核酸特异性触发姜黄素前体药物活化系统在膀胱癌治疗中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分
     姜黄素前体药物合成及其鉴定
     目的:制备姜黄素前体药物,使其在肿瘤细胞内高选择性活化,为进一步开展肿瘤靶向性化疗奠定基础。方法:以姜黄素分子结构为基础,化学合成N-马来酰-L-缬氨酸酯姜黄素、N马来酰-甘氨酸酯姜黄素;红外光谱、核磁共振法对合成的药物进行鉴定;MTT比色分析法比较两种姜黄素前体药物分别作用6-24h后,人膀胱癌EJ细胞及肾小管上皮HKC细胞生长抑制的差异。结果: 20μmol/L-40μmol/L的N-马来酰-L-缬氨酸酯姜黄素、N-马来酰-甘氨酸酯姜黄素作用6-24h后,EJ细胞生长抑制率分别为6.71%-65.13%(P<0.05)、10.96%-73.01%(P<0.05),呈浓度、时间依赖性。与同浓度姜黄素比较,两种前体药物对HKC细胞生长的抑制作用均显著降低(P<0.01)。结论:合成的两种姜黄素前体药物通过细胞内酯酶的水解作用,促使姜黄素前体药物活化,能在体外有效抑制肿瘤细胞的生长活性,降低对正常二倍体细胞的毒副作用,为深入研制肿瘤靶向性化疗药物提供了新的途径。
     第二部分
     姜黄素前体药物诱导膀胱癌细胞凋亡的研究
     目的观察姜黄素前体药物活化系统诱导膀胱癌细胞凋亡的生物学效应,并探讨其可能的机制。方法N-马来酰-L-缬氨酸酯姜黄素、N-马来酰-甘氨酸酯姜黄素分别作用于人膀胱癌EJ细胞、肾小管上皮HKC细胞6 24h后,采用台盼兰活细胞拒染法检测细胞生长活性,透射电镜观察细胞超微结构改变,DNA片段化原位荧光标记技术、流式细胞术-检测细胞凋亡及比率。结果10μmol/L-40μmol/L的N-马来酰L-缬氨酸酯姜黄素、N-马来酰-甘氨酸酯姜黄素作用6-24h后,EJ细胞生长抑制率分别为(6.11-66.23)%(P<0.05)、(8.96-68.21)%(P<0.05),呈浓度、时间依赖性;部分癌细胞出现凋亡形态学改变,DNA直方图上可见“亚G1峰”,12 h细胞凋亡率分别为(10.13-23.36)%(P<0.05)、(12.42-28.56)%(P<0.05)。两种前体药物对HKC细胞生长的抑制作用较同浓度姜黄素显著降低(P<0.05)。结论通过细胞内酯酶的水解作用,促使姜黄素前体药物活化,姜黄素前体药物能在体外有效诱导膀胱癌EJ细胞凋亡,降低对正常二倍体细胞生长的抑制作用,为深入研制肿瘤靶向性化疗药物提供了新的途径。
     第三部分
     姜黄素载药纳米微球的制备及表征
     目的:制备姜黄素载药纳米微球,为进一步开展肿瘤靶向性化疗研究奠定基础。方法:使用改进的自乳化-溶剂扩散法制备聚乳酸载姜黄素纳米微球,分别采用丙烯碳酸酯-乙醇混合溶剂、丙酮-乙醇混合溶剂制备载药微粒,并计算姜黄素包裹率和包封率。结果:经检测计算,聚乳酸载姜黄素纳米微球的载药率为3.15%,包封率18.9%。结论:经包裹后,肉眼比较可发现载姜黄素纳米微球可较好的分散于水中形成颜色均匀稳定的悬乳液,这表明药物不溶于水的性质得到了极大的改善。这一成果可使载姜黄素纳米微球更好的应用于肿瘤治疗研究中,具有广泛的应用前景。
     第四部分
     核酸特异性触发姜黄素前体药物活化系统的合成及其初步表征
     目的:在前面研究的基础上把已经合成的姜黄素前体药物、催化剂咪唑分别和寡链核苷酸结合。方法:采用化学合成,液相色谱、长链烷基胺载体等方法将药物和反义核酸铰链在一起,并通过高压液相等对合成的药物初步表征结果:经过合成的姜黄素前药-寡聚核苷酸复合物经过高压液相色谱初步表征,已经被初步证实合成成功。结论:核酸特异性触发姜黄素前体药物活化体系是一个切实可行的靶向化疗的治疗体系。
     第五部分
     核酸特异性触发姜黄素前体药物活化系统在体内的抑瘤作用的初步研究
     目的:了解核酸特异性触发姜黄素前体药物催化剂系统在体内的抗肿瘤活性及其毒副作用。方法:通过建立裸鼠皮下膀胱肿瘤模型,肿瘤体内注射法干预肿瘤生长,组织切片等方法了解姜黄素前体药物活化系统对动物体内肿瘤生长的抑制作用,并且检测对实验动物肝肾功能的毒副作用。结果:前期合成的核酸特异性触发姜黄素前体药物活化体系对肿瘤有靶向杀伤作用,其作用与原化疗药物相比,其对肿瘤的生长抑制率相当,但其毒副作用明显降低。结论:核酸特异性触发姜黄素前体药物活化系统是一个能有效杀伤肿瘤细胞且对正常组织细胞毒性极低的靶向化疗策略,具有广泛的应用前景。
Part 1
    Preparation of curcumin prodrugs and their anti-tumor activities in vitro
    Objectives To prepare the prodrugs of curcumin, which could be selectively activated in tumor cells, in order to establish a basis for further development of targeted chemotherapy for cancer. Methods Based on the molecular structure of curcumin, the N-maleoyl-L-valine-curcumin (NVC), N-maleoyl-glycine-curcumin (NGC) were chemically synthesized and identified by IR spectroscopy. After treatment with these two prodrugs for 6~24h, the growth inhibition rates on human bladder cancer EJ cells and renal tubular epithelial (HKC) cells were detected by MTT colorimetry. Results After treatment with 20μmol/L~40μmol/L MVC and MGC for 6~24h, the growth inhibitory effects on EJ cells were 6.71%~65.13%% (P<0.05), 10.96%~73.01% (P<0.05), respectively, with dose- and time-dependent characters. When compared with the curcumin of same concentrations, the growth inhibitory effects of these two prodrugs on HKC cells were significantly decreased (P<0.01). Conclusion The two-curcumin prodrugs: N-maleoyl-L-valine-curcumin (NVC), N-maleoyl-glycine- curcumin (NGC) were chemically synthesized successfully and were identified that they both could inhibit the growth of tumor cell in vitro. Furthermore, the two prodrugs of curcumin were found less toxic in HKC cell than curcumin.
    Part 2
    Apoptosis of bladder cancer cells induced by curcumin prodrugs in vitro
    Objectives: To study the growth inhibition effects of N-maleoyl-L-valine-curcumin (NVC), N-maleoyl-glycine- curcumin (NGC) on human bladder cancer cell line EJ, renal tubular epithelial (HKC) cells, and the mechanisms for further developing researches on their anti-tumor activity and apoptosis effects. Methods After treatment with these two prodrugs prepared before for 6~24h, the growth inhibition rates on human bladder cancer EJ cells and renal tubular epithelial (HKC) cells were detected by MTT colorimetry, cell count by Typan blue. Cell cycle phases were inspected by flow cytometery (FCM). The apoptosis was detected by TUNEL and DNA ladder methods. The morphological changes of cancer cells were observed under electronic microscopy. Results After treatment with 20μmol/L~40μmol/L NVC and NGC for 6~24h, the growth inhibitory effects on EJ cells were 6.71%~65.13% (P<0.05), 10.96%~73.01% (P<0.05), respectively, with dose- and time-dependent manners. FCM, DNA ladder and TUNEL methods exhibited that apoptosis occurred in some cancer cell with trapeziform bands on electrophoresis. Conclusion Activation of curcumin prodrugs via hydrolysis functions of cellular esterase, could inhibit the growth activities of tumor cells, and reduce the side effects on normal diploid cells through blocking cellular proliferation and inducing apoptosis.
    Part 3
    The preparation of curcumin nanoparticles and their characterization
    Objectives: To prepare the nanoparticles of curcumin and study their characteristic, in order to establish a basis for further development of targeted chemotherapy of nanotechnology for cancer. Methods With a modified spontaneous emulsification solvent diffusion method to make various types of PLGA and PLA polymers for preparation of nanoparticles of curcumin, through acetone/ethanol and PC/ethanol respectively and calculate the drug loading and drug trapping efficiency of curcumin Results: The drug loading of curcumin nanoparticles should be 3.15% and the drug trapping efficiency of curcumin nanoparticles should be 18.9%. Conclusion After been packed, the curcumin nanoparticles can be seen dissipated in the water and formed a stable suspensive emulsion; These phenomenons shows that the diffluent characteristic of curcumin has been changed through packed, which afford a new way to the chemotherapy therapy of cancer. Part 4
    Synthesis of specific nucleic acid-triggered prodrugs of curcumin and primary characterization of the prodrugs
    Objectives On the basis of our former study, We have linked the prodrugs of curcumin and catalyst imidazole with antisense oligodeoxynucleotide of survivin. Methods: With the usage of chemical synthesis; high performance liquid chromatography and controlled pore glass, the prodrugs of curcumin and catalyst imidazole were linked with the antisense oligodeoxynucleotide of survivin. The new material was identified by the high performance liquid chromatography. Results: The identification of the high performance liquid chromatography showed that the prodrugs of curcumin and catalyst imidazole were linked with the antisense oligodeoxynucleotide of survivin successfully. Conclusion: The specific nucleic acid-triggered curcumin prodrug activation system is an efficient targeted therapy of tumor.
    Part 5
    Specific nucleic acid-triggered prodrugs of curcumin in vivo
    Objectives To investigate the antitumor activity and side effect of the specific nucleic acid-triggered curcumin prodrug activation system in vivo. Methods: With the subcutaneous tumor model of nude mouse; drug injection inside tumor and histological section; the side effect and the tumor growth inhibition were detected. Results: The specific nucleic acid-triggered curcumin prodrug activation system is an efficient targeted therapy of tumor and has a less cytotoxin than curcumin. Conclusion: The specific nucleic acid-triggered curcumin prodrug activation system is an efficient targeted therapy of tumor, which established a basis for further development of targeted chemotherapy for cancer.
引文
1. Wu XR, Lin JH, Walz T, et al. Mammalian uroplakins. A group of highly conserved urothelial differentiation-related membrane proteins. J Biol Chem. 1994, 269: 13716 -13724.
    2. Li SM, Zhang ZT, Mclenan O, et al. Detection of circulating uroplakin-positive cells in patients with transitional cell carcinoma of the bladder. J Urol 1999, 162(3 Pt 1): 931-935.
    3. Chiou SK, Jones MK, Tarnawski AS. Survivin-an anti-apoptosis protein: Its biological roles and implications for cancer and beyond. Med Sci Monit 2003; 9: PI25-29
    4. M. Sohail, S. Akhtar, E.M. Southern. The folding of large RNAs studied by hybridisation to arrays of complementary oligonucleotides. RNA. 1999; 5,646-655.
    5. Ma Z, Taylor JS. Nucleic acid-triggered catalytic drug release [J]. Proc Natl Acad Sci U S A JT - Proceedings of the National Academy of Sciences of the United States of America, 2000,97(21): 11159-63.
    6. Conejo-Garcia A, Schofield CJ. A prodrug system for hydroxylamines based on esterase catalysis. Bioorg Med Chem Lett, 2005, 15:4004-9.
    1. Aggarwal BB, Kumar A, Bharti AC. Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res, 2003, 23 (1A): 363-398.
    2. Mahakunakorn P, Tohda M, Murakami Y, et al. Cytoprotective and cytotoxic effects of curcumin: dual action on H2O2-induced oxidative cell damage in NG108-15 cells. Biol Pharm Bull, 2003, 26 (5): 725-728.
    3. Kuttan R, Bhanumathy P, Nirmala K, et al. Potential anticancer activity of turmeric (Curcuma longa). Cancer Lett, 1985, 29 (2): 197-202.
    4. Soni KB, Lahiri M, Chackradeo P, et al. Protective effect of food additives on aflatoxin-induced mutagenicity and hepatocarcinogenicity. Cancer Lett, 1997, 115 (2): 129-133.
    5. Chauhan DP. Chemotherapeutic potential of curcumin for colorectal cancer. Curr Pharm Des, 2002, 8 (19): 1695-1706.
    6. Lin JK, Pan MH, Lin-Shiau SY. Recent studies on the biofunctions and biotransformations of curcumin. Biofactors, 2000, 13 (1-4): 153-158.
    7.陈静,唐小卿,胡志苹,等.姜黄素对MPP+诱导PC12细胞凋亡的影响。[J].中国药理学通报,2004,20(6):672-6.
    8. Zheng L, Tong Q, Wu C. Growth-inhibitory effects of curcumin on ovary cancer cells and its mechanisms. J Huazhong Univ Sci Technolog Med Sci, 2004, 24 (1): 55-58.
    9. Zheng LD, Tong QS, Wu CH. et al Inhibitory effects of curcumin on apoptosis of human ovary cancer cell line A2780 and its molecular mechanism. Ai Zheng, 2002, 21(12): 1296-1300.
    10. Denny WA. Prodrug strategies in cancer therapy.. Eur J Med Chem, 2001, 36 (7-8): 577-595.
    11. Skrzypczak-Jankun E, Zhou K, McCabe NP, et al. Structure of curcumin in complex with lipoxygenase and its significance in cancer. Int J Mol Med, 2003, 12 (1): 17-24.
    12. Ma Z, Taylor JS. Nucleic acid-triggered catalytic drug release. Proc Natl Acad Sci U S A, 2000, 97 (21): 11159-11163.
    [1] Han R. Recent progress in the study of anticancer drugs originating from plants and traditional medicines in China[J]. Chin Med Sci J, 1994, 9(1):61-9.
    [2] Aggarwal BB, Kumar A, Bharti AC. Anticancer potential of curcumin: preclinical and clinical studies [J]. Anticancer Res, 2003, 23(1A):363-98.
    [3] Kuttan R, Bhanumathy P, Nirmala K et al. Potential anticancer activity of turmeric (Curcuma longa) [J]. Cancer Lett, 1985, 29(2): 197-202.
    [4] Lin JK, Pan MH, Lin-Shiau SY. Recent studies on the biofunctions and biotransformations of curcumin [J]. Biofactors, 2000, 13(1-4): 153-8.
    [5] Lin JK, Lin-Shiau SY. Mechanisms of cancer chemoprevention by curcumin[J]. Proc Natl Sci Counc Repub China B, 2001, 25(2):59-66.
    [6] Calabro F, Sternberg CN. New drugs and new approaches for the treatment of metastatic urothelial cancer[J]. World J Urol, 2002, 20(3): 158-66.
    [7] 陆鹏,童强松,姜凤超,等.姜黄素前体药物的合成及其体外抗肿瘤活性研究[J].中国药理学通报,2006(3):321-4.
    [8] Zheng L, Tong Q, Wu C. Growth-inhibitory effects of curcumin on ovary cancer cells and its mechanisms[J]. J Huazhong Univ Sci Technolog Med Sci, 2004, 24(1):55-8.
    [9] Zheng LD, Tong QS, Wu CH. [Inhibitory effects of curcumin on apoptosis of human ovary cancer cell line A2780 and its molecular mechanism][J]. Ai Zheng, 2002, 21(12): 1296-300.
    [10] Denny WA. Prodrug strategies in cancer therapy[J]. Eur J Med Chem, 2001, 36(7-8):577-95.
    1. Hideki Murakami, Masao Kobayashi, Hirofumi Takeuchi, et al. Further application of a modified spontaneous emulsification solvent diffusion method to various types of PLGA and PLA polymers for preparation of nanoparticles [J]. Powder Technology 2000(107): 137-143.
    2. Haugsberger, A.G., Deluca, P.P., Characterization of biodegradable poly (D, L-lactide-co-glycolide) polymers and microspheres [J]. J. Pharm. Biomed. Anal. 1995.13:747-760.
    3. Leroux, J.C., Allemann, E., Doelker, E., et al. New approach for the preparation of nanoparticles by an emulsification-diffusion method [J]. Eur. J. Pharm. Biopharm., 1995 (41):14-18
    4. D.Quintanar-Guerreo, H.Fessi, E.allemanne, et al. influence of stabilizing agents and preparative variables on the formation of poly (D, L-lactic acid) nanoparticles by an emulsification-diffusion technique [J]. International Journal of Pharmaceutics. 1996(143):133-141.
    5. Duvoix A, Blasius R, Delhalle S, et al. Chemopreventive and therapeutic effects of curcumin. [J] Cancer Lett, 2005, 223:181-90.
    6. Youssef KM, El-Sherbeny MA. Synthesis and antitumor activity of some curcumin analogs. Arch Pharm (Weinheim), 2005, 338:181-9.
    1. Ma Z, Taylor JS. Nucleic acid-triggered catalytic drug release [J]. Proc Natl Acad Sci U S A JT-Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(21):11159-63.
    2. Tong QS, Zheng LD, Chen FM, et al. Selection of optimal antisense accessible sites of survivin and its application in treatment of gastric cancer. World J Gastroenterol JT World journal of gastroenterology: WJG, 2005, 11:634-40.
    3. Hirata M, Makibayashi K, Katsumata K, et al. 22-Oxacalcitriol prevents progressive glomerulosclerosis without adversely affecting calcium and phosphorus metabolism in subtotally nephrectomized rats. Nephrol Dial Transplant. 2002, 17:2132-7.
    4. Ho SP, Britton DH, Stone BA et al. Potent antisense oligonucleotides to the human multidrug resistance-1 mRNA are rationally selected by mapping RNA-accessible sites with oligonucleotide libraries. Nucleic Acids Res JT- Nucleic acids research, 1996, 24(10):1901-7.
    5.童强松,陈方敏,曾甫清等.膀胱移型细胞癌Uroplakin Ⅱ mRNA最佳反义位点的筛选.中华实验外科杂志.2005.22(1):15-7
    6. Vickers TA, Koo S, Bennett CF, et al. Efficient reduction of target RNAs by small interfering RNA and RNase H-dependent antisense agents. A comparative analysis. J Biol Chem JT-The Journal of biological chemistry, 2003, 278:7108-18.
    1. Ma Z, Taylor JS. Nucleic acid-triggered catalytic drug release [J]. Proc Natl Acad Sci U S A JT-Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(21):11159-63.
    2. Tong QS, Zheng LD, Chen FM, et al. Selection of optimal antisense accessible sites of survivin and its application in treatment of gastric cancer. World J Gastroenterol JT World journal of gastroenterology: WJG, 2005, 11:634-40.
    3. Labhasetwar V. Nanotechnology for drug and gene therapy: the importance of understanding molecular mechanisms of delivery [J]. Curr Opin Biotechnol JT-Current opinion in biotechnology, 2005, 16(6):674-80.
    4. Cai J, Li X, Yue X et al. Nucleic acid-triggered fluorescent probe activation by the Staudinger reaction [J]. J Am Chem Soc JT-Journal of the American Chemical Society, 2004, 126(50): 16324-5.
    5.周洁,曾甫清,郭晓云.建立小鼠原位膀胱肿瘤模型的一种新方法.华中科技大学学报医学版 2004;33(5):585-588.
    6. Braun K, Pipkorn R, Waldeck W. Development and characterization of drug delivery systems for targeting mammalian cells and tissues: a review. Curr Med Chem JT-Current medicinal chemistry, 2005, 12:1841-58.
    1. Ma Z, Taylor JS. Nucleic acid-triggered catalytic drug release [J]. Proc Natl Acad Sci U S A JT-Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(21): 11159-63.
    2. Labhasetwar V. Nanotechnology for drug and gene therapy: the importance of understanding molecular mechanisms of delivery. [J]Curr Opin Biotechnol JT-Current opinion in biotechnology, 2005, 16:674-80.
    3.周洁,曾甫清,郭晓云.建立小鼠原位膀胱肿瘤模型的一种新方法.同济医科大学学报 2004;33(5):585-588.
    4. Tong QS, Zheng LD, Lu P, et al. Apoptosis-inducing effects of curcumin derivatives in human bladder cancer cells. [J]Anticancer Drugs JT-Anti-cancer drugs, 2006, 17:279-87.
    1. Weyel D, Sedlacek HH, Muller R, et al. Secreted human beta-glucuronidase: a novel tool for gene-directed enzyme prodrug therapy. Gene Ther, 2000, 7(3):224-231.
    
    2. Niculescu Duvaz I, Scanlon I, Niculeecu Duvaz D, et al. Significant differences in biological parameters between prodrugs cleavable by carboxypeptidase G2 that generate 3, 5-difluoro-phenol and -aniline nitrogen mustards in gene-directed enzyme prodrug therapy systems. J Med Chem, 2004, 47(10); 2651-2658.
    3. Hamstra DA, Lee KC. Tychewicz JM, et al. The use of 19F spectrosco-diffusion-weighted MRI to evaluate differences in gene-de-enzyme prodrug therapies. Mol Ther,2004,10(5) ;916-928
    4. Okabe S, Arai T, Yamashita H, et al. Adenovirus-mediated prodrug enzyme therapy for CEA-producing colorectal cancer cells. J Cancer Res Clin Oncol, 2003, 129(6):367-373.
    5. Herman J R, Adler H L, Aguilar Cordova E, et al. In situ gene therapy for adenocarcinoma of the prostate; a phase I clinical trial. Hum. Gene Ther, 1999, 10(7); 1239-1249.
    6. Bainov NG, Kramm CM, Banning U, et al. Immune response induced by retrovirus-mediated HSV-tk/GCV pharmacogene therapy in patients with glioblastoma multiforme. Gene Ther, 2000, 7 (21); 1853-1858.
    7. Maddens S, Tiberghien P, Constassot E, et al. Development of a competitive PCR method for in vitro and in vivo quantification of herpes simplex virus thymidine kinase and neomycin resistance-expressing cells used in a clinical trial. J.Hematother. Stem Cell Res, 2000, 9(2); 225-236.
    8. Hamstra DA, Rice DJ, Fahmy S, et al. Enzyme/prodrug therapy for head and neck cancer using a catalytically superior cytosine deaminase. Hum Gene Ther, 1999, 10 (12): 1993-2003.
    9. Kirn D. Clinical research results with dll520 (Onyx-015) , a replicalion-selective adenovirus for the treatment of cancer-what have we learned? Gene Ther, 2001, 8(2):89-98.
    10. Khuri FR, Nemunaitis J, Ganly L, et al. A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nat Med, 2000, 6 (8):862-863.
    
    11. Dix BR, Edwards SJ, Braithwaite AW. Does the antitumor adenovirus ONYX-OIS/dI1520 selectively target cells defective in the P53 pathway? J Virol, 2001, 75(12):5443-5447.
    
    12. Panhda H, Martin LA, Rigg A, et al. Genetic prodrug activation therapy for breast cancer: a phase I clinical trial of erbB-2-directed suicide gene expression. J Clin Oncol, 1999, 17 (7):2180-2189.
    
    13. Arvidsson Y, Sumantran V, Watt F, et al. Neuroblastoma-specific cytotoxicity mediated by the Mashl-promoter and E, colipurine nucleoside phosphorylase. Pediatr Blood Cancer, 2005, 44(1); 77-84.
    
    14. Syrigos KN, Epenetos AA. Antibody directed enzyme prodrug therapy (ADEPT): a review of the experimental and clinical considerations. Anticancer Res, 1999, 19 (1 A):605-614.
    15. Pedley RB, Sharma SK, Boxer CM, et al. Enhancement of antibody-directed enzyme prodrug therapy in colorectal xenografts by an anti-vascular agent. Cancer Res, 1999, 59 (16); 3998-4003.
    16. Bagshawe KD, Sharma SK, Begent RH. Antibody-directed enzyme prodrug therapy (ADEPT) for cancer. Expert Opin Biol Ther,2004, 4(11): 1777-1789.
    17. Wolfe LA, Mullin RJ, Laethem R, et al. Antibody-directed enzyme prodrug therapy with the T268G mutant of human carboxypeptidase Al ;in vitro and in vivo studies with prodrugs of methotrexate and the thymidylate synthase inhibitors GW 1031 and GW 1843. Biocon jug Chem, 1999, 10(1); 38-48.
    1. Irene Brigger, Catherine Dubemet, Patrick Couvreur. Nanoparticles in cancer therapy and diagnosis. [J] Advanced Drug Delivery Reviews 2002 (54): 631—651.
    2.邓小龙,陈浩凡.几种可生物降解材料在胶体微粒给药系统中的应用[J].中国药师,2002(5):492~495.
    3.曹宁宁,羡菲,刘金鹏.脂质体的制备方法及研究进展[J].天津理工学院学报.2003.19:30-35.
    4. Ahlin P, Kristl J, Kristl A, et al. Investigation of polymeric nanoparticles as carriers of enalaprilat for oral administration [J]. Int J Pharm, 2002, 239(1-2):113-120.
    5. Li YP, Pei YY, Zhou ZH, et al. PEGylated polycyanoacrylate nanoparticles as tumor necrosis factor-α carriers [J]. J. Controlled Release, 2001, 71(3):287-296.
    6. Catherine Lherm, Rainer H. Muller, Francis Puisicux, et al. Alkyl-cyanoacrylate drug carriers Ⅱ. Cytotoxicity of cyanoacrylate nanoparticles weth diggerent alkyl chain length [J]. Int J Pharm, 1992, 84:13.
    7.孙铭,朱争艳,于美丽,等.去甲斑鳌素纳米控释制剂抗肿瘤的实验研究[J].肿瘤学杂志,2001.7:321-325
    8.王正容,陆彬,杨红.左炔诺孕酮-聚3-羟基丁酸酯缓释微球的研究[J].药学学报,1999.34(1):54-57.
    9.陈建海,陈志良,许重远,等.地西泮-聚羟基丁酸酯-羟基戊酸酯共聚物缓释微球制备与性质[J].中国药学杂志,2000.35(4):244-246.
    10.陈建海,陈志良,候连兵,等.以PHBV/PLA为载体的地西泮缓释微球体外释放度的研究[J].中国药科大学学报,2003.31(1):11-14.
    11. S. Mitra, U. Gaur, P. C. Ghosh, et al. Tumour targeted delivery of encapsulated dextran-doxorubicin conjugate using chitosan nanoparticles as carrier [J]. Journal of Controlled Release. 2001 (74):317-323
    12.刘海峰,常津等.明胶—聚乳酸载药纳米微球的制备及其体外释放研究[J].中国生物医学工程学报.2003.4(2):198-182
    13. Sharma D, Chelvi TP, Kaur J, et al. Novel taxol formulation: polyvinyl pyrrolidone nanoparticles-encapsulated taxol for drug delivery in cancer therapy [J] Oncol Res, 1996, 8(7-8):281-286.
    14.王晋,胡新,候新朴.可生物降解药物载体—淀粉纳米粒的研究[J].中国药学杂志,2001.36(4):255-258.
    15. Patrick B., O'Donnell, James W. McGinity. Preparation of microspheres by the solvent evaporation technique [J]. Advanced Drug Delivery Reviews. 1997. 28:25-42
    16. T. Nakanishi, S. Fukushima, K. Okamoto, et al. Development of the polymer micelle carrier system for doxorubicin [J]. Journal of Controlled Release. 2001. 74: 295-302
    17. C. X. Song, V. Labhasetwar, H. Murphy, et al. Formulation and characterization of biodegradable nanoparticles for intravascular local drug delivery [J]. Journal of Controlled Release 1997; 43:197-212.
    18. Hyun-Jeong Jeon, Young-Il Jeong, Mi-Kyeong Jang, et al. Effect of solvent on the preparation of surfactant-free poly (DL-lactide-co-glycolide) nanoparticles and norfloxacin release characteristics. International Journal of Pharmaceutics [J]. 2000 (207):99-108.
    19.蒋新宇,周春山,唐课文.二元溶剂分散法制备PLA和PLGA纳米粒[J].应用化学.2003.20(8):732-735.
    20. G. W. Meindersma, J. Augeraud, et al. Separation of a biocatalyst with ultrafiltration or filtration after bioconversion [J]. Journal of Membrane Science. 1995 (106): 103-121.
    21. Regine Peschka, et al. Cross-flow filtration—an improved detergent removal technique for the preparation of liposomes. International Journal of Pharmaceutics [J]. 1998 (162): 177~183.
    22.李冬梅,贺占博.Marangoni效应与液膜振荡[J].化学进展.2003(15):1~8.
    23. Hideki Murakami a, Masao Kobayashi a, Hirofumi Takeuchi, et al. Preparation of poly (DL-lactide-co-glycolide) nanoparticles by modified spontaneous emulsification solvent diffusion method [J]. International Journal of Pharmaceutics 1999 (187) 143-152.
    24. Hiroshi Maeda, Tomohiro Sawa, Toshimitsu Konno. Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS [J]. Journal of Controlled Release. 2001 (74): 47-61.
    25. H. Maeda, J. Wu, T. Sawa, et al. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review [J]. Journal of Controlled Release. 2000 (65): 271-284.
    26.王杰,张强,易翔,等.表面修饰对环孢菌素A聚乳酸纳米粒体外细胞摄取和体内组织分布的影响[J].北京医科大学学报,2003,32(3):235-238.
    27. J. Kopecek, P. Kopeckova, T. Minko, et al. Water soluble polymers in tumor targeted delivery [J]. Journal of Controlled Release. 2001 (74): 147-158.
    28.黎洪珊,赵京玲等.环孢霉素A聚乳酸纳米粒胶体的制备和大鼠的口服吸收[J].中国药学杂志,1999,34(8):532-536.
    29. Florence AT. The oral absorption of micro- and nanoparticulates: neither exceptional nor unusual [J]. Pharm Res. 1997, 14(3): 259~266.
    30. Torche A-M et al. Ex vivo and in situ PLGA microsphere uptake by pig ileal Peyer's patch segment [J]. Int J Pharm 2000 (201): 15~27.
    31. Schroder U, Sommerfeld P, Ulrich S, et al, Nanoparticle technology for delivery of drugs across the blood-brain barrier [J]. J Pharm Sci, 1998, 87(11): 1305-1307.
    32.高科攀,蒋新国.载药纳米粒的脑内递药系统[J].中国新药与临床杂志.2004.4(23):246~250.
    33. Ray Page, Chris Takimoto. Principles of chemotherapy [J]. Cancer management: a multidisciplinary approach. 2004. 3: 21-37.
    34. Yuping Gong, Yanting Wang, Fanyuan Chen, et al. Identification of the subcellular localization of daunorubicin in multidrug-resistant K562 cell line [J], Leukemia Research 2000.24: 769-774.
    35. F Nemati, C. Dubernet, H. fessi, et al. Reversion of multidrug resistance using nanoparticles in vitro: influence of the nature of the polymer [J]. International Journal of Pharmaceutics, 1996.138:237~246.
    36. C. Vauthier, C. Dubernet, C. Chauvierre, et al. Drug delivery to resistant tumors: the potential of poly (alkyl cyanoacrylate) nanoparticles [J]. Journal of Controlled Release 2003. 93:151-160.
    37. C. E. Soma, C. Dubernet, D. Bentolila. et al. Reversion of multidrug resistance by co-encapsulation of doxorubicin and cyclosporine A in polyalkylcyanoacrylate nanoparticles [J], Biomaterials 2000.21: 1-7.
    38. Seldinger. (1953) Acta Radiologica, 38:368-376
    39.钱骏,冯敢生.原发性肝癌的综合介入治疗[J].中华肿瘤杂志.2003,25(5):417~419.
    40.万智勇,冯敢生等,兔移植性肝癌伴门静脉癌栓模型的制作[J];临床放射学杂志.2003.22(6):517-520.
    41. C. Grandfils, et al. Control of the biodegradation rate of poly (DL-lactide) microparticles intended as chemoembolization materials [J]. Journal of Controlled Release, 1996(38): 109~122.
    42.钱骏,冯敢生.聚丙交酯复合乙交酯微球经肝动脉化疗栓塞术治疗肝癌的动物实验[J].放射学实践.2001,16(6):381~383.
    43. David A. Gewirtz. A Critical Evaluation of the Mechanisms of Action Proposed for the Antitumor Effects of the Anthracycline Antibiotics Adriamycin and Daunorubicin [J]. Biochemical Pharmacology, 1999(57): 727-741.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700