锂云母中有价金属的高效提取研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
江西省宜春市拥有全国最大的锂云母矿,现已探明Li20储量达110万吨,目前还未能有效地综合开发利用。本文在综合评述锂资源开发现状及锂云母提取锂研究现状的基础上,分别采用氯化焙烧法、硫酸盐法、压煮法,对宜春锂云母矿中的锂及伴生的钾、铷、铯进行综合提取研究,取得了较好的效果。本论文的主要研究内容及结论如下:
     在热力学理论分析的基础上,对氯化焙烧-水浸法提取锂云母矿中锂、钾、铷、铯等有价金属的工艺进行了研究。结果表明,在采用复合氯化剂质量比CaCl2:NaCl为0.6:0.4,锂云母矿与氯化剂质量比为1.0,氯化焙烧温度为880℃,氯化焙烧时间为30min时,锂、钾、铷、铯的浸出率分别达到92.86%、88.49%、94.05%、93.06%。由于氯化反应过程中锂云母矿中的铝、硅可与CaCl2、NaCl中的钙和钠反应生成相应的不溶于水的铝硅酸盐,而有价碱金属锂、钾、铷、铯与氯离子结合形成相应的可溶于水的碱金属氯化物,氯化处理后所得熟料于常压下以水作浸出剂进行选择性浸出,可有效的将锂、钾、铷、铯浸出,而铝、硅等保留在浸出渣中。
     对锂云母矿与固体氯化剂(CaCl2)的反应机理进行了研究。结果表明,在Ar气氛下,CaCl2和锂云母发生交互反应;在水蒸气气氛下部分氯化钙分解产生氯化氢,所以在H20蒸气气氛下锂云母与固体氯化剂发生交互反应的同时还存在与气体氯化氢反应;在O2气氛下部分CaCl2分解产生氯气,因此锂云母与CaCl2存在交互反应的同时还存在与氯气的反应。
     采用硫酸盐焙烧-水浸法处理锂云母矿,可以选择性提取锂云母矿中的锂、钾、铷、铯,最佳工艺条件为:锂云矿:Na2SO4:K2SO4:CaO质量比1:0.5:0.1:0.1、焙烧温度900℃、焙烧时间30min,锂、钾、铷、铯的浸出率分别为91.61%、44.37%、29.33%和23.21%。XRD分析表明,硫酸盐焙烧可以将锂云母矿分解成NaSi3Al08、KAlSi2O6和CaAl2Si2O8。在硫酸盐焙烧过程中添加氧化钙可以有效促进锂云母矿中的氟与钙反应形成CaF2和Ca4Si2O7F2。
     首次采用硫酸钠和氯化钙复合盐焙烧-水浸法处理锂云母矿。结果表明在830~930℃内锂的提取率基本不变,保持在90%以上,且焙烧物料未出现熔融现象。其最佳工艺条件为:锂云母:Na2SO4:CaCl2=1:0.5:0.3,焙烧温度850℃,焙烧时间30min,锂的浸出率达93.83%,铷、铯和钾的提取率分别为93.46%、90.08%和60.72%。
     对锂云母在高温水蒸气下脱氟焙烧的条件及物理化学变化进行了系统的研究。结果表明,水蒸气气氛下于860℃反应40min,锂云母的脱氟率可达61.43%;SEM检测表明脱氟料表面变得粗糙蓬松;XRD检测表明脱氟料锂云母衍射峰几乎消失,主要物相转变成铝硅酸锂(LiAl(SiO3)2)和铝硅酸钾(KAlSi2O6)。
     对硫酸钠、石灰压煮法处理脱氟锂云母工艺进行了系统的研究。结果表明,当脱氟锂云母粒度在300目以下,搅拌速度400r·min-1,反应时间3h,反应温度150℃,脱氟锂云母:硫酸钠:石灰:水=1:1:0.7:7,锂、钾、铷、铯的浸出率分别为91.98%、93.06%、70.18%、61.02%。
     压煮反应过程动力学实验研究结果表明锂、钾、铷、铯浸出过程动力学符合未反应收缩核模型,属于固膜扩散控制,锂、钾、铷、铯浸出活化能分别为20.179kJ·mol-1、19.617kJ·mol-1、45274kJ·mol-1和20.179kJ·mol-1、19.617kJ·mol-1、45.274kJ·mol-1
     对石灰乳压煮法处理脱氟锂云母工艺进行了系统的研究。结果表明,当脱氟锂云母球磨活化100min,石灰与脱氟锂云母质量比为1,液固比为4,压煮反应温度150℃,压煮反应时间1h,搅拌速度为400r-min-1,锂、钾、铷、铯的提取率分别为98.9%、68.67%、47.43%和43.54%。
     针对氯化物、硫酸盐浸出液体系,对Li+, Na+, K+//Cl-及Li+, Na+, K+//SO42-体系相图及浸出液中制备碳酸锂方法进行了研究。结果表明氯化物体系可以通过浓缩结晶的方式将浸出液中的锂浓度提高到20~30g·L-1,而硫酸盐体系在浓缩到一定程度后会形成LiKSO4复盐而沉淀;因此Li+, Na+, K+//SO42-体系可通过冷冻到-5℃冷冻结晶,降低体系中的硫酸根浓度。去除硫酸根的溶液再次浓缩,将Li浓度提高到20-24g·L-1后与5mol/L的Na2CO3反应获得Li2CO3。
The lepidolite from Jiangxi Province (China)has a reserve of1.1million tons Li2O and accounts for30%of China's domestic proven reserves, but little of ithas been utilized. The present methods of lithium extraction from lepidolite worldwide were summarized in this paper. Comprehensive extraction and utilization of lithium, potassium, rubidium and cesium from the lepidolite of Jiangxi Province were introduced. Chlorination roasting, sulfation roasting and autoclaving method were adopted. The effect and mechanism ofmineral phase reconstruction on the extraction behavior of Li, K, Rb, Cs from lepidolite with different methods were discussed in detail and conclusions were made as follows.
     Based on the analysis of thermodynamics, the experimental conditions of chlorination roasting-water leaching were studied. The conditional experiments indicated that the optimum mass ratio of lepidolite/CaCl2/NaCl is1:0.6:0.4during the roasting process. The extraction efficiencies of Li, K, Rb and Cs are92.86%,88.49%,94.05%and93.06%, respectively after roasting for0.5h at880℃. Li, K, Rb and Cs are selectively leached by chlorination roasting and water leaching at atmospheric pressure, and impurities extraction can be suppressed.
     The reaction mechanism of lepidolite and solid chloridizing agent was investigated in details. The results indicated that base-exchange reaction occurs between CaCl2and lepidolite under argon atmosphere. CaCl2is decomposed intohCl under vapor atmosphere andhCl will react with lepidolite under vapor atmosphere. Because CaCl2is decomposed into Cl2under oxygen atmosphere, lepidolite will react with CaCl2and Cl2.
     Sulfation roasting followed by water leaching process was used to selectively extract Li, K, Rb and Cs from lepidolite. Various operational parameters including roasting temperature, the amount of additives, and solid/liquid ratio in the leaching process were optimized. The extraction efficiencies of Li, K, Rb and Cs could reach91.61%,44.37%,29.33%and23.21%with a mass ratio of lepidolite/Na2SO4/K2SO4/CaO as1:0.5:0.1:0.1by roasting at850℃for0.5h. XRD analysis showed that the original aluminosilicate will decompose to NaSi3AlO8, KAlSi2O6and CaAl2Si2O8during sulfation roasting. The phases of CaF2and Ca4Si2O7F2are observed due to the addition of CaO.
     Salt roasting with Na2SO4+CaCl2followed by water leaching was used to extract alkali metals from lepidolite. The experiments indicated that the optinum mass ratio of lepidolite/Na2SO4/CaCl2during roasting is1:0.5:0.3. The extraction efficiencies of Li, Rb and Cs are over90%after0.5h at880℃. The recovery efficiency of Li is essentially constant at830-930℃. The flexible roasting condition is easily maintained for industrial application. After the residue was leached in water, the aqueous solution was cooled to-5℃for2h for92.1%of the sulphate and3.9%of the chloride to be crystallized as Na2SO4·10H2O and NaCl, respectively. By evaporation and precipitation with Na2CO3, Li2CO3crystal with a purity of over99.5%was produced and a solution was obtained from which Rb and Cs could be recovered.
     The lepidolite was pre-roasted athigh temperature with water steam atmosphere for defluorination. The defluorination percentage is61.43%at860℃when the duration of defluorination is40min. The XRD result indicated that as the defluorination time increases to40min, the diffraction peaks of lepidolite almost disappear and the main phases are aluminum silicate (LiAl(SiO3)2) and leucite (KAlSi2O6). The structure of the originalmineral is destroyed and transformed to aluminum silicate (LiAl(SiO3)2) and leucite (KAlSi2O6) during the defluorination process.
     The defluorinated lepidolite washandled by Na2SO4and Ca(OH)2in the autoclaving leaching. The results indicated that the optimum operating parameters with the extraction efficiencies of Li, K, Rb and Cs as91.98%,93.06%,70.18%and61.02%were established as follows: defluorination temperature860℃, defluorination time30min (the defluorination percentage of lepidolite is42.3%), leaching temperature150℃, leaching time60min, defluorinated lepidolite/Na2SO4/Ca(OH)2/H2O1:1:0.7:7. The results of the leaching kinetics of defluorinated lepidolite show that the dissolution rates of Li, K, Rb, Cs accord with unreacted shrinking core models for solid film control. And the activation energies for the leaching of Li, K, Rb, Cs are 20.179kJ·mol-1,19.61J·mol-1,45.274kJ·mol-1and36.338kJ·mol-1respectively.
     The defluorinated lepidolite was leached in a lime-milk autoclave. Various parameters including the defluorination percentage of lepidolite, milling time, temperature, time, lime-to-defluorinated lepidolite ratio, and liquid-to-solid ratio in the leaching process were optimized. The extraction efficiencies of Li, K, Rb and Cs can reach98.9%,68.67%,47.43%and43.54%under the optimal conditions.
     Aim at the chloride and sulphate leaching solution, the phase equilibria of ternary reciprocal system Li+, Na+, K+//Cl--H2O and Li+, Na+, K+//SO42--H2O were studied by isothermal method. The results indicated that lithium can be concentrated to20-30g·L-1in Li+, Na+, K+//Cl--H2O system. But the concentration of lithium was limited to8.6g·L-1due to the precipitation of LiKSO4fromhigh concentration of sulphate solutions in Li+, Na+, K+//SO42--H2O system. In order to overcome this problem, the purified solution was cooled to-5℃for2h so that92.1%of the sulphate and3.9%of the chloride ions were crystallized as Na2SO4·10H2O and NaCl, respectively. The sulphate-free solution was thermally evaporated and the concentration of lithium was increased to20-24g-L-1when5mol·L-1Na2CO3solution was added to precipitate~86%of the lithium as lithium carbonate.
引文
[1]戴自希.世界锂资源现状及开发利用趋势[J].中国有色冶金,2008(04).
    [2]林大泽.锂的用途及其资源开发[J].中国安全科学学报,2004(09).
    [3]garrett Donald E., Lithium, inhandbook of Lithium and Natural Calcium Chloride. 2004, Academic Press:Oxford, p.1-235.
    [4]Amdisen A., M. Schou, Lithium, in Side Effects of Drugs Annual, M.N.G. Dukes, Editor.1978, Elsevier. p.17-29.
    [5]李承元 李勤,朱景和.世界锂资源的开发应用现状及展望[J].国外金属矿选矿,2001(08).
    [6]Amarante M. M., A. Botelho De Sousa, M. Machado Leite. Processing a spodumene ore to obtain lithium concentrates for addition toglass and ceramic bodies [J].minerals Engineering,1999,12(4):433-436.
    [7]Ebensperger Arlene, Philip Maxwell, Christian Moscoso. The lithium industry:Its recent evolution and future prospects [J]. Resources Policy,2005,30(3):218-231.
    [8]张江峰,朱小云.全球锂工业现状及发展趋势[J].中国金属通报,2008(12).
    [9]Wang Chunsheng, A. John Appleby, Frank E. Little. Irreversible capacities ofgraphite anode for lithium-ion batteries [J]. Journal of Electroanalytical Chemistry,2002,519(1-2):9-17.
    [10]Yuqin Chang, Lihong, Wu Lie, Lu Tianhong. Irreversible capacity loss ofgraphite electrode in lithium-ion batteries [J]. Journal of Power Sources,1997, 68(2):187-190.
    [11]Koksbang R., J. Barker,h. Shi, M. Y. Saidi. Cathode materials for lithium rocking chair batteries [J]. Solid State Ionics,1996,84(1-2):1-21.
    [12]Kanno R., SECONDARY BATTERIES-LITHIUM RECHARGEABLE SYSTEMS| Electrolytes:Solid Sulfide, in Encyclopedia of Electrochemical Power Sources,g. Editor-in-Chief:Jurgen, Editor.2009, Elsevier:Amsterdam, p. 129-137.
    [13]Richardson T. J., SECONDARY BATTERIES-LITHIUM RECHARGEABLE SYSTEMS-LITHIUM-ION Overcharge Protection Shuttles, in Encyclopedia of Electrochemical Power Sources,g. Editor-in-Chief:Jurgen, Editor.2009, Elsevier:Amsterdam, p.404-408.
    [14]Yamaki J., SECONDARY BATTERIES-LITHIUM RECHARGEABLE SYSTEMS-LITHIUM-ION Overview, in Encyclopedia of Electrochemical Power Sources,g. Editor-in-Chief:Jurgen, Editor.2009, Elsevier:Amsterdam. p. 183-191.
    [15]Fergus Jeffrey W. Recent developments in cathode materials for lithium ion batteries [J]. Journal of Power Sources,2010,195(4):939-954.
    [16]Katoh Takashi, Yasushi Inda, Kousuke Nakajima, Rongbin Ye, Mamoru Baba. Lithium/water battery with lithium ion conductingglass-ceramics electrolyte [J]. Journal of Power Sources,2011,196(16):6877-6880.
    [17]Katzhelene, Wolfgang Bogel, Jean-Pierre Buchel. Industrial awareness of lithium batteries in the world, during the past two years [J]. Journal of Power Sources, 1998,72(1):43-50.
    [18]Li R. E. N., Wang Lixin, A. N.haoyuan, Zhang Fuqiang. Study of lithium/polypyrrole secondary batteries with Lithium as cathode and polypyrrole anode [J]. Rare Metals,2007,26(6):591-600.
    [19]Lisbona Diego, Timothy Snee. A review ofhazards associated with primary lithium and lithium-ion batteries [J]. Process Safety and Environmental Protection,2011,89(6):434-442.
    [20]Menard Laurianne,guillaume Fontes, Stephan Astier. Dynamic energy model of a lithium-ion battery [J]. Mathematics and Computers in Simulation,2010, 81(2):327-339.
    [21]Ohzuku Tsutomu, Ralph J. Brodd. An overview of positive-electrode materials for advanced lithium-ion batteries [J]. Journal of Power Sources,2007, 174(2):449-456.
    [22]Ritchie Andrew, Wilmonthoward. Recent developments and likely advances in lithium-ion batteries [J]. Journal of Power Sources,2006,162(2):809-812.
    [23]Ritchie A.g. Recent developments and future prospects for lithium rechargeable batteries [J]. Journal of Power Sources,2001,96(1):1-4.
    [24]Ritchie A.g. Recent developments and likely advances in lithium rechargeable batteries [J]. Journal of Power Sources,2004,136(2):285-289.
    [25]Scrosati Bruno, Jurgengarche. Lithium batteries:Status, prospects and future [J]. Journal of Power Sources,2010,195(9):2419-2430.
    [26]Songmin-Kyu, Soojin Park, Faisal M. Alamgir, Jaephil Cho, Meilin Liu. Nanostructured electrodes for lithium-ion and lithium-air batteries:the latest developments, challenges, and perspectives [J]. Materials Science and Engineering:R:Reports,2011,72(11):203-252.
    [27]Tulyaganov D. U., S. Agathopoulos, I. Kansal, P. Valerio, M. J. Ribeiro, J. M. F. Ferreira. Synthesis and properties of lithium disilicateglass-ceramics in the system SiOr-Al2O3-K2O-Li2O [J]. Ceramics International,2009, 35(8):3013-3019.
    [28]Wu Yu-Han, Kuo-Chuanhsu, Chih-Hao Lee. Effects of B2O3 and P2O5 doping on the microstructure evolution and mechanical strength in a lithium aluminosilicateglass-ceramic material with TiO2 and ZrO2 [J]. Ceramics International,2012,38(5):4111-4121.
    [29]Xia Long, Xinyu Wang,guangwu Wen, Xia Li, Chunlin Qin, Liang Song. Influence of brick pattern interface structure on mechanical properties of continuous carbon fiber reinforced lithium aluminosilicateglass-ceramics matrix composites [J]. Journal of the European Ceramic Society,2012,32(2):409-418.
    [30]Almeida A. F. L., D. Thomazini, I. F. Vasconcelos, M. A. Valente, A. S. B. Sombra. Structural studies of lithium triborate (LBO-LiB3O5) in borophosphateglass-ceramics [J]. International Journal of Inorganic Materials, 2001,3(7):829-838.
    [31]Apel Elke, Christian Van'thoen, Volker Rheinberger, Wolframholand. Influence of ZrO2 on the crystallization and properties of lithium disilicateglass-ceramics derived from a multi-component system [J]. Journal of the European Ceramic Society,2007,27(2-3):1571-1577.
    [32]Applebyg. A., A. Edgar,g. V. M. Williams, P. Vontobel. Structure and neutron imaging characteristics of lithium borate-barium chlorideglass-ceramics [J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,2006,564(1):424-430.
    [33]Buchner Silvio, Marcelo Barbalho Pereira, Naira Maria Balzaretti. Behavior of the refractive index of lithium disilicateglass ceramic processed athigh pressure andhigh temperature [J]. Optical Materials,2012,34(5):826-831.
    [34]Denry I. L., A. M. Lejus, J. Thery, M. Masse. Preparation and characterization of a new lithium-containingglass-ceramic [J]. Materials Research Bulletin,1999, 34(10-11):1615-1627.
    [35]Elbatalhatem A., Zeinab S. Mandouh,hamdia A. Zayed, Samir Y. Marzouk,gihan M. Elkomy, Ahmedhosny. Thermal, structure and morphological properties of lithium disilicateglasses doped with copper oxide and theirglass-ceramic derivatives [J]. Journal of Non-Crystalline Solids,2012,358(15):1806-1813.
    [36]hooshmand Tabassom,golriz Rostami, Marjan Behroozibakhsh, Mostafa Fatemi, Alireza Keshvad, Richard Van Noort. Interfacial fracture toughness of different resin cements bonded to a lithium disilicateglass ceramic [J]. Journal of Dentistry, 2012,40(2):139-145.
    [37]Taruta Seiichi, Tomomi Ichinose, Tomohiro Yamaguchi, Kunio Kitajima. Preparation of transparent lithium-micaglass-ceramics [J]. Journal of Non-Crystalline Solids,2006,352(52-54):5556-5563.
    [38]Tulyaganov D. U., S. Agathopoulos,h. R. Fernandes, J. M. F. Ferreira. Synthesis of lithium aluminosilacateglass andglass-ceramics from spodumene material [J]. Ceramics International,2004,30(6):1023-1030.
    [39]Delgado M. A., M. C. Sanchez, C. Valencia, J. M. Franco, C.gallegos. Relationship Among Microstructure, Rheology and Processing of a Lithium Lubricatinggrease [J]. Chemical Engineering Research and Design,2005, 83(9):1085-1092.
    [40]Martin-Alfonso J. E.,g. Moreno, C. Valencia, M. C. Sanchez, J. M. Franco, C.gallegos. Influence of soap/polymer concentration ratio on the rheological properties of lithium lubricatinggreases modified with virgin LDPE [J]. Journal of Industrial and Engineering Chemistry,2009,15(5):687-693.
    [41]Martin-Alfonso J. E., C. Valencia, M. C. Sanchez, J. M. Franco, C.gallegos. Evaluation of different polyolefins as rheology modifier additives in lubricatinggrease formulations [J]. Materials Chemistry and Physics,2011, 128(3):530-538.
    [42]Morenog., C. Valencia, M. V. De Paz, J. M. Franco, C.gallegos. Rheology and microstructure of lithium lubricatinggreases modified with a reactive diisocyanate-terminated polymer:Influence of polymer addition protocol [J]. Chemical Engineering and Processing:Process Intensification,2008, 47(4):528-538.
    [43]Morenog., C. Valencia, J. M. Franco, C.gallegos, A. Diogo, J. C. M. Bordado. Influence of molecular weight and free NCO content on the rheological properties of lithium lubricatinggreases modified with NCO-terminated prepolymers [J]. European Polymer Journal,2008,44(7):2262-2274.
    [44]Ruiz-Viera M. J., M. A. Delgado, J. M. Franco, C.gallegos. Evaluation of wall slip effects in the lubricatinggrease/air two-phase flow along pipelines [J]. Journal of Non-Newtonian Fluid Mechanics,2006,139(3):190-196.
    [45]Yonggang Meng, Zheng Jie. A rheological model for lithium lubricatinggrease [J]. Tribology International,1998,31(10):619-625.
    [46]Anke M., U. Schafer, W. Arnhold, LITHIUM, in Encyclopedia of Food Sciences and Nutrition (Second Edition), C. Editor-in-Chief:Benjamin, Editor.2003, Academic Press:Oxford, p.3589-3593.
    [47]gad Shayne C., Lithium, in Encyclopedia of Toxicology (Second Edition), W. Editor-in-Chief:Philip, Editor.2005, Elsevier:New York. p.734-735.
    [48]haupin W., Aluminum Production and Refining, in Encyclopedia of Materials: Science and Technology (Second Edition), K.H.J.B. Editors-in-Chief:, et al., Editors.2001, Elsevier:Oxford, p.132-141.
    [49]haupin Warren, Aluminum, in Encyclopedia of Physical Science and Technology (Third Edition), A.M. Editor-in-Chief:Robert, Editor.2003, Academic Press: New York. p.495-518.
    [50]Khan Shaukat A., Amit Anand, Deepak Cyril D'souza, Lithium Carbonate, in Encyclopedia of the Neurological Sciences, J. A. Editors-in-Chief:Michael and B.D. Robert, Editors.2003, Academic Press:New York. p.803-810.
    [51]Mishra B., Alkali Metals Production (Li, Na, K), in Encyclopedia of Materials: Science and Technology (Second Edition), K.H.J.B. Editors-in-Chief:, et al., Editors.2003, Elsevier:Oxford, p.1-6.
    [52]Schwarzh.g., Aluminum Production and Energy, in Encyclopedia of Energy, J.C. Editor-in-Chief:Cutler, Editor.2004, Elsevier:New York. p.81-95.
    [53]Kanhong-Min, Zhao-Wen Wang, Yun-Gang Ban, Zhong-Ning Shi, Zhu-Xian Qiu. Electrical conductivity of Na3AIF6-AlF3-A12O3-CaF2-LiF(NaCl) system electrolyte [J]. Transactions of Nonferrous Metals Society of China,2007, 17(1):181-186.
    [54]Nicholson Piers. Past and future development of the market for lithium in the World aluminium industry [J]. Energy,1978,3(3):243-246.
    [55]Weirauch Jr Douglas A. Technologically significant capillary phenomena inhigh-temperature materials processing:Examples drawn from the aluminum industry [J]. Current Opinion in Solid State and Materials Science,2005, 9(4-5):230-240.
    [56]Eftekhari A., J. E. Talia, P. K. Mazumdar. Influence of surface condition on the fatigue of an aluminum-lithium alloy (2090-T3) [J]. Materials Science and Engineering:A,1995,199(2):L3-L6.
    [57]Floriano M. A., A. Triolo, E. Caponetti, R. Triolo. On the nature of phase separation in a commercial aluminium-lithium alloy [J]. Journal of Molecular Structure,1996,383(1-3):277-282.
    [58]Kalogeridis Avraam, Josef Pesicka, Eckhard Nembach. On the increase of the precipitated volume fraction during Ostwald ripening, exemplified for aluminium-lithium alloys [J]. Materials Science and Engineering:A,1999, 268(1-2):197-201.
    [59]Meric Cevdet. Physical and mechanical properties of cast under vacuum aluminum alloy 2024 containing lithium additions [J]. Materials Research Bulletin,2000,35(9):1479-1494.
    [60]Noble B., S. E. Bray. On the α (Al)/δ'(A13Li) metastable solvus in aluminium-lithium alloys [J]. Acta Materialia,1998,46(17):6163-6171.
    [61]Ortiz D., J. Brown, M. Abdelshehid, P. Deleon, R. Dalton, L. Mendez, J. Soltero, M. Pereira, M.hahn, Eui Lee, J. Ogren, R. Clark Jr, J. Foyos, O. S. Es-Said. The effects of prolonged thermal exposure on the mechanical properties and fracture toughness of C458 aluminum-lithium alloy [J]. Engineering Failure Analysis, 2006,13(1):170-180.
    [62]Sanschagrin A., R. Tremblay, R. Angers, D. Dube. Mechanical properties and microstructure of new magnesium—lithium base alloys [J]. Materials Science and Engineering:A,1996,220(1-2):69-77.
    [63]Vertkov A. V., V. A. Evtikhin, I. E. Lyublinski. Self-healing electrical insulating coating processes for vanadium alloy-lithium systems [J]. Fusion Engineering and Design,2001,58-59(0):731-735.
    [64]Wack B., A. Tourabi. A new method to quantify the Portevin-Le Chatelier instabilities:application to aluminium-lithium alloys [J]. Materials Science and Engineering:A,1995,196(1-2):79-87.
    [65]Wanhill R. J.h. Status and prospects for aluminium-lithium alloys in aircraft structures [J]. International Journal of Fatigue,1994,16(1):3-20.
    [66]Xue Lian-Jie, Yue-Feng Xu, Linghuang, Fu-Sheng Ke, Yanghe, Yun-Xiao Wang,guo-Zhen Wei, Jun-Tao Li, Shi-Gang Sun. Lithium storage performance and interfacial processes of three dimensional porous Sn-Co alloy electrodes for lithium-ion batteries [J]. Electrochimica Acta,2011,56(17):5979-5987.
    [67]Yuan Zhi-Shan, Zheng Lu, You-Hua Xie, Sheng-Long Dai, Chang-Sheng Liu. Effects of RRA Treatments on Microstructures and Properties of a Newhigh-strength Aluminum-Lithium Alloy-2A97 [J]. Chinese Journal of Aeronautics,2007,20(2):187-192.
    [68]Zhangmingang, Zhiliang Chang, Junmin Yan, Jin Zhihao. Investigation of the behaviour of rare earth element cerium in aluminium-lithium alloys by the method of internal friction [J]. Journal of Materials Processing Technology,2001, 115(3):294-297.
    [69]Birch N. J., J. D. Phillips, Lithium and Medicine:Inorganic Pharmacology, in Advances in Inorganic Chemistry, A.G. Sykes, Editor.1991, Academic Press, p. 49-75.
    [70]Amin Mohammed, Wei Yi Song,george Schwartz. Lithium every second day:Is the prophylactic effect preserved? [J]. Progress in Neuro-Psychopharmacology and Biological Psychiatry,1998,22(8):1251-1259.
    [71]Aralhal, Angelica Vecchio-Sadus. Toxicity of lithium tohumans and the environment—A literature review [J]. Ecotoxicology and Environmental Safety, 2008,70(3):349-356.
    [72]Becker Rolf W., Errol M. Tyobeka. Lithium enhances the proliferation ofhL-60 promyelocytic leukemia cells [J]. Leukemia Research,1990,14(10):879-884.
    [73]Freeman Marlene P., Scott A. Freeman. Lithium:Clinical Considerations in Internal Medicine [J]. The American Journal of Medicine,2006,119(6):478-481.
    [74]groleaugeorgina, Robert Barish, Elizabeth Tso, Depriest Whye, Brian Browne. Lithium intoxication:Manifestations and management [J]. The American Journal of Emergency Medicine,1987,5(6):527-532.
    [75]hager Erich Dieter,heinz Dziambor, Peter Winkler, Dirkhohmann, Karin Macholdt. Effects of lithium carbonate onhematopoietic cells in patients with persistent neutropenia following chemotherapy or radiotherapy [J]. Journal of Trace Elements in Medicine and Biology,2002,16(2):91-97.
    [76]Kofman Ora, R.h. Belmaker. Biochemical, behavioral, and clinical studies of the role of inositol in lithium treatment and depression [J]. Biological Psychiatry, 1993,34(12):839-852.
    [77]Leighton William P., Seymour Rosenblatt, J. D. Chanley. Lithium-induced changes in plasma amino acid levels during treatment of affective disorders [J]. Psychiatry Research,1983,8(1):33-40.
    [78]Maj Mario, Raffaele Pirozzi, Lorenza Magliano. Late non-response to lithium prophylaxis in bipolar patients:prevalence and predictors [J]. Journal of Affective Disorders,1996,39(1):39-42.
    [79]Santiago Robert, Mitchell C. Rashkin. Lithium toxicity and myxedema coma in an elderly woman [J]. The Journal of Emergency Medicine,1990,8(1):63-66.
    [80]Tyrer S. P. Lithium and treatment of aggressive behaviour [J]. European Neuropsychopharmacology,1994,4(3):234-236.
    [81]Watling Sharon M., Jon C.gehrke, Charles W.gehrke, Robert Zumwalt, John Pribble. In vitro binding of lithium using the cation exchange resin sodium polystyrene sulfonate [J]. The American Journal of Emergency Medicine,1995, 13(3):294-296.
    [82]Yung Christoph Y. A review of clinical trials of lithium in medicine [J]. Pharmacology Biochemistry and Behavior,1984,21, Supplement 1(0):51-55.
    [83]Yung Christoph Y. A review of clinical trials of lithium in neurology [J]. Pharmacology Biochemistry and Behavior,1984,21, Supplement 1(0):57-64.
    [84]王克勤张逢春,许炜,唐文淦,罗晓坡,段诚凤,王宪彬.碳酸锂治疗躁狂症时锂比值的探讨[J].重庆医科大学学报,1991(03).
    [85]游清治.锂及其化合物在医药中的应用[J].世界有色金属,1997(12).
    [86]Averill William A., David L. Olson. A review of extractive processes for lithium from ores and brines [J]. Energy,1978,3(3):305-313.
    [87]Alekseyev S. V., L. P. Alekseyeva. Lithium-bearing brines in the Daldyno-Alakatsky district (Western Yakutia) [J].geography and Natural Resources,2008,29(2):173-177.
    [88]高峰,郑绵平,乜贞,刘建华,宋彭生.盐湖卤水锂资源及其开发进展[J].地球学报,2011(04).
    [89]冀康平.锂资源的开发与利用[J].无机盐工业,2005(05).
    [90]李昱昀 狄晓亮,高洁.国内外盐湖卤水锂资源及开发现状[J].海湖盐与化工,2005(05).
    [91]潘立玲朱建华,李渝渝.锂资源及其开发技术进展[J].矿产综合利用,2002(02).
    [92]王志国.盐湖锂资源开发利用与研究进展[J].广州化工,2011(07).
    [93]郑春辉,董殿权,刘亦凡.卤水锂资源及其开发进展[J].化工技术与开发,2006(12).
    [94]钟辉周燕芳,殷辉安.卤水锂资源开发技术进展[J].矿产综合利用,2003(01).
    [95]朱文龙,黄万抚.国内外锂矿物资源概况及其选矿工艺综述[J].现代矿业, 2010(07).
    [96]Ogorodova L., I. Kiseleva, L. Mel'chakova, T. Shuriga. Thermodynamic properties of the lithium mica polylithionite [J].geochemistry International,2006, 44(11):1151-1153.
    [97]Ogorodova L., I. Kiseleva, L. Melchakova. Thermodynamic properties of lithium micas [J].geochemistry International,2010,48(4):415-418.
    [98]Ogorodova L. P., I. A. Kiseleva, L. V. Melchakova, T. N. Schuriga. Thermodynamic properties of lithium mica:Lepidolite [J]. Thermochimica Acta, 2005,435(1):68-70.
    [99]Demyanova Larisa P., Alain Tressaud. Fluorination of alumino-silicateminerals: The example of lepidolite [J]. Journal of Fluorine Chemistry,2009, 130(9):799-805.
    [100]白峰,冯恒毅,邹思劫,刘姣.河南卢氏官坡伟晶岩中锂辉石的矿物学特征研究[J].岩石矿物学杂志,2011(02).
    [101]杨岳清,王文瑛,倪云祥,陈成湖,朱锦煌.南平花岗伟晶岩中锂辉石的研究[J].福建地质,1995(02).
    [102]黄小龙王汝成,陈小明,刘昌实.江西雅山富氟高磷花岗岩中的磷酸盐矿物及其成因意义[J].地质论评,2001(05).
    [103]刘昌实黄小龙,王汝成,陈小明,尹琳.江西雅山花岗岩长石中磷的分布及意义[J].岩石学报,1999(02).
    [104]王贤觉熊小林,P.(?)Ern.红十字湖地区锂云母-透锂长石伟晶岩脉中锡锰钽矿的发现[J].地球化学,2002(05).
    [105]张玉玉,张如柏.湖北通城透锂长石伟晶岩中锂辉石的发现[J].矿物岩石,2008(03).
    [106]hopper B., California Institute of Technology. Division Of Chemistry, Chemical Engineering. Methods for the Production of Lithium Carbonate from Lipidolite [M]. California Institute of Technology.1923.
    [107]Brandt Felix, Reinerhaus. New concepts for lithiumminerals processing [J].minerals Engineering,2010,23(8):659-661.
    [108]Distin P. A., C. V. Phillips. The acid extraction of lithium from thegranites of South West England [J].hydrometallurgy,1982,9(1):1-14.
    [109]Jandova J., P. Dvorak,hong N. Vu. Processing of zinnwaldite waste to obtain Li2CO3 [J].hydrometallurgy,2010,103(1-4):12-18.
    [110]冉建中.采用锂云母—石灰石法生产锂盐的节能途径及效果[J].有色冶 炼,1995(04).
    [111]孙友润.锂云母-石灰石法烧成工艺最佳条件的选择[J].稀有金属,1984(05).
    [112]谢林保.石灰石质量对锂云母—石灰石法的影响及控制[J].稀有金属,1996(05).
    [113]guo Xueyi, Dong Li, Kyung-Ho Park, Qinghua Tian, Zhan Wu. Leaching behavior of metals from a limonitic nickel laterite using a sulfation-roasting-leaching process [J].hydrometallurgy,2009, 99(3_4):144-150.
    [114]holloway P., T. Etsell. Salt roasting of suncor oil sands fly ash [J]. Metallurgical and Materials Transactions B,2004,35(6):1051-1058.
    [115]Li Yong, Ji-Kun Wang, Chang Wei, Chun-Xia Liu, Ji-Bo Jiang, Fan Wang. Sulfidation roasting of lowgrade lead-zinc oxide ore with elemental sulfur [J].minerals Engineering,2010,23(7):563-566.
    [116]Mcdonald R.g., B. I. Whittington. Atmospheric acid leaching of nickel laterites review:Part I. Sulphuric acid technologies [J].hydrometallurgy,2008, 91(1-4):35-55.
    [117]汪剑岭王继民,朱建春,周金云,顾玉行.硫酸盐法从锂云母制取碳酸锂的研究[J].新疆有色金属,1996(01).
    [118]汪剑岭,王继民,朱建春,周金云,顾珩.硫酸盐法从锂云母制取碳酸锂的研究[J].广东有色金属学报,1994(02).
    [119]湖南冶金研究所有色室锂铷铯组.硫酸法从宜春锂云母矿中提取碳酸锂的工艺研究[J].湖南冶金,1979(03{Pages}:13-18).
    [120]乔玲,周本华,姚成.锂云母中提取锂的方法初步研究[J].无机盐工业,2004(04{Pages}:30-31).
    [121]乔玲周本华,姚成.锂云母中提取锂的方法初步研究[J].无机盐工业,2004(04).
    [122]成岳,李燕孙,陈策和.锂云母精矿制备碳酸锂的研究[J].无机盐工业,2012(04).
    [123]Jandova J., P. Dvorak, J. Formanek,hong N. Vu. Recovery of rubidium and potassium alums from lithium-bearingminerals [J].hydrometallurgy,2012, 119-120(0):73-76.
    [124]黄际芬;唐贤柳;汪锡孝;张国华,锂云母精矿混合碱压煮法制取碳酸锂.1992-12-16.
    [125]徐盛明,汪锡孝.锂云母焙烧矿的氯化铵压煮过程的研究[J].稀有金属与 硬质合金,1993(04{Pages}:22-27).
    [126]仇世源,张景怀,阚素荣,许文江.宜春锂云母食盐压煮法制取碳酸锂新工艺[J].新疆有色金属,1996(01{Pages}:44-48).
    [127]王文祥,黄际芬,刘志宏.宜春锂云母压煮溶出新工艺研究[J].有色金属(冶炼部分),2001(05{Pages}:19-21).
    [128]李良彬;胡耐根;黄学武;彭爱平;朱时贵;葛钰玮;邹海平,从锂云母提锂制备碳酸锂的方法,江西赣锋锂业有限公司,Editor.2008-11-12.
    [129]Lofgeorge O.g., Warren K. Lewis. Lithium Chloride from Lepidolite [J]. Industrial & Engineering Chemistry,1942,34(2):209-216.
    [130]Peterson John A., Process for recovering lithium values.1960:United States.
    [131]White Colton John, Lithium chloride recovery.1962.
    [132]储慰农.氯化焙烧法从宜春锂云母提取Li2CO3 [J].稀有金属,1988(03).
    [133]胡天喜,于建国.CaCl2-NaCl混合助剂分解钾长石提取钾的实验研究[J].过程工程学报,2010(04).
    [134]虞宝煜,毕玉峰.锂云母与NaCl及NaCl-CaCl2的相互作用[J].稀有金属,1994(03).
    [135]Chakravortty M., S. Srikanth. Kinetics of salt roasting of chalcopyrite using KCl [J]. Thermochimica Acta,2000,362(1-2):25-35.
    [136]Majumder A. K., B.govindarajan, T. Sharma,h. S. Ray, T. C. Rao. An empirical model for chloridising-roasting of potassium inglauconitic sandstone [J]. International Journal ofmineral Processing,1995,43(1-2):81-89.
    [137]张霜华.浅谈拓宽我国铷铯的应用领域[J].新疆有色金属,1998(02).
    [138]储慰农.铷铯及其应用[J].新疆矿冶,1985(01).
    [139]李朝木,朱宝元.锑钾铷铯光电阴极的特性研究[J].真空与低温,1993(02).
    [140]迪安主编.兰氏化学手册[M].北京:科学出版社.2003.
    [141]叶大伦,胡建华.实用无机物热力学数据手册[M].北京:冶金工业出版社.2002.
    [142]林传仙.矿物及有关化合物热力学数据手册[M].北京:科技出版社.1985.
    [143]陶素人.从宜春钽铌矿尾矿中回收锂云母[J].江西冶金,1983(02).
    [144]Chen Ya, Qianqiu Tian, Baizhen Chen, Xichang Shi, Ting Liao. Preparation of lithium carbonate from spodumene by a sodium carbonate autoclave process [J].hydrometallurgy,2011,109(1-2):43-46.
    [145]Speight Jamesg., Lange'shandbook of Chemistry (16th Edition), McGraw-Hill.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700