核酸单链柔性中的离子效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核酸(包括DNA和RNA)是生命体中最重要的分子之一,有着非常重要的生物功能,其功能与其结构以及结构变化紧密相关。核酸带有高密度的负电荷,溶液中的金属离子会凝聚在核酸附近并降低折叠静电排斥能,从而有利于核酸紧凑结构的形成。因此溶液中的离子对核酸结构和功能起着很关键的作用。
     核酸单链是核酸结构的基本结构和功能单元,在与其他大分子如蛋白质相互作用时,其结构柔性起着重要的作用并强烈依赖于离子条件。因此,定量研究核酸单链柔性中的离子效应,包括离子的价数、浓度和尺寸,有助于理解核酸的结构和功能。由于核酸单链具有强烈的结构涨落且高价离子间的强关联作用,迄今为止,对离子溶液中核酸单链的结构柔性仍然缺乏系统定量的研究,特别是其中的高价离子效应和链长度效应。
     核酸折叠一般是以逐级的方式进行的,首先是无序单链,再就是二级结构的形成,然后是二级结构的结构塌缩,最后是结构塌缩态经过位型搜索和三级相互作用形成,三级折叠完成,离子在其中尤其在三级折叠中起着至关重要的作用。对于复杂三级结构,不同种类离子的竞争非常复杂,因此全面系统的研究混合离子的凝聚竞争效应对理解RNA的折叠尤为重要。
     针对上述核酸单链柔性中的的离子效应以及混合离子对RNA三级结构的凝聚竞争效应,本文通过Monte Carlo方法展开了系统深入的研究,主要研究内容如下:
     (1)核酸单链的结构塌缩
     通过简化的粗粒化模型构建核酸单链结构,采用显含离子的Monte Carlo方法,系统研究了核酸单链在不同的离子(Na+,Mg2+, Co3+)条件下的结构性质,分别从离子价数、离子尺寸和离子浓度多个方面分析了对单链结构的影响。(i)Na+可减弱核酸单链的静电排斥作用,从而有利于核酸单链的结构塌缩。随着Na+浓度的升高,核酸单链从扩展态向随机驰豫态转变;(ii)相比于Na+,高价离子(如Mg2+、Co3+)对结构塌缩更为有效;(iii)小尺寸离子更有利于单链的结构塌缩。三价离子和小尺寸二价离子皆可导致比随机弛豫态更紧凑的结构;(iv)高离子浓度下都会出现电荷反转现象。随着离子价数的增加,电荷反转的机制由离子体积关联占主导转变为离子间静电关联占主导。
     (2)核酸单链的持久长度(persistence length)
     持久长度是表征核酸单链柔韧性的一个量度,是核酸结构的一个重要宏观参数。核酸持久长度来自于其本征刚性和静电作用两方面的贡献,其大小也反映了核酸单链所处的离子环境。基于核酸单链在不同离子条件下的平衡态性质,我们计算了有限长核酸单链的持久长度,结果与相关实验数据一致,并进一步通过系统计算得到了持久长度随Na+/Mg2+离子浓度以及链长度变化的经验公式。这为进一步系统研究混合离子溶液中核酸单链的柔性,奠定了方法基础。
     (3)高效准确地得到RNA混合离子溶液所期望的离子体浓度
     RNA一般处于单价(K+、Na+)和高价(Mg2+)离子的混合溶液中,由于单价/高价离子的凝聚竞争效应和IRNA的具体静电性质相关,在模拟中通过一个普适方法分配单价和双价离子补偿进而高效准确地得到所期望的离子体浓度足至今尚未解决的问题。根据紧束缚离子模得得到的单价和双价离子对核酸凝聚等效性的纤验公式,我们得到用于补偿RNA负电荷的单价和双价离子相对比例,进而在MonteCarlo模拟中对单价和双价补偿离子进行分配。对多种RNA(包括核酸单链、双螺旋结构和多种RNA三级结构)的广泛模拟显示,此分配方法均可以高效准确地得到所期望的单价和双价离子体浓度。这为进一步的工作,系统研究混合离子溶液中RNA的离子凝聚兑竞争效应以及核酸单链的柔性,提供了重要的方法基础。
     (4)不同RNA结构的离子凝聚竞争效应
     RNA结构的稳定性是与核酸周围离子的微观分布紧密相关的,而不同的RNA空间结构也会对离子微观分布和凝聚竞争效应产生生要影响。由于游离离了的多自由度和高价离子间的强关联,无论是实验还是理论,对RNA复杂结构周围离子微观分布和凝聚竞争效应的研究仍然具有挑战性,特别是对于较大的RNA分r和较为宽泛的混合离子浓度范围。我们采用Monte Carlo方法,针对多种全原子结构RNA分子以及不同的混合离子浓度,系统地研究了离子的微观分布和凝聚竞争效应,并与广泛的实验进行了对比。有如下重要结论:(i)单价与双价离子在RNA附近的凝聚具有反协同性,Mg2+凝聚能力远强于Na+。所计算的核酸双螺旋结构和多种RNA三级结构的Na+/Mg2+凝聚数目与相关实验数据一致;(ii)对于同长度的B-DNA与A-RNA双螺旋结构,RNA分子周围的Mg2+凝聚数目比DNA分子稍多,这是RNA的高电荷密度和其窄而深的可容纳离子的大沟共同作用的结果;(iii)RNA三级结构越紧凑、核苷酸数目越多,Mg2+相对于Na+的凝聚能力越强。
Nucleic acid (DNA and RNA) is one of the important biological molecules, and its functions are strongly coupled to the structures and the proper structure changes. Due to the polyanionic nature of nucleic acid backbone, the folding from an extend state into compact native structure always involves strong Coulombic repulsions, thus requires metal ions in solutions to neutralize the negative backbone charges and stabilize the folded structures. Therefore, metal ions play essential roles in nucleic acid structures and functions.
     Single-stranded (ss) chain is an elementary structural and functional segment of nucleic acids. The flexibility of ss chain, which may be sensitive to ionic environment, plays a significant role in its interactions with other macromolecules, e.g., proteins. Therefore, quantitative understanding how ionic condition, including ion concentration, ion valence and ion size, determines the flexibility of ss nucleic acids, is an important step toward understanding nucleic acid structures and functions. However, due to the strong dynamic conformational fluctuation of ss nucleic acids and strong correlations between multivalent ions, to quantitatively characterize the ion effects on the flexibility of ss nucleic acid chain is still a challenge, especially for long chains in multivalent ion solutions.
     RNA folding is a hierarchical process. The secondary structure, signified by base-pairing and stacking interactions between the paired bases, is formed first. Subsequently, the compact tertiary structures are formed through tertiary interactions contacts and tertiary motifs. During the whole folding process, ions play important roles, especially in RNA tertiary folding. The competition between different species of ions is complicated for RNA tertiary structures. Thus, a detailed understanding of the counterion environment and the competition between different cations is essential for comprehensive understanding on RNA folding.
     We have employed Monte Carlo simulations to systematically study the ion effect on the flexibility of ss nucleic acid chain and the competition between different ions binding to RNA tertiary structures. The main contents of the research are in the following:
     (1) Structural Collapse of Single-stranded Nucleic Acid
     In this work, we have employed the coarse-grained Monte Carlo simulations to systematically study the structural behavior of ss nucleic acid chain of finite length in monovalent. divalent, and trivalent salt solutions. The study covers the effects of ion concentration, ion valence and ion size:(ⅰ) The addition of Na+would induce ss chain to collapse from an extend state at low [Na+] to a near-random relaxation state at high [Na+](~1M);(ⅱ) Multivalent ions are more effective than Na+in inducing the structural collapse of ss chain;(ⅲ) Trivalent/small divalent ions can cause more compact state than the random relaxation state;(ⅳ) At high ion concentration, ss nucleic acids can be overcharged by Na+, Mg2+, and Co3+. The overcharging in Na+and in Co3+solutions is dominated by the ionexclusion-volume effect and ion-ion Coulomb correlations, respectively.
     (2) Persistence Length of Single-stranded Nucleic Acid
     Persistence length quantitatively characterizes the flexibility of a ss chain and is an important quantity for the structure flexibility of nucleic acid. The persistence length of nucleic acid can come from two contributions:an intrinsic contribution which results from the intrinsic rigidity of ss chain, and an electrostatic contribution which is dependent strongly on the ion environment. Based on the conformational ensemble of single-stranded chain in equilibrium, we calculated the ion-dependent persistence length of ss nucleic acids of different lengths. The predicted persistence lengths of ss nucleic acids agree well with the available experimental data, and we have derived the empirical formulas for the persistence length as a function of [Na+] and [Mg2+], and the chain length. The present work forms an important step toward the future work on the flexibility of single-stranded nucleic acid in mixed solutions.
     (3) Efficient and Accurate Method for Obtaining the Targeted Ion Bulk Concentrations in RNA-mixed Ion Solutions.
     RNA is most frequently found in the realistic solutions with different mixtures of monovalent (e.g., K+/Na+) and divalent ions (Mg2+). The competition between the monovalent and divalent binding ions is sensitive to the electrostatic properties of RNAs. A universal method to assign counterions in order to efficiently and accurately obtain the targeted ion bulk concentrations remains a challenge. Based on the empirical equivalence formula between the ion concentrations of Na+and Mg2+obtained by tightly bond ion model, we calculated the fraction for partition species of counterions added to neutralize the negative backbone charges of RNAs. Through the extentive tests for different RNAs, including single-stranded nucleic acid, RNA/DNA duplex, and complex RNA tertiary structures, the method can efficiently and accurately give the targeted ion bulk concentrations of monovalent and divalent solutions.
     (4) Na+versus Mg2+binding to RNAs
     A detailed spatial distribution of the counterion environment is essential to the structural stability of nucleic acids solutions, and in another way, the massive buildup of negative charges in the nucleotide backbone leads a significant effect on the counterions binding around RNA. However, due to mobile nature of counterion cloud and strong correlations between multivalent ions, the comprehensive description of ion spatial distribution and ion competition around RNA remains a challenge for most experimental and theoretical approaches, in particular for large RNA tertiary structures and over broad ranges of ion conditions. We have employed Monte Carlo simulations to quantitatively study the ionic atmosphere and the competition behavior between counterions binding to different nucleic acid structures, including duplexes and tertiary folds in mixed Na+/Mg2+solutions. The major conclutions are the following:(ⅰ) Ion-binding of the different (monovalent and divalent) ions shows anti-cooperativity and multivalent ions (Mg2+) are much more efficient than monovalent ions in binding to RNAs, and the predicted numbers of bound ions around RNAs are in good agreement with the available experimental data;(ⅱ) For the same length of RNA and DNA duplexes, the Mg2+binding to RNA is stronger than to DNA, and such difference might come from the higher backbone charge density and the deep major groove for an A-form helix than a B-form helix;(iii) Mg2+binding becomes more efficient than Na+for higher charged and larger RNA tertiary structures.
引文
[l]陈世杰,谭志杰,曹松,张文炳.RNA分子折叠的统计力学[J].物理,2006,35:218-229.
    [2]Bloomfield, V. A., Crothers, D. M., Tinoco, I., Jr. Nucleic acids:structures, properties, and functions [M]. Sausalito, CA:University Science Books,2000.
    [3]李冠一,林栖风,朱锦天,黄惜等.核酸生物化学[M].北京:科学出版社,2007:
    [4]Tinoco, I., Bustamante, C. How RNA folds [J].J Mol Biol,1999,293:271-281.
    [5]Walter, N. G., Burke, J. M., Millar, D. P. Stability of hairpin ribozyme tertiary structure is governed by the interdomain junction [J].Nat Struct Biol,1999,6:544-549.
    [6]Woodson, S. A. Metal ions and RNA folding:a highly charged topic with a dynamic future [J].Curr Opin Chem Biol,2005,9:104-109.
    [7]Chu, V. B., Herschlag, D. Unwinding RNA's secrets:advances in the biology, physics, and modeling of complex RNAs [J].Curr Opin Struct Biol,2008,18:305-314.
    [8]Chen, S. J. RNA folding:conformational statistics, folding kinetics, and ion electrostatics [J]. Annu Rev Biophys,2008,37:197-214.
    [9]Wong, G. C., Pollack, L. Electrostatics of strongly charged biological polymers:ion-mediated interactions and self-organization in nucleic acids and proteins [J].Annu Rev Phys Chem,2010,61: 171-189.
    [10]Johnson-Buck, A. E., McDowell, S. E., Walter, N. G. Metal ions:supporting actors in the playbook of small ribozymes [J]. Met Ions Life Sci,2011,9:175-196.
    [11]Tan, Z. J., Chen, S. J. Importance of diffuse metal ion binding to RNA. [J].Met Ions Life Sci,2011,9: 101-124.
    [12]Lambert, M. N., Vocker, E., Blumberg, S., Redemann, S., Gajraj, A., Meiners, J. C., Walter, N. G. Mg2+-induced compaction ofsingle RNA molecules monitored by tethered particle microscopy [J]. Biophys J,2006,90:3672-3685.
    [13]Moghaddam, S., Caliskan, G., Chauhan, S., Hyeon, C., Briber, R. M., Thirumalai, D., Woodson, S. A. Metal ion dependence of cooperative collapse transitions in RNA [J].J Mol Biol,2009,393:753-764.
    [14]Qiu, X., Kwok, L. W., Park, H. Y., Lamb, J. S., Andresen, K., Pollack, L. Measuring inter-DNA potentials in solution [J].Phys Rev Lett,2006,96:138101.
    [15]Fogarty, K., Mcphee, J. T., Scott, E., Orden, A. V. Probing the ionic atmosphere of single-stranded DNA using continuous flow capillary electrophoresis and fluorescence correlation spectroscopy [J].Anal Chem,2009,81:465-472.
    [16]Dahm, R. Discovering DNA:Friedrich Miescher and the early years of nucleic acid research [J].Human Genetics,2008,122:565-581.
    [17]Alvery, O., MacLeod, C., McCarty, M. Studies on the chemical nature of the substance inducing transformation of pneumococcal types [J].J Expt Med,1944,79:137-157.
    [18]Hershey, A. D., Chase, M. Independent functions of viral protein and nucleic acid in growth of bacteria [J].J Gen Physiol,1952,36:39-56.
    [19]Watson, J. D., Crick, F. H. C. Molecular structure of nucleic acids. A structure for deoxyribose nucleic acid. [J].Nature,1953,171:737-738.
    [20]Parisien, M., Major, F. The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data. [J].Nature,2008,452:51-55.
    [21]Chauhan, S., Woodson, S. A. Tertiary interactions determine the accuracy of RNA folding. [J].J Am Chem Soc,2008,130:1296-1303.
    [22]Walter, N. G., Woodson, S. A., Batey, R. T. Non-protein coding RNAs. [M]. Berlin:Springer-Verlag, 2009.
    [23]Dann, C. E. Rd, Wakeman, C. A., Sieling, C. L., Baker, S. C., Irnov, I., Winkler, W. C. Structure and mechanism of a metal-sensing regulatory RNA [J].Cell,2007,130:878-892.
    [24]Chen, S. J. RNA folding:conformational statistics, folding kinetics, and ion electrostatics. [J].Annu Rev Biophys,2008,37:197-214.
    [25]Draper, D. E. RNA folding:thermodynamic and molecular descriptions of the roles of ions. [J].Biophys J,2008,95:5489-5495.
    [26]Chu, V. B., Herschlag, D. Unwinding RNA's secrets:advances in the biology, physics, and modeling of complex RNAs. [J].Curr Opin Struct Biol.2008,18:305-314.
    [27]Toor, N., Keating, K. S., Taylor, S. D., Pyle, A. M. Crystal structure of a self-spliced group II intron. [J].Science,2008,320:77-82.
    [28]Tan, Z. J., Chen. S. J. Salt contribution to RNA tertiary structure folding stability [J].Biophys J,2011, 101:176-187.
    [29]Tan, Z. J., Chen, S. J. Ion-mediated nucleic acid helix-helix interactions[J].Biophys J,2006,91: 518-536.
    [30]Lee, J. C., Gutell, R. R. Diversity of base-pair conformations and their occurrence in rRNA structure and RNA structural motifs. [J].J Mol Biol,1998,279:545-564.
    [31]Wing, R., Drew, H., Takano, T., Broka, C., Tannka, S., Itakura, K., Dickerson, R. Crystal structure analysis of a complete turn of B-DNA[J].Nature,1980,287:755-758.
    [32]孙乃恩,孙东旭,朱德煦.分子遗传学[M].南京:南京大学出版社,1999.
    [33]李庆国,江和睦,李安之.分子生物物理学[M].北京:高等教育出版社,1992.
    [34]Bai, Y., Das, R., Millett, I. S., Herschlag, D., Doniach, S. Probing counterion modulated repulsion and attraction between nucleic acid duplexes in solution [J].Proc Natl Acad Sci USA,2005,102: 1035-1040.
    [35]Tan, Z. J., Chen, S. J. RNA helix stability in mixed Na+/Mg2+ solution [J].Biophys J,2007,92: 3615-3632.
    [36]Takamoto, K., He, Q., Morris, S., Chance, M. R., Brenowitz, M. Monovalent cations mediate formation of native tertiary structure of the Tetrahymena thermophila ribozyme [J]-Nature Sturct Biol, 2002,9:928-933.
    [37]Thirumalai, D., Woodson, S. A. Metal ion dependence of cooperative collapse transitions in RNA [J].J Mol Biol,2009,393:753-764.
    [38]Russell, R., Millett, I. S., Doniach, S., Herschlag, D. Small angle X-ray scattering reveals a compact intermediate in RNA folding [J].Nature Struct Biol,2000,7:367-370.
    [39]Russell, R., Millett, I. S., Tate, M. W., Kwok, L. W., Nakatani, B., Doniach, S., Herschlag, D. Rapid compaction during RNA folding [J].Proc Natl Acad Sci USA,2002,99:4266-4271.
    [40]Das, R., Kwok, L. W., Millett, I. S., Bai, Y., Thiyagarajan, P. Et Al. The fastest global events in RNA folding:electrostatic relaxation and tertiary collapse of the Tetrahymena ribozyme [J].J Mol Biol, 2003,332:311-319.
    [41]Takamoto, K., Das, R., He, Q., Doniach, S., Brenowitz, M., Herschlag, D., Chance, M. R. Principles of RNA compaction:insights from the equilibrium folding pathway of the P4-P6 RNA domain in monovalent cations. [J].J Mol Biol,2004,343:1195-1206.
    [42]Heilman-Miller, S. L., Thirumalai, D., Woodson, S. A. Role of counterion condensation in folding of the Tetrahymena ribozyme Ⅰ. equilibrium stabilization by cations [J].J Mol Biol,2001,306:1157-1166.
    [43]Heilman-Miller, S. L., Pan, J., Thirumalai, D., Woodson, S. A. Role of counterion condensation in folding of the Tetrahymena ribozyme Ⅱ. counterion-dependence of folding kinetics [J].J Mol Biol,2001, 309:57-58.
    [44]Koculi, E., Lee, N-K, Thirumalai, D., Woodson, S. A. Folding of the Tetrahymena ribozyme by polyamines:importance of counterion valence and size [J].J Mol Biol,2004,341:27-36.
    [45]Koculi, E., Thirumalai, D., Woodson, S. A. Counterion charge density determines the position and plasticity of RNA folding transition states [J].J Mol Biol,2006,359:446-454.
    [46]Tan, Z. J., Chen, S. J. Nucleic acid helix stability:effects of salt concentration, cation valence and size, and chain length [J].Biophys J,2006,90:1175-1190.
    [47]Bloomfield, V. A. DNA condensation by multivalent cations [J].Biopolymers,1997,44:269-282.
    [48]Stevens, M. J. Bundle binding in polyelectrolyte solutions [J].Phys Rev Lett,1999,82:101-104.
    [49]Koltover, I., Wagner, K., Safinya, C. R. DNA condensation in two dimensions [J].Proc Natl Acad Sci USA,2000,97:14046-14051.
    [50]Lyubartsev, A. P., Nordenskiold, L. J. A Monte Carlo simulation study of ion distribution and osmotic pressure in hexagonally oriented DNA [J].J Phys Chem,1995,99:10373-10382.
    [51]Tan, Z. J., Chen, S. J. Electrostatic free energy landscapes for nucleic acid helix assembly [J].Nucleic Acids Res,2006,34:6629-6639.
    [52]Gilson, M. K., Sharp, K. A., Honig, B. Calculating electrostatic interactions in biomolecules:Method and error assessment [J].J Comput Chem,1987,9:327-335.
    [53]Baker, N. A., Sept, D., Joseph, S. Electrostatics of nanosystems:application to microtubules and the ribosome[J].Proc Natl Acad Sci USA,2001,98:10037-10041.
    [54]Lu, B., Cheng, X., Huang, J., McCammon, J. A. AFMPB:an adaptive fast multipole Poisson-Boltzmann solver for Calculating electrostatics in biomolecular systems [J].Comput phys Commun,2010,181:1150-1160.
    [55]Chen, D., Chen, Z., Chen, C., Geng, W., Wei, G. W. MIBPB:a software package for electrostatic analysis [J].J Comput Chem,2011,32:756-770.
    [56]Dill, K. A., Bromberg, S. Molecular driving forces:statistical thermodynamics in chemistry and biology[M]. New York and London:Garland Science,2003.
    [57]Skolnick, J., Fixman, M. Electrostatic persistence length of a wormlike polyelectrolyte [J].Macromolecules,1977,10:944-948.
    [58]Ha, B. Y., Thirumalai, D. Electrostatic persistence length of a polyelectrolyte chain [J].Macromolecules,1995,28:577-581.
    [59]Ha, B. Y., Thirumalai, D. Bending rigidity of stiff polyelectrolyte chains:A single chain and a bundle of multichains[J].Macromolecules,2003,36:9658-9666.
    [60]Chen, L., Merlitz, H., He, S. Z., Wu, C. X., Sommer, J. U. Polyelectrolyte brushes:Debye approximation and mean-field theory [J].Macromolecules,2011,44:3109-3116.
    [61]Manning, G. S. The molecular theory of polyeletrolyte solutons with applications to the electrostatic properties of polynucleotides[J].Q Rev Biophys,1978,11:179-246.
    [62]Oosawa, F. Polyelectrolytes[M]. New York:Marcel Dekker,1971:
    [63]Manning, G. S. Counterion condensation on a helical charge lattice[J].Macromolecules,2001,34: 4650-4655.
    [64]Tan, Z. J., Chen, S. J. Electrostatic correlations and fluctuations for ion binding to a finite length polyelectrolyte [J].J Chem Phys,2005,122:44903.
    [65]Tan, Z. J., Chen, S. J. Salt dependence of nucleic acid hairpin stability [J].Biophys J,2008,95: 738-752.
    [66]Tan, Z. J., Chen, S. J. Predicting ion binding properties for RNA tertiary structures [J].Biophys J, 2010,99:1565-1576.
    [67]Tan, Z. J., Chen, S. J. Electrostatic free energy landscapes for DNA helix bending[J].Biophys J, 2008,94:3137-3149.
    [68]Lindemann, F. A. The calculation of molecular vibration frequencies [J].Physik Z,1910,11: 609-612.
    [69]Schlick, T. Molecular modeling and simulation:an interdisciplinary guide[M]:Springer,2000.
    [70]Frenkel, D., Smit, B. Understanding molecular simulation from algorithms to applications[M]: Academic Press,2001.
    [71]Serra, M. J., Turner, D. H. Predicting thermodynamic properties of RNA[J].Methods Enzymol,1995, 259:242-261.
    [72]SantaLucia, J., Jr. A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics [J].Proc Natl Acad Sci USA,1998,95:1460-1465.
    [73]Chen, S. J., Dill, K. A. RNA folding energy landscapes [J].Proc Natl Acad Sci USA,2000,97: 646-651.
    [74]Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction [J].Nucleic Acids Res,2003,31:3406-3415.
    [75]Turner, D. H., Mathews, D. H. NNDB:the nearest neighbor parameter database for predicting stability of nucleic acid secondary structure [J]. Nucleic Acids Res,2010,38:D280-D282.
    [76]Murphy, M. C., Rasnik, I., Cheng, W., Lohman, T. M., Ha, T. Probing single-stranded DNA conformational flexibility using fluorescence spectroscopy [J]. Biophys J,2004,86:2530-2537.
    [77]Hogan, M. E., Austin, R. H. Importance of DNA stiffness in protein-DNA binding specificity [J].Nature London,1987,329:263-266.
    [78]Stevens, M. J., Plimpton, S. J. The effect of added salt on polyelectrolyte structure [J].Eur Phys J B, 1998,2:341-345.
    [79]Khan, M. O., Jonsson, B. Electrostatic correlations fold DNA [J].Biopolymers,1999,49:121-125.
    [80]Chang, R., Yethiraj, A. Brownian dynamics simulations of polyelectrolyte solutions with divalent counterions [J].J Phys Chem B,2003,118:11315-11325.
    [81]Liu, S., Ghosh, K., Muthukumar, M. Polyelectrolyte solutions with added salt:A simulation study [J].J Chem Phys,2003,119:1813-1823.
    [82]Hsiao, P. Y., Luijten, E. Salt-induced collapse and reexpansion of highly charged flexible polyelectrolytes [J].Phys Rev Lett,2006,97:148301-148304.
    [83]Koculi, E., Hyeon, C., Thirumalai, D., Woodson, S. A. Charge density of divalent metal cations determines RNA stability [J].J Am Chem Soc,2007,129:2676-2682.
    [84]Chi, P., Li, B. H., Shi, A. C. Conformation transitions of a polyelectrolyte chain:A replica-exchange Monte-Carlo study [J].Phys Rev E,2011,84:21804.
    [85]Chen, A. A., Draper, D. E., Pappu, R. V. Molecular simulation studies of monovalent counterion-mediated interactions in a model RNA kissing loop [J].J Mol Biol,2009,390:805-819.
    [86]Chen, A. A., Marucho, M., Baker, N. A., V., Pappu. R. Simulations of RNA interactions with monovalent ions [J].Methods Enzymol,2009,469:406-426.
    [87]MacKerell, A. D., Jr., Wiorkiewicz-Kuczera, J., Karplus, M. An all-atom empirical energy function for the simulation of nucleic acids [J].J Am Chem Soc,1995,117:11946-11975.
    [88]Cheatham Ⅲ, T. E., Cieplak, P., Kollman, P. A. A modified version of the Cornell et al. force field with improved sugar pucker phases and helical repeat [J].J Biomol Struc Dyn,1999,16:845-862.
    [89]Olson, W. K. Configurational statistics of polynucleotide chains. a single virtual bond treatment [J].Macromolecules,1975,8:272-275.
    [90]Cao, S., Chen, S. J. Predicting RNA folding thermodynamics with a reduced chain representation model [J].RNA,2005,11:1884-1897.
    [91]Cao, S., Chen, S. J. Predicting RNA pseudoknot folding thermodynamics [J].Nucleic Acids Res, 2006,34:2634-2652.
    [92]Zhang, J., Lin, M., Chen, R., Wang, W., Liang, J. Discrete state model and accurate estimation of loop entropy of RNA secondary structures [J]. J Chem Phys,2008,128:125107.
    [93]Liu, L., Chen, S. J. Computing the conformational entropy for RNA folds [J].J Chem Phys,2010, 132:235104.
    [94]Cheatham, T. E. Rd, Young, M. A. Molecular dynamics simulation of nucleic acids:successes, limitations, and promise [J].Biopolymers,2000,56:232-256.
    [95]Marcus, Y. Ion solvation[M]. Great Britain:John Wiley & Sins,1985:
    [96]Allen, M. P., Tildesley, D. J. Computer simulations of liquids[M]. Oxford, U. K:Oxford University Press,1989:
    [97]Lal, M. Monte-Carlo computer simulation of chain molecules[J].Mol Phys,1969,17:57-64.
    [98]Madras, N., Sokal, A. D. The pivot algorithm:A highly effcient Monte Carlo method for the self-avoiding walk [J].J Stat Phys,1988,50:109-186.
    [99]Savelyev, A., Papoian, G. A. Chemically accurate coarse graining of double-stranded DNA[J].Proc Natl Acad Sci,2010,107:20340-20345.
    [100]Tan, Z. J., Chen, S. J. Ion-mediated RNA structural collapse:effect of spatial confinement [J].Biophys J,2012,103:827-836.
    [101]Olvera De La Cruz, M., Belloni, L., Delsanti, M., Dalbez, J. P., Spalla, O., Drifford, M. Precipitation of highly charged polyelectrolyte solutions in the presence of multivalent salts [J].J Chem Phys,1995,103:5781-5791.
    [102]Pelta, J., Livolant, F., Sikorav, J. L. DNA aggregation induced by polyamines and cobalthexamine [J].J Biol Chem,1996,271:5656-5662.
    [103]Qiu, X., Andresen, K., Lamb, J. S., Park, H. Y., Kwok, L. W., Pollack, L. Abrupt transition from a free, repulsive to a condensed, attractive DNA phase, induced by multivalent polyamine cations[J].Phys Rev Lett,2008,101:228101.
    [104]Qiu, X., Andresen, K., Kwok, L. W., Lamb, J. S., Park, H. Y., Pollack, L. Inter-DNA attraction mediated by divalent counterions [J].Phys Rev Lett,2007,99:38104.
    [105]Holm, C. Traffic and granular flow'03 [M]. Beilin Heidelberg:Springer,2005:5,475-488.
    [106]Guerrero-Garcia, G. I., Gonzalez-Tovar, E., Chavez-Paez, M., Lozada-Cassou, M. Overcharging and charge reversal in the electrical double layer around the point of zero charge [J].J Chem Phys,2010, 132:54903.
    [107]Guerrero-Garcia, G. I., Gonzalez-Tovar, E., Olvera De La Cruz, M. Entropic effects in the electric double layer of model colloids with size-asymmetric monovalent ions [J].J Chem Phys,2011,135:54701.
    [108]Chen, A. A., Pappu, R. V. Parameters of monovalent ions in the AMBER-99 forcefield:assessment of inaccuracies and proposed improvements [J].J Phys Chem B,2007,111:11884-11887.
    [109]Jimenez-Angeles, F., Lozada-Cassou, M. On the regimes of charge reversal [J].J Chem Phys,2008, 128:174701.
    [110]Hsiao, P. Y. Chain morphology, swelling exponent, persistence length, like-charge attraction, and charge distribution around a chain in polyelectrolyte solutions:effects of salt concentration and ion size studied by molecular dynamics simulations [J].Macromolecules,2006,39:7125-7137.
    [111]Hua, J., Mitra, M. K., Muthukumar, M. Theory of volume transition in polyelectrolyte gels with charge regularization [J].J Chem Phys,2012,136:134901.
    [112]Kundagrami, A., Muthukumar, M. Theory of competitive counterion adsorption on flexible polyelectrolytes:Divalent salts [J].J Chem Phys,2008,128:244901.
    [113]Caliskan, G., Hyeon, C., Perez-Salas, U., Briber, R. M., Woodson, S. A., Thirumalai, D. Persistence length changes dramatically as RNA folds [J].Phys Rev Lett,2005,95:268303.
    [114]Ullner, M., Woodward, C. E. Orientational correlation function and persistence lengths of flexible polyelectrolytes [J].Macromolecules,2002,35:1437-1445.
    [115]Hsu, H. P., Paul, W., Binder, K. Standard definitions of persistence Length do not describe the local "intrinsic" stiffness of real polymer chains [J].Macromolecules,2010,43:3094-3102.
    [116]Schafer, L., Elsner, K. Calculation of the persistence length of a flexible polymer chain with short range self-repulsion [J].Eur Phys J E,2004,13:225-237.
    [117]Sim, A. Y. L., Lipfert, J., Herschlag, Daniel., Doniach, S. Salt dependence of the radius of gyration and flexibility of single-stranded DNA in solution probed by small-angle x-ray scattering [J].Phys Rev E, 2012,86:21901.
    [118]Lu, Y. J., Weers, B., Stellwagen, N. C. DNA persistence length revisited [J].Biopolymers,2002,61: 261-275.
    [119]Hays, J. B., Magar, M. E., Zimm, B. H. Persistence length of DNA [J].Biopolymers,1969,8: 531-536.
    [120]Tinland, B., Pluen, A., Sturm, J., Weill, G. Persistence length of single-stranded DNA [J].Macromolecules,1997,30:5763-5765.
    [121]Kuznetsov, S., Shen, Y., Benight, A., Ansari, A. A semi-flexible polymer chain model applied to loop formation in DNA hairpins [J]. Biophys J,2001,81:2864-2875.
    [122]Smith, S., Cui, Y., Bustamante, C. Overstretching B-DNA:the elastic response of individual double-stranded and single-stranded DNA molecules [J].Science,1996,271:795-799.
    [123]Chen, H. M., Meisburger, S. P., Pabit, S. A., Sutton, J. L., Webb, W. W., Pollack, L. Ionic strength-dependent persistence lengths of single-stranded RNA and DNA [J].Proc NatI Acad Sci USA, 2012,109:799-804.
    [124]Bizarro, C. V., Alemany, A., Ritort, F. Non-specific binding of Na+ and Mg2+ to RNA determined by force spectroscopy methods [J].Nucleic Acids Res,2012,40:6922-6935.
    [125]McIntosh, D. B., Saleh, O. A. Salt species-dependent electrostatic effects on ssDNA elasticity [J]. Macromolecules,2011,44:2328-2333.
    [126]Rivetti, C., Walker, C., Bustamante, C. Polymer chain statistics and conformational analysis of DNA molecules with bends or sections of different flexibility[J]. J Mol Biol,1998,280:41-59.
    [127]Owczarzy, R., Moreirc, B. G., You, Y., Behlke, M. A., Walder, J. A. Predicting stability of DNA duplexes in solutions containing magnesium and monovalent cations [J].Biochemistry,2008,47: 5336-5353.
    [128]Odijk, T. Polyelectrolytes near the rod limit [J].J Polym Sci,1997,15:477-483.
    [129]Barrat, J. L., Joanny, J. F. Persistence length of polyelectrolyte chains [J]. Europhys Lett,1993,24: 333-338.
    [130]Manning, G. S. The persistence length of DNA is reached from the persistence length of its null isomer through an internal electrostatic stretching force [J]. Biophys J,2006,91:3607-3616.
    [131]Savelyev, A., Materese, C. K., Papoian, G. A. Is DNA's rigidity dominated by electrostatic or nonelectrostatic interactions? [J]. J Am Chem Soc,2011,133:19290-19293.
    [132]Savelyev, A. Do monovalent mobile ions affect DNA's flexibility at high salt content? [J].Phys Chem Chem Phys,2012,14:2250-2254.
    [133]Porschke, D. Thermodynamic and kinetic parameters of ion condensation to polynucleotides. Outer sphere complex formed by Mg++ions [J].Biophys Chem,1976,4:383-394.
    [134]Savelyev, A., Papoian, G. A. Molecular renormalization group coarse-graining of electrolyte solutions:application to aqueous NaCl and KCl[J].J Phys Chem B,2009,113:7785-7793.
    [135]Cao, S., Giedroc, D. P., Chen, S. J. Predicting loop-helix tertiary structural contacts in RNA pseudoknots[J].RNA,2010,16:538-552.
    [136]Reddy, A. S., Wang, L., Lin, Y. S., Zanni, M., Skinner, J., de Pablo, J. J. Solution structures of rat amylin peptide:simulation, theory, and experiment[J].Biophys J,2010,98:443-451.
    [137]Cho, S. S., Pincus, D. L., Thirumalai, D. Assembly mechanisms of RNA pseudoknots are determined by the stabilities of constituent secondary structures[J].Proc Natl Acad Sci USA,2009,106: 17349-17354.
    [138]Zhao, Y. J., Gong, Z., Chen, C. J., Xiao, Y. Improvements of the hierarchical approach for predicting RNA tertiary structure [J].J Biomol Struct Dyn,2011.28:815-826.
    [139]Erat, M. C., Sigel, R. K. O. Methods to detect and charactive metal ion binding sites in RNA [J].Met Ions Life Sci,2011,9:37-100.
    [140]Romani, A. Regulation of magnesium homeostasis and transport in mammalian cells [J].Arch Biochem Biophys,2007,458:90-102.
    [141]Grubbs, R. D. Intracellular magnesium and magnesium buffering [J].Biometals,2002,15:251-259.
    [142]Lambert, D., Leipply, D., Shiman, R., Draper, D. E. The influence of monovalent cation size on the stability of RNA tertiary structures [J].J Mol Biol,2009,390:791-804.
    [143]Shiman, R., Draper, D. E. Stabilization of RNA tertiary structure by monovalent cations [J].J Mol Biol,2000,302:79-91.
    [144]Murray, J. B., Seyhan, A. A., Walter, N. G., Burke, J. M., Scott, W. G. The hammerhead, hairpin and VS ribozymes are catalytically proficient in monovalent cations alone [J].Chem Biol,1998,5: 587-595.
    [145]Behrouzi, R., Roh, JH, Kilburn, D., Briber, R. M., Woodson, S. A. Cooperative tertiary interaction network guides RNA folding [J].Cell,2012,149:348-357.
    [146]Draper, D. E., Grilley, D., Soto, A. M. Ions and RNA folding [J].Annu Rev Biophys Biom,2005, 34:221-243.
    [147]Bai, Y., Greenfeld, M., Travers, K. J., Chu, V. B., Lipfert, J., Doniach, S., Herschlag, D. Quantitative and comprehensive decompositon of the ion atmosphere around nucleic acids [J].J Am Chem Soc,2007,129:14981-14988.
    [148]Leipply, D., Draper, D. E. Evidence for a thermodynamically distinct Mg2+ ion associated with formation of an RNA tertiary structure [J].J Am Chem Soc,2012,133:13397-13405.
    [149]Sengupta, R. N., Herschlag, D., Piccirilli, J. A. Thermodynamic evidence for negative charge stabilization by a catalytic metal ion within an RNA active site [J].ACS Chem Biol,2012,7:294-299.
    [150]Woodson, S. A. Compact Intermediates in RNA folding [J].Annu. Rev. Biophys.,2010,39:61-77.
    [151]Tan, Z. J., Chen, S. J. Predicting electrostatic forces in RNA folding [J].Methods Enzymol,2009, 469:465-487.
    [152]Yoo, J., Aksimentiev, A. Competitive binding of cations to duplex DNA revealed through molecular dynamics simulations [J].J Phys Chem B,2012,116:12946-12954.
    [153]Anthony, P. C., Sim, A. Y., Chu, V. B., Doniach, S., Block, S. M., Herschlag, D. Electrostatics of nucleic acid folding under conformational constraint [J].J Am Chem Soc,2012,134:4607-4614.
    [154]Kirmizialtin, S., Silalahi, A. R. J., Elber, R., Fenley, M. O. The ionic atmosphere around A-RNA: Possion-Boltzmann and molecular dynamics simulations [J].Biophys J,2012,102:829-838.
    [155]Pabit, S. A., Qiu, X. Y., Lamb, J. S., Li, L., Merisburger, S. P., Pollack, L. Both helix topology and counterion distribution contribute to the more effective charge screeing in dsRNA compared with dsDNA [J].Nucleic Acids Res,2009,37:3887-3896.
    [156]Kirmizialtin, S., Pabit, S. A., Meisburger, S. P., Pollack, L., Elber, R. RNA and its ionic cloud: solution scattering experiments and atomically detailed simulations [J].Biophys J,2012,102:819-828.
    [157]Abascal, J. L. F., Montoro, J. C. G. Ionic distribution around simple B-DNA models. Ⅲ. the effect of ionic charge [J].J Chem Phys,2001,414:4277-4284.
    [158]Kirmizialtin, S., Elber, R. Computional exploration of mobile ion distributions around RNA duplex [J].J Phys Chem B,2010,114:8207-8220.
    [159]Chu, V. B., Bai, Y., Lipfert, J., Doniach, S., Herschlag, D. Evaluation of ion binding to DNA duplexes using a size-modified Poisson-Boltzmann theory [J].Biophys J,2007,93:3202-3209.
    [160]Krakauer, H. The binding of Mg2+ ions to polyadenylate, polyuridylate, and their complexes [J].Biopolymers,1971,10:2459-2490.
    [161]Sen, D., Gilbert, W. Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis [J].Nature,1988,334:364-366.
    [162]Soto, A. M., Misra, V., Draper, D. E. Tertuary structure of an RNA pseudoknot is stabilized by 'diffuse' Mg2+ ions [J].Biochemistry,2007,46:2973-2983.
    [163]Grilley, D., Misra, V., Draper, D. E. Improtance if parially unfolded conformation for Mg2+ -induced folding of RNA tertiary structure:structural models and free energies of Mg2+ interactions [J].Biochemistry,2007,46:10266-10278.
    [164]Rialdi, G., Levy, J., Biltonen, R. Thermodynamic studies of tranfer ribonucleic acids. Ⅰ. Magnersium binding to yeast pheylalanine tranfer ribonucleic acid [J].Biochemistry,1972, Ⅱ: 2472-2479.
    [165]Kornyshev, A. A., Lee, D. J., Leikin, S., Wynveen, A. structure and interactions of biologival helices [J].Rev Mod Phys,2007,79:943-996.
    [166]Cruz, J. A., Westhof, E. the dynamic landscapes of RNA architecture [J].Cell,2009,136:604-609.
    [167]Wang, F. H., Wu, Y. Y., Tan, Z. J. Salt contribution to the flexibility of single-stranded nucleic acid of finite length[J].Biopolymers,2012, DOI:10.1002/bip.22189.:
    [168]Herschlag, D., Lipfert, J., Doniach, S., Bai, Y., Chu, V. B. Nucleic aicd-ion interactions and electrostatics[J].Annu Rev Biochem,2013,82:Advance online.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700