochem Biophys Res Commun. Aug 22 2003;308(2):276-283.
    [120]Herlan M, Bornhovd C, Hell K, et al. Alternative topogenesis of Mgml and mitochondrial morphology depend on ATP and a functional import motor. J Cell Biol. Apr 26 2004; 165(2):167-173.
    [121]Wong ED, Wagner JA, Scott SV, et al. The intramitochondrial dynamin-related GTPase, Mgmlp, is a component of a protein complex that mediates mitochondrial fusion. J Cell Biol. Feb 3 2003;160(3):303-311.
    [122]Smirnova E, Griparic L, Shurland DL, et al. Dynamin-related protein Drpl is required for mitochondrial division in mammalian cells. Mol Biol Cell. Aug 2001; 12(8):2245-2256.
    [123]Zhu PP, Patterson A, Stadler J, et al. Intra-and intermolecular domain interactions of the C-terminal GTPase effector domain of the multimeric dynamin-like GTPase Drpl. J Biol Chem. Aug 20 2004;279(34):35967-35974.
    [124]Yoon Y, Krueger EW, Oswald BJ, et al. The mitochondrial protein hFisl regulates mitochondrial fission in mammalian cells through an interaction with the dynamin-like protein DLP1. Mol Cell Biol. Aug 2003;23(15):5409-5420.
    [125]Lee YJ,Jeong SY, Karbowski M, et al. Roles of the mammalian mitochondrial fission and fusion mediators Fisl, Drpl, and Opal in apoptosis. Mol Biol Cell. Nov 2004:15(11):5001-5011.
    [126]Fekkes P, Shepard KA, Yaffe MP. Gag3p, an outer membrane protein required for fission of mitochondrial tubules. J Cell Biol. Oct 16 2000; 151 (2):333-340.
    [127]Mozdy AD, McCaffery JM, Shaw JM. Dnmlp GTPase-mediated mitochondrial fission is a multi-step process requiring the novel integral membrane component Fislp. J Cell Biol. Oct 16 2000;151(2):367-380.
    [128]Tieu Q, Nunnari J. Mdvlp is a WD repeat protein that interacts with the dynamin-related GTPase, Dnmlp, to trigger mitochondrial division. J Cell Biol. Oct 16 2000;151(2):353-366.
    [129]Griffin EE, Graumann J, Chan DC. The WD40 protein Caf4p is a component of the mitochondrial fission machinery and recruits Dnmlp to mitochondria.J Cell Biol. Jul 18 2005; 170(2):237-248.
    [130]Cerveny KL, Jensen RE. The WD-repeats of Net2p interact with Dnmlp and Fislp to regulate division of mitochondria. Mol Biol Cell. Oct 2003;14(10):4126-4139.
    [131]Tieu Q, Okreglak V, Naylor K, et al. The WD repeat protein, Mdvlp, functions as a molecular adaptor by interacting with Dnmlp and Fislp during mitochondrial fission. J Cell Biol. Aug 5 2002;158(3):445-452.
    [132]Zuchner S, Mersiyanova IV, Muglia M, et al. Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat Genet. May 2004;36(5):449-451.
    [133]Delettre C, Lenaers G, Pelloquin L, et al. OPA1 (Kjer type) dominant optic atrophy:a novel mitochondrial disease. Mol Genet Metab. Feb 2002;75(2):97-107.
    [134]Verstreken P, Ly CV, Venken KJ, et al. Synaptic mitochondria are critical for mobilization of reserve pool vesicles at Drosophila neuromuscular junctions. Neuron. Aug 4 2005;47(3):365-378.
    [135]Waterham HR, Koster J, van Roermund CW, et al. A lethal defect of mitochondrial and peroxisomal fission. N Engl J Med. Apr 26 2007;356(17):1736-1741.
    [136]Silvestri L, Caputo V, Bellacchio E, et al. Mitochondrial import and enzymatic activity of PINK1 mutants associated to recessive parkinsonism. Hum Mol Genet. Nov 15 2005;14(22):3477-3492.
    [137]Palacino JJ, Sagi D, Goldberg MS, et al. Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J Biol Chem. Apr 30 2004;279(18):18614-18622.
    [138]Wood-Kaczmar A, Gandhi S, Yao Z, et al. PINK1 is necessary for long term survival and mitochondrial function in human dopaminergic neurons. PLoS One. 2008;3(6):e2455.
    [139]Poole AC, Thomas RE, Andrews LA, et al. The PINK1/Parkin pathway regulates mitochondrial morphology. Proc Natl Acad Sci U S A. Feb 5 2008;105(5):1638-1643.
    [140]Yang Y, Ouyang Y, Yang L, et al. Pinkl regulates mitochondrial dynamics through interaction with the fission/fusion machinery. Proc Natl Acad Sci U S A. May 13 2008;105(19):7070-7075.
    [141]Deng H, Dodson MW. Huang H. et al. The Parkinson's disease genes pinkl and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila. Proc Natl Acad Sci U S A. Sep 23 2008; 105(38):14503-14508.
    [142]Chen H. Chan DC. Mitochondrial dynamics-fusion, fission, movement, and mitophagy-in neurodegenerative diseases. Hum Mol Genet. Oct 15 2009; 18(R2):R169-176.
    [143]Yang F, Jiang Q, Zhao J. et al. Parkin stabilizes microtubules through strong binding mediated by three independent domains. J Biol Chem. Apr 29 2005;280(17):17154-17162.
    [144]Feng J. Microtubule:a common target for parkin and Parkinson's disease toxins. Neuroscientist Dec 2006;12(6):469-476.
    [145]Cleveland DW. The tubulins:from DNA to RNA to protein and back again. Cell. Sep 1983;34(2):330-332.
    [146]Burke D, Gasdaska P, Hartwell L. Dominant effects of tubulin overexpression in Saccharomyces cerevisiae. Mol Cell Biol. Mar 1989;9(3):1049-1059.
    [147]Brinkley BR, Barham SS, Barranco SC, et al. Rotenone inhibition of spindle microtubule assembly in mammalian cells. Exp Cell Res. Mar 30 1974;85(1):41-46.
    [148]Cappelletti G, Pedrotti B, Maggioni MG, et al. Microtubule assembly is directly affected by MPP(+)in vitro. Cell Biol Int.2001;25(10):981-984.
    [149]Baas PW. Microtubule transport in the axon. Int Rev Cytol.2002;212:41-62.
    [150]Tsai B, Ye Y, Rapoport TA. Retro-translocation of proteins from the endoplasmic reticulum into the cytosol. Nat Rev Mol Cell Biol. Apr 2002;3(4):246-255.
    [151]Cole NB, Lippincott-Schwartz J. Organization of organelles and membrane traffic by microtubules. Curr Opin Cell Biol. Feb 1995;7(1):55-64.
    [152]Floor E, Leventhal PS, Wang Y, et al. Dynamic storage of dopamine in rat brain synaptic vesicles in vitro. J Neurochem. Feb 1995;64(2):689-699.
    [153]Ren Y, Liu W, Jiang H, et al. Selective vulnerability of dopaminergic neurons to microtubule depolymerization. J Biol Chem. Oct 7 2005;280(40):34105-34112.
    [154]Jiang Q, Yan Z, Feng J. Activation of group III metabotropic glutamate receptors attenuates rotenone toxicity on dopaminergic neurons through a microtubule-dependent mechanism. J Neurosci. Apr 19 2006;26(16):4318-4328.
    [155]Rouzier R, Rajan R, Wagner P, et al. Microtubule-associated protein tau:a marker of paclitaxel sensitivity in breast cancer. Proc Natl Acad Sci U S A. Jun 7 2005; 102(23):8315-8320.
    [156]Belmont LD, Mitchison TJ. Identification of a protein that interacts with tubulin dimers and increases the catastrophe rate of microtubules. Cell. Feb 23 1996;84(4):623-631.
    [157]Marklund U, Larsson N, Gradin HM, et al. Oncoprotein 18 is a phosphorylation-responsive regulator of microtubule dynamics. Embo J. Oct 1 1996;15(19):5290-5298.
    [158]Horwitz SB, Shen HJ, He L, et al. The microtubule-destabilizing activity of metablastin (p19) is controlled by phosphorylation. J Biol Chem. Mar 28 1997;272(13):8129-8132.
    [159]Chapin SJ, Lue CM, Yu MT, et al. Differential expression of alternatively spliced forms of MAP4:a repertoire of structurally different microtubule-binding domains. Biochemistry. Feb 21 1995;34(7):2289-2301.
    [160]Chang W, Gruber D, Chari S, et al. Phosphorylation of MAP4 affects microtubule properties and cell cycie progression. J Cell Sci. Aug 2001;114(Pt 15):2879-2887.
    [161]Agirre X, Roman-Gomez J. Vazquez I, et al. Abnormal methylation of the common PARK2 and PACRG promoter is associated with downregulation of gene expression in acute lymphoblastic leukemia and chronic myeloid leukemia, Int J Cancer. Apr 15 2006;118(8):1945-1953.
    [162]Henchcliffe C, Beal MF. Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nat Clin Pract Neurol. Nov 2008;4(11):600-609.
    [163]Martin LJ, Pan Y, Price AC, et al. Parkinson's disease alpha-synuclein transgenic mice develop neuronal mitochondrial degeneration and cell death. J Neurosci. Jan 4 2006;26(1):41-50.
    [164]Parihar MS, Parihar A, Fujita M, et al. Mitochondrial association of alpha-synuclein causes oxidative stress. Cell Mol Life Sci. Apr 2008;65(7-8):1272-1284.
    [165]Song DD, Shults CW, Sisk A, et al. Enhanced substantia nigra mitochondrial pathology in human alpha-synuclein transgenic mice after treatment with MPTP. Exp Neurol. Apr 2004; 186(2):158-172.
    [166]Ostrerova-Golts N, Petrucelli L, Hardy J, et al. The A53T alpha-synuclein mutation increases iron-dependent aggregation and toxicity. J Neurosci. Aug 15 2000;20(16):6048-6054.
    [167]Smith WW, Pei Z, Jiang H, et al. Leucine-rich repeat kinase 2 (LRRK2) interacts with parkin, and mutant LRRK2 induces neuronal degeneration. Proc Natl Acad Sci U S A. Dec 20 2005; 102(51):18676-18681.
    [168]Paxinou E, Chen Q, Weisse M, et al. Induction of alpha-synuclein aggregation by intracellular nitrative insult. J Neurosci. Oct 15 2001;21 (20):8053-8061.
    [169]Kuroda Y, Mitsui T, Kunishige M, et al. Parkin enhances mitochondrial biogenesis in proliferating cells. Hum Mol Genet. Mar 15 2006;15(6):883-895.
    [170]Pesah Y, Pham T, Burgess H, et al. Drosophila parkin mutants have decreased mass and cell size and increased sensitivity to oxygen radical stress. Development. May 2004;131(9):2183-2194.
    [171]Muftuoglu M, Elibol B, Dalmizrak O, et al. Mitochondrial complex Ⅰ and Ⅳ activities in leukocytes from patients with parkin mutations. Mov Disord. May 2004;19(5):544-548.
    [172]Clark IE, Dodson MW, Jiang C, et al. Drosophila pinkl is required for mitochondrial function and interacts genetically with parkin. Nature. Jun 29 2006;441 (7097):1162-1166.
    [173]West AB, Moore DJ, Biskup S, et al. Parkinson's disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc Natl Acad Sci U S A. Nov 15 2005; 102(46):16842-16847.
    [174]Park J, Lee SB, Lee S, et al. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature. Jun 29 2006;441(7097):1157-1161.
    [175]Petit A, Kawarai T, Paitel E, et al. Wild-type PINK1 prevents basal and induced neuronal apoptosis, a protective effect abrogated by Parkinson disease-related mutations.J Biol Chem. Oct 7 2005;280(40):34025-34032.
    [176]Gandhi S, Muqit MM, Stanyer L. et al. PINK1 protein in normal human brain and Parkinson's disease. Brain. Jul 2006;129(Pt 7):1720-1731.
    [177]Bonifati V, Rizzu P, van Baren MJ, et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science. Jan 10 2003;299(5604):256-259.
    [178]Yokota T, Sugawara K, Ito K, et al. Down regulation of DJ-1 enhances cell death by oxidative stress, ER stress, and proteasome inhibition. Biochem Biophys Res Commun. Dec 26 2003;312(4):1342-1348.
    [179]Zhang L, Shimoji M, Thomas B, et al. Mitochondrial localization of the Parkinson's disease related protein DJ-1:implications for pathogenesis. Hum Mol Genet. Jul 15 2005;14(14):2063-2073.
    [180]Meulener M, Whitworth AJ, Armstrong-Gold CE, et al. Drosophila DJ-1 mutants are selectively sensitive to environmental toxins associated with Parkinson's disease. Curr Biol. Sep 6 2005;15(17):1572-1577.
    [181]Park J, Kim SY, Cha GH, et al. Drosophila DJ-1 mutants show oxidative stress-sensitive locomotive dysfunction. Gene. Nov 21 2005;361:133-139.
    [182]Yang Y, Gehrke S, Haque ME, et al. Inactivation of Drosophila DJ-1 leads to impairments of oxidative stress response and phosphatidylinositol 3-kinase/Akt signaling. Proc Natl Acad Sci U S A. Sep 20 2005;102(38):13670-13675.
    [183]Shendelman S, Jonason A, Martinat C, et al. DJ-1 is a redox-dependent molecular chaperone that inhibits alpha-synuclein aggregate formation. PLoS Biol. Nov 2004;2(11):e362.
    [184]Meulener MC, Graves CL, Sampathu DM, et al. DJ-1 is present in a large molecular complex in human brain tissue and interacts with alpha-synuclein. J Neurochem. Jun 2005;93(6):1524-1532.
    [185]Taira T, Saito Y, Niki T, et al. DJ-1 has a role in antioxidative stress to prevent cell death. EMBO Rep. Feb 2004;5(2):213-218.
    [186]Choi J, Sullards MC, Olzmann JA, et al. Oxidative damage of DJ-1 is linked to sporadic Parkinson and Alzheimer diseases. J Biol Chem. Apr 21 2006;281(16):10816-10824.
    [187]Menzies FM, Yenisetti SC, Min KT. Roles of Drosophila DJ-1 in survival of dopaminergic neurons and oxidative stress. Curr Biol. Sep 6 2005;15(17):1578-1582.
    [188]Martins LM, Morrison A, Klupsch K, et al. Neuroprotective role of the Reaper-related serine protease HtrA2/Omi revealed by targeted deletion in mice. Mol Cell Biol. Nov 2004;24(22):9848-9862.
    [189]Strauss KM, Martins LM, Plun-Favreau H, et al. Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson's disease. Hum Mol Genet. Aug 1 2005;14(15):2099-2111.
    [190]Yang Y, Gehrke S, Imai Y, et al. Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink] is rescued by Parkin. Proc Natl Acad Sci U S A. Jul 11 2006; 103(28):10793-10798.
    [191]Exner N, Treske B, Paquet D, et al. Loss-of-function of human PINK1 results in mitochondrial pathology and can be rescued by parkin.J Neurosci. Nov 7 2007;27(45):12413-12418.
    [192]Wang C. Lu R, Ouyaug X, et al. Drosophila overexpressing parkin R275W mutant exhibits dopaminergic neuron degeneration and mitochondrial abnormalities. J Neurosci. Aug.8 2007;27(32):8563-8570.
    [193]Ziviani E, Tao RN, Whitworth AJ. Drosophila Parkin requires PINK(?) for mitochondrial translocation and ubiquitinates Mitofusin. Proc Natl Acad Sci U S A. Mar 16;107(11):5018-5023.
    [194]Lutz AK, Exner N, Fett ME, et al. Loss of parkin or PINK1 function increases Drpl-dependent mitochondrial fragmentation. J Biol Chem. Aug 21 2009;284(34):22938-22951.
    [195]Vives-Bauza C, Zhou C, Huang Y, et al. PINK 1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci U S A. Jan 5;107(1):378-383.
    [196]Narendra D, Tanaka A, Suen DF, et al. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol. Dec 1 2008;183(5):795-803.
    [197]Geisler S, Holmstrom KM, Skujat D, et al. PINK 1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol. Feb; 12(2):119-131.
    [198]Smith-D(?), Zhu Y, McAvoy S, et al. Common fragile sites, extremely large genes, neural development and cancer. Cancer Lett. Jan 28 2006;232(1):48-57.
    [199]Moore DJ, West AB, Dawson VL, et al. Molecular pathophysiology of Parkinson's disease. Annu Rev Neurosci.2005;28:57-87.
    [200]Kobayashi H, Higashiyama M, Minamigawa K, et al. Examination of in vitro chemosensitivity test using collagen gel droplet culture method with colorimetric endpoint quantification. Jpn J Cancer Res. Feb 2001;92(2):203-210.
    [201]Koomagi R, Volm M. Expression of Fas (CD95/APO-1) and Fas ligand in lung cancer, its prognostic and predictive relevance. Int J Cancer. Jun 21 1999;84(3):239-243.
    [202]Poruchynsky MS, Giannakakou P, Ward Y, et al. Accompanying protein alterations in malignant cells with a microtubule-polymerizing drug-resistance phenotype and a primary resistance mechanism. Biochem Pharmacol. Dec 1 2001;62(11):1469-1480.
    [203]Alli E, Bash-Babula J, Yang JM, et al. Effect of stathmin on the sensitivity to antimicrotubule drugs in human breast cancer. Cancer Res. Dec 1 2002;62(23):6864-6869.
    [204]Jordan MA, Wilson L. The use and action of drugs in analyzing mitosis. Methods Cell Biol.1999;61:267-295.
    [205]Westermann S, Weber K. Post-translational modifications regulate microtubule function. Nat Rev Mol Cell Biol. Dec 2003;4(12):938-947.
    [206]Liu M, Aneja R, Liu C, et al. Inhibition of the mitotic kinesin Eg5 up-regulates Hsp70 through the phosphatidylinositol 3-kinase/Akt pathway in multiple myeloma cells. J Biol Chem. Jun 30 2006;281(26):18090-18097.
    [207]Moore DJ, West AB, Dikeman DA, et al. Parkin mediates the degradation-independent ubiquitination of Hsp70. J Neurochem. Jun 2008; 105(5):1806-1819.
    [208]Letessier A, Garrido-Urbani S, Ginestier C, et al. Correlated break at PARK2/FRA6E and loss of AF-6/Afadin protein expression are associated with poor outcome in breast cancer. Oncogene. Jan 11 2007:26(2):298-307.
    [209]Jordan MA. Wilson L. Microtubules as a target for anticancer drugs. Nat Rev Cancer. Apr 2004;4(4):253-265.
    [210]Bhat KM, Setaluri V. Microtubule-associated proteins as targets in cancer chemotherapy. Clin Cancer Res. May 15 2007;13(10):2849-2854
    [211]lshikawa A, Tsuji S. Clinical analysis of 17 patients in 12 Japanese families with autosomal-recessive type juvenile parkinsonism. Neurology. Jul 1996;47(1):160-166.
    [212]Braak H, Ghebremedhin E, Rub U, et al. Stages in the development of Parkinson's disease-related pathology. Cell Tissue Res. Oct 2004;318(1):121-134.
    [213]Farrer MJ. Genetics of Parkinson disease:paradigm shifts and future prospects. Nat Rev Genet. Apr 2006;7(4):306-318.
    [214]Ferrer I. Early involvement of the cerebral cortex in Parkinson's disease:convergence of multiple metabolic defects. Prog Neurobiol. Jun 2009;88(2):89-103.
    [215]Dawson TM. Unraveling the role of defective genes in Parkinson's disease. Parkinsonism Relat Disord.2007;13 Suppl 3:S248-249.
    [216]Corti O, Hampe C, Koutnikova H, et al. The p38 subunit of the aminoacyl-tRNA synthetase complex is a Parkin substrate:linking protein biosynthesis and neurodegeneration. Hum Mol Genet. Jun 15 2003;12(12):1427-1437.
    [217]Ko HS, Kim SW, Sriram SR, et al. Identification of far upstream element-binding protein-1 as an authentic Parkin substrate. J Biol Chem. Jun 16 2006;281 (24):16193-16196.
    [218]Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. Oct 19 2006;443(7113):787-795.
    [219]Knott AB, Perkins G, Schwarzenbacher R, et al. Mitochondrial fragmentation in neurodegeneration. Nat Rev Neurosci. Jul 2008;9(7):505-518.
    [220]Orth M, Schapira AH. Mitochondria and degenerative disorders. Am J Med Genet. Spring 2001;106(1):27-36.
    [221]Zhu JH, Guo F, Shelburne J, et al. Localization of phosphorylated ERK/MAP kinases to mitochondria and autophagosomes in Lewy body diseases. Brain Pathol. Oct 2003;13(4):473-481.
    [222]Taylor DJ, Kemp GJ, Radda GK. Bioenergetics of skeletal muscle in mitochondrial myopathy. J Neurol Sci. Dec 20 1994; 127(2):198-206.
    [223]Yoshino H, Nakagawa-Hattori Y, Kondo T, et al. Mitochondrial complex I and II activities of lymphocytes and platelets in Parkinson's disease. J Neural Transm Park Dis Dement Sect.1992;4(1):27-34.
    [224]Javitch JA, Uhl GR, Snyder SH. Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine:characterization and localization of receptor binding sites in rat and human brain. Proc Natl Acad Sci U S A. Jul 1984;81(14):4591-4595.
    [225]Burns RS, LeWitt PA, Ebert MH, et al. The clinical syndrome of striatal dopamine deficiency. Parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP).N Engl J Med. May 30 1985;312(22):1418-1421.
    [226]Von Coelln R, Thomas B, Savitt JM, et al. Loss of locus coeruleus neurons and reduced startle in parkin null mice. Proc Natl Acad Sci U S A.Jul 20 2004; 101 (29):10744-10749.
    [227]Xiong H, Wang D. Chen L, et al. Parkin, PINK1, and DJ-1 form a ubiquitin E3 ligase complex promoting unfolded protein degradation. J Clin Invest. Mar 2009;119(3):650-660.
    [228]Yaffe MP. Dynamic mitochondria. Nat Cell Biol. Oct 1999; 1 (6):E149-150.
    [229]Okamoto K, Shaw JM. Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes. Annu Rev Genet.2005;39:503-536.
    [230]Detmer SA, Chan DC. Functions and dysfunctions of mitochondrial dynamics. Nat Rev Mol Cell Biol. Nov 2007;8(11):870-879.
    [231]Wells RC, Picton LK, Williams SC, et al. Direct binding of the dynamin-like GTPase, Dnml, to mitochondrial dynamics protein Fisl is negatively regulated by the Fisl N-terminal arm. J Biol Chem. Nov 16 2007;282(46):33769-33775.
    [232]Frank S, Gaume B, Bergmann-Leitner ES, et al. The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell. Oct 2001; 1(4):515-525.
    [233]Wang H, Liu B, Zhang C, et al. Parkin regulates paclitaxel sensitivity in breast cancer via a microtubule-dependent mechanism. J Pathol. May 2009;218(1):76-85.
    [234]Ben-Saadon R, Fajerman I, Ziv T, et al. The tumor suppressor protein p16(INK4a) and the human papillomavirus oncoprotein-58 E7 are naturally occurring lysine-less proteins that are degraded by the ubiquitin system. Direct evidence for ubiquitination at the N-terminal residue.J Biol Chem. Oct 1 2004;279(40):41414-41421.
    [235]Giasson BI, Lee VM. Parkin and the molecular pathways of Parkinson's disease. Neuron. Sep 27 2001;31(6):885-888.
    [236]Mata IF, Lockhart PJ, Farrer MJ. Parkin genetics:one model for Parkinson's disease. Hum Mol Genet. Apr 1 2004; 13 Spec No 1:R127-133.
    [237]Bloem BR, Irwin I, Buruma OJ, et al. The MPTP model:versatile contributions to the treatment of idiopathic Parkinson's disease. J Neurol Sci. Jul 1990;97(2-3):273-293.
    [238]Bove J, Prou D, Perier C, et al. Toxin-induced models of Parkinson's disease. NeuroRx. Jul 2005;2(3):484-494.
    [239]Blum D, Torch S, Lambeng N, et al. Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP:contribution to the apoptotic theory in Parkinson's disease. Prog Neurobiol. Oct 2001;65(2):135-172.
    [240]Ramsay RR, Dadgar J, Trevor A, et al. Energy-driven uptake of N-methyl-4-phenylpyridine by brain mitochondria mediates the neurotoxicity of MPTP. Life Sci. Aug 18 1986;39(7):581-588.
    [241]Hoppel CL, Grinblatt D, Kwok HC, et al. Inhibition of mitochondrial respiration by analogs of 4-phenylpyridine and 1-methyl-4-phenylpyridinium cation (MPP+), the neurotoxic metabolite of MPTP. Biochem Biophys Res Commun. Oct 29 1987;148(2):684-693.
    [242]Mizuno Y, Saitoh T, Sone N. Inhibition of mitochondrial NADH-ubiquinone oxidoreductase activity by 1-methyl-4-phenylpyridinium ion. Biochem Biophys Res Commun. Feb 27 1987:143(1):294-299.
    [243]Cassidy-Stone A. Chipuk JE, Ingerman E, et al. Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization. Dev Cell. Feb 2008; 14(2):193-204.
    [244]Lutz AK, Exner N, Fett ME, et al. Loss of parkin or PINK1 function increases DRP1-dependent mitochondrial fragmentation.J Biol Chem. Jun 22 2009.
    [245]Cho DH, Nakamura T, Fang J, et al. S-nitrosylation of Drpl mediates beta-amyloid-related mitochondrial fission and neuronal injury. Science. Apr 3 2009;324(5923):102-105.
    [246]Han XJ, Lu YF, Li SA, et al. CaM kinase I alpha-induced phosphorylation of Drpl regulates mitochondrial morphology. J Cell Biol. Aug 112008;182(3):573-585.
    [247]Meuer K, Suppanz IE, Lingor P, et al. Cyclin-dependent kinase 5 is an upstream regulator of mitochondrial fission during neuronal apoptosis. Cell Death Differ. Apr 2007;14(4):651-661.
    [248]Nakamura T, Lipton SA. Emerging roles of S-nitrosylation in protein misfolding and neurodegenerative diseases. Antioxid Redox Signal. Jan 2008;10(1):87-101.
    [249]Li W, Bengtson MH, Ulbrich A, et al. Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle's dynamics and signaling. PLoS One.2008;3(1):e1487.
    [250]Nakamura N, Kimura Y, Tokuda M, et al. MARCH-V is a novel mitofusin 2-and Drpl-binding protein able to change mitochondrial morphology. EMBO Rep. Oct 2006;7(10):1019-1022.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700