高脂诱导胰岛素抵抗机理及花生四烯酸对胰岛素抵抗预防作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
糖尿病分为1型糖尿病(type 1 diabetes mellitus, T1DM)和2型糖尿病(type 2 diabetes mellitus, T2DM),其中2型糖尿病约占90%左右。目前认为2型糖尿病的发病主要是在遗传基础上综合多种环境因素的结果。其中高糖高脂饮食是一种重要的环境因素。胰岛素抵抗(insulin resistance, IR)是2型糖尿病发病的重要基础,贯穿于其发生﹑发展的整个过程。所谓胰岛素抵抗是指一定量的胰岛素生物学反应低于正常水平的一种状态。如何预防2型糖尿病即胰岛素抵抗的发生,已成为摆在人们面前的一个重要课题。
     无论是流行病学调查还是实验室研究表明,食物中不同类型脂肪酸对胰岛素抵抗发生产生不同影响,饱和脂肪酸过多可引发胰岛素抵抗,而补充多不饱和脂肪酸可改善缓解胰岛素抵抗。花生四烯酸(20: 4, n-6)的化学结构为5,8,11,14-二十碳四烯酸,是哺乳动物体内含量最多,分布最广的一种高不饱和脂肪酸。
     在健康人群中,肝脏、肌肉和脂肪组织担任着维持血糖平衡的作用,而T2DM患者的这三种组织均存在胰岛素抵抗。新近研究结果表明肝脏是胰岛素作用的一个重要靶器官,肝脏中胰岛素信号转导途径的缺陷,会直接关系到全身胰岛素抵抗的发生和T2DM的发病。因此对肝脏胰岛素抵抗发生机理和预防的研究尤为重要,有利于我们进一步深入研究T2DM的发病机理,并探寻早期预防方法。
     本课题体内外研究高脂诱导胰岛素抵抗机理及花生四烯酸对胰岛素抵抗的预防作用。HepG2细胞源于人的肝胚胎瘤细胞,保留了肝细胞的许多生物学特性。体外研究以HepG2细胞为研究对象,将饱和脂肪酸软脂酸(palmitate, PA)孵育HepG2细胞,诱导HepG2细胞胰岛素抵抗,加入PKC抑制剂,分析PKC在HepG2细胞形成胰岛素抵抗过程中的作用;将软脂酸和花生四烯酸共孵育HepG2细胞,分析花生四烯酸对HepG2细胞形成胰岛素抵抗的预防作用。体内研究以Wistar大鼠为研究对象,高脂饮食诱导形成大鼠胰岛素抵抗模型,分析花生四烯酸对高脂饮食诱导大鼠全身胰岛素抵抗的预防作用及对肝糖输出和肝脏胰岛素信号传递的影响。
     第一部分PKC在软脂酸诱导HepG2细胞胰岛素抵抗中的作用
     目的从蛋白激酶C (PKC)信号通路角度,探讨游离肪肪酸(FFA)引起肝脏胰岛素抵抗的可能机制。方法培养HepG2细胞,同时设立对照组(control组)、软脂酸组(PA组)、高胰岛素组(HI组)。PA组、HI组分别用250μM软脂酸(PA)、5×10-7 M胰岛素处理24小时。然后control组、PA组再根据胰岛素刺激前加(+)与不加(-)PKC抑制剂CC (chelerythrine chloride)5μM预处理1小时,随机分为两亚组:control(-)、control(+)、PA(-)、PA(+)。葡萄糖氧化酶法测定胰岛素刺激后12小时葡萄糖消耗量,蒽酮法测定胰岛素刺激后3小时点细胞内糖原含量, Western-blotting技术检测15分钟点胞内P-Ser473 PKB、P-Ser21/9 GSK-3α/β水平。结果PA(-)组与HI组比较葡萄糖消耗量无统计学差异(P>0.05)。葡萄糖消耗量、细胞内糖原含量、P-Ser473 PKB、P-Ser21 GSK-3α、P-Ser9 GSK-3β水平均显示, PA(-)组与control(-)比较显著降低(P<0.05),control(+)与control(-)组比较略有升高但无显著性差异;PA(+)与PA(-)组比较显著升高(P<0.05)。结论软脂酸(250μM)体外成功诱导了HepG2细胞产生胰岛素抵抗,PKC信号通路在FFA引起肝脏胰岛素抵抗中起着重要的作用。
     第二部分花生四烯酸对软脂酸诱导HepG2细胞胰岛素抵抗的预防作用
     目的探讨花生四烯酸(AA)对软脂酸(PA)引起HepG2细胞胰岛素抵抗的预防作用及其可能机制。方法培养HepG2细胞,设立对照组(control组)、软脂酸组(PA组)、软脂酸+花生四烯酸组(PA+AA组)、高胰岛素组(HI组)。PA组、PA+AA组、HI组分别用250μM PA、250μM PA加20μM AA,5×10-7 M胰岛素孵育24h。然后葡萄糖氧化酶法测定各组胰岛素刺激后12h点葡萄糖消耗量,蒽酮法测定胰岛素刺激后3h点细胞内糖原含量, Western-blotting技术检测15min点胞内P-Ser473 PKB、P-Ser21/9 GSK-3α/β水平。结果葡萄糖消耗量PA组与HI组比较差异无统计学意义(P>0.05)。葡萄糖消耗量、细胞内糖原含量、P-Ser473 PKB、P-Ser21GSK-3α、P-Ser9 GSK-3β水平均显示,PA组与control组比较显著降低(P<0.05),PA+AA组与PA组比较显著升高(P<0.05)。结论AA(20μM)能显著预防PA(250μM)引起的HepG2细胞胰岛素抵抗,能在PKB、GSK-3水平上显著维持250μM软脂酸孵育HepG2细胞的胰岛素信号传递。
     第三部分:花生四烯酸对高脂饮食诱导大鼠全身胰岛素抵抗的预防作用
     目的观察花生四烯酸对大鼠全身胰岛素抵抗及肝糖输出紊乱的预防作用。方法将230~250g 24只雄性Wistar大鼠随机分为3组:正常组(8例),高脂组(8例),高脂+花生四烯酸组即预防组(8例),饲养12周。正常组:喂以基础饲料;高脂组:喂以高脂饲料;预防组:喂以高脂饲料的同时,每天按3mg.kg-1.d-1剂量灌注花生四烯酸。饲养至第12周实验终点时,进行口服葡萄糖耐受实验,基础状态下称量大鼠体重并处死,分离血清,测定血清中胰岛素、血糖、甘油三酯、胆固醇水平,取肝脏,测定肝糖原含量、磷酸烯醇式丙酮酸羧基酶(PEPCK)酶活性及PEPCK、葡萄糖-6-磷酸酶(G-6-Pase)及糖原合酶(GS)mRNA水平,HE染色观察各组大鼠肝细胞胞浆脂滴分布。结果高脂组与正常对照组比较,基础状态下血清甘油三酯(P<0.05)、胰岛素水平(P<0.05)、肝糖原含量(P<0.01)、葡萄糖-胰岛素指数显著升高(P<0.01),但基础状态下体重无显著性差异。预防组和高脂组比较,肝糖原含量(P<0.05)、甘油三酯水平(P<0.05)、葡萄糖-胰岛素指数(P<0.01)显著降低,但与正常对照组比较,肝糖原含量(P<0.01)、葡萄糖-胰岛素指数(P<0.01)显著升高。高脂组与正常对照组比较,G-6-Pase mRNA水平显著升高(P<0.01),PEPCK酶活性及其mRNA水平略有升高,但无显著性差异。预防组和高脂组比较,PEPCK酶活性及其mRNA水平(P<0.05)、G-6-Pase mRNA水平显著降低(P<0.01),但3组大鼠GS mRNA没有显著性差异。HE染色观察正常组肝细胞胞浆没有脂滴,高脂组有大量大小不一的脂滴,预防组有少量大小不一的脂滴。结论花生四烯酸能显著预防高脂饮食诱导大鼠全身胰岛素抵抗及肝糖输出紊乱,但不彻底。
     第四部分:花生四烯酸对高脂饮食大鼠肝脏胰岛素信号传递影响的研究
     目的观察花生四烯酸对高脂饮食大鼠肝脏胰岛素信号传递影响的研究。方法将230~250g 24只雄性Wistar大鼠随机分为3组:正常组(8例),高脂组(8例),高脂+花生四烯酸组即预防组(8例),饲养12周。正常组:喂以基础饲料;高脂组:喂以高脂饲料;预防组:喂以高脂饲料的同时,每天按3mg.kg-1.d-1剂量灌注花生四烯酸。饲养至第12周实验终点时,每组大鼠基础状态下腹腔注射胰岛素(6U/kg), 15分钟后取肝脏,Western blotting技术分析P-Ser473 PKB、P-Ser21/9 GSK-3α/β水平。结果高脂组与正常组比较,P-Ser473 PKB及P-Ser21/9 GSK-3α/β水平显著降低(P<0.01),预防组与高脂组比较,P-Ser473 PKB(P<0.05)、P-Ser21 GSK-3α(P<0.01)及P-Ser/9 GSK-3β(P<0.05)水平显著增加,但预防组与正常组比较,P-Ser473 PKB(P<0.05)及P-Ser21GSK-3α水平(P<0.01)显著降低,P-Ser9 GSK-3β水平没有显著性差异。
     结论花生四烯酸(3mg.kg-1.d-1)能在PKB、GSK-3水平上显著预防高脂饮食大鼠肝脏胰岛素信号传递障碍,但不能完全彻底地预防。
It is well-known that insulin resistance is an important characteristic of Type 2 diabetes. Different free fatty acid play different role in the occurrence of insulin resistance. It is reported that saturated-fatty acid can induce insulin resistance, but unsaturated-fatty acid can improve insulin resistance. However, the mechanism is not fully understood. And liver is one of the most important insulin target tissues, the onset of hepatic insulin resistance typically precedes the appearance of peripheral insulin resistance in human. The 1st part of the present study demonstrates role of PKC in insulin resistance induced by palmitate in HepG2 cells. The 2nd part of the present study demonstrates preventing effect of arachidonic acid, a kind of unsaturated-fatty acid on HepG2 cell.
     Previous researches reported that only AA had no therapeutic effect in genetically diabetic animal models. AA decrease in blood is the earlier event than hyperglycemia and hyperinsulinemia during the insulin resistance development induced by diet. plasma AA concentrations in human and animal models with typeⅡdiabete are lower than in normal subjects. Thus we hypothesized that optimal AA dose administration could prevent high-fat diet induced insulin resistance by preventing the AA decrease on membranes, maintaining the integrity of membranes and cell normal signal transduction and by other mechanism. To test this hypothesis, the effect of AA on the preventing the insulin resistance was determined in Wistar rats. The 3rd part of the present study demonstrates oral AA administration prevents early whole-body insulin resistance induced by high-fat diet significantly. And the study also demonstrates oral AA administration affects hepatic glycogen storage and relative HGO. The 4th part of the present study demonstrates preventive effect of arachidonic acid on hepatic insulin signaling in high-fat-diet fed rats.
     Part 1 Role of PKC in insulin resistance induced by palmitate in HepG2 cells
     Objective To study on the mechanism of insulin resistance (IR) for HepG2 cells induced by high concentrations of palmitate (PA) through protein kinase C (PKC) signaling pathway analysis. Methods The model of hepatic insulin resistance was established induced by PA.HepG2 cells were randomly didided into control group、PA group (250μM PA) and HI group (5×10-7 M insulin) and treated for 24 hours. Then both of control group and PA group were redivded into subgroups: control(-)、control(+)、PA(-)、PA(+). Only control(+) and PA(+) groups were pretreated by 5μM chelerythrine chloride (CC) of PKC inhibitor for lh before insulin stimulation. Insulin-stimulated glucose consumption was measured using the glucose oxidase method at 12-hour timepoint,cell glycogen was measured with anthrone method at 3-hour timepoint and protein levels of phosphate-protein kinase B (P-Ser473 PKB) and phosphate-glycogen synthase kinase (P-Ser21/9 GSK-3α/β) at 15-min timepoint were determined in total cell lysates by Western-blotting. Results There was no significant difference in glucose consumption between PA(-) group and HI group(P>0.05). All levels of glucose consumption、glycogen conten、P-Ser473 PKB、P-Ser21 GSK-3αand P-Ser9 GSK-3βin PA(-) group were reduced significantly(P<0.05)compared with control(-) group, and were increased significantly(P<0.05)in PA(+) group compared with PA(-) group. Conclusions The model of hepatic insulin resistance was established successfully. Overaction of PKC may play an important role in inducing insulin resistance in HepG2 cells.
     Part 2 Preventive effect of arachidonic acid on HepG2 cell insulin resistance induced by palmitate
     Objective To study the effect of arachidonic acid (AA) on preventing HepG2 cell insulin resistance induced by palmitate (PA) and the possible mechanism. Methods The model of hepatic insulin resistance was established induced by PA.HepG2 cells were randomly divided into control group、PA group(250μM PA)、PA+AA group (250μM PA plus 20μM AA) and HI group (5×10-7 M insulin) and cultured for 24 hours. Then insulin-stimulated glucose consumption was measured using the glucose oxidase method at 12 hours, cell glycogen was measured with anthrone method at 3 hours and protein levels of phosphate-protein kinase B(P-Ser473 PKB) and phosphate-glycogen synthase kinase (P-Ser21/9 GSK-3α/β) at 15 minutes were determined in total cell lysates by Western-blotting. Results There was no significant difference in glucose consumption between PA group and HI group. All levels of glucose consumption、glycogen conten、P-Ser473 PKB、P-Ser21 GSK-3αand P-Ser9 GSK-3βin PA group were reduced significantly(P<0.05)compared with control group, and were increased significantly (P<0.05) in PA+AA group compared with PA group. Conclusions AA can prevent HepG2 cell insulin resistance induced by palmitate significantly, keeping insulin-stimulated P-Ser473 PKB and P-Ser21/9 GSK-3α/βlevels.
     Part 3 Preventive effect of arachidonic acid on early insulin resistance induced by high-fat diet
     Objective To investigate whole-body metabolic disorder and hepatic glucose output(HGO) disturbance in rats with insulin resistance induced by short-term high-fat diet, and the effect of arachidonic acid(AA). Methods Twenty-four normal male Wistar rats (230-250g) were randomly divided into 3 groups according to their weight and fed for 12 weeks: control group, n=8, to be fed with standard chow diet; high-fat (HF) group, n=8, to be fed with high-fat diet; HF+AA group, n=8, to be fed with high-fat diet and administered orally 3mg.kg-1.d-1AA. By the end of experiment, an oral glucose tolerance test (OGTT) was carried out. At the end of the treatment period, every group was measured in weight and decapitated after an overnight fast. Blood samples were collected and plasma was prepared for the determination of plasma blood glucose (BG), triglyceride (TG), cholesterin (CH) and insulin. Livers were separated and frozen for futher analysis of glycogen content, PEPCK activity, PEPCK, GS and G-6-Pase mRNA levels. HE staining was used to observe lipid deposit in hepatic cells. Results Early insulin resistance was successfully induced in HF rats with hyperinsulinemia (P<0.05), higher plasma TG (P<0.05), higher fasting liver glycogen content (P<0.01) and higher glucose-insulin index (P<0.01) during OGTT. The treatment significantly decreased glucose-insulin index (P<0.01), blood TG (P<0.05) and glycogen content (P<0.05) in liver. Significantly decreased mRNA levels and activity of PEPCK (P<0.05) and lowered G-6-Pase mRNA levels (P<0.01) in liver were also observed. But there were significant differences in glucose-insulin index (P<0.01) during OGTT, and glycogen content (P<0.01) between HF+AA group and control group. There was no significant differences in GS mRNA levels among the three group. No lipid deposit was observed in hepatic cells of control group, but a large quantity of lipid deposit was observed in HF group, and a small quantity was observed in HF+AA group. Conclusions AA can significantly prevent whole-body insulin resistance induced by high-fat diet, as well as accompanied HGO disturbance in overnight fasting state, but not thoroughly.
     Part 4 Preventive effect of arachidonic acid on hepatic insulin signaling in high-fat-diet fed rats
     Objective To investigate P-Ser473 PKB、P-Ser21/9 GSK-3α/βlevels in rats with insulin resistance induced by short-term high-fat diet, and the effect of arachidonic acid(AA). Methods Twenty-four normal male Wistar rats (230-250g) were randomly divided into 3 groups according to their weight and fed for 12 weeks: control group, n=8, to be fed with standard chow diet; high-fat (HF) group, n=8, to be fed with high-fat diet; HF+AA group, n=8, to be fed with high-fat diet and administered orally 3mg.kg-1.d-1AA. By the end of experiment, every group was decapitate 15 minutes afte intraperitoneal injection of insulin (6U/kg). Livers were separated and frozen for futher analysis of P-Ser473 PKB、P-Ser21/9 GSK-3α/βlevels. Results P-Ser473 PKB and P-Ser21/9 GSK-3α/βlevels were significantly decreased in HF rats compared with control rats(P<0.01). The treatment (3mg.kg-1.d-1AA) significantly increased P-Ser473 PKB(P<0.05)、P-Ser21 GSK-3α(P<0.01)and P-Ser9 GSK-3β(P<0.05) levels. But there were significant differences in P-Ser473 PKB(P<0.05)and P-Ser21 GSK-3α(P<0.01) between HF+AA group and control group. Conclusions AA can significantly improve hepatic insulin signaling in high-fat-diet fed rats through increasing P-Ser473 PKB、P-Ser21/9 GSK-3α/βlevels, but not thoroughly.
引文
1. Boden G. Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes, 1997, 46(1): 3-10.
    2. Yang G, Li L, Fang C, et al. Effects of free fatty acids on plasma resistin and insulin resistance in awake rats. Metabolism, 2005, 54(9): 1142-6.
    3. Shulman GI. Cellular mechanisms of insulin resistance. J Clin Invest, 2000, 106(2): 171-6.
    4. Kim JK, Gimeno RE, Higashimori T, et al. Inactivation of fatty acid transport protein 1 prevents fat-induced insulin resistance in skeletal muscle. J Clin Invest, 2004, 113(5): 756-63.
    5. Santomauro AT, Boden G, Silva ME, et al. Overnight lowering of free fatty acids with Acipimox improves insulin resistance and glucose tolerance in obese diabetic and nondiabetic subjects. Diabetes, 1999, 48(9): 1836-41.
    6. Ikeda Y, Olsen GS, Ziv E, et al. Cellular mechanism of nutritionally induced insulin resistance in Psammomys obesus: overexpression of protein kinase Cepsilon in skeletal muscle precedes the onset of hyperinsulinemia and hyperglycemia. Diabetes, 2001, 50(3): 584-92.
    7. Condorelli G, Vigliotta G, Trencia A, et al. Protein kinase C (PKC)-alpha activation inhibits PKC-zeta and mediates the action of PED/PEA-15 on glucose transport in the L6 skeletal muscle cells. Diabetes, 2001, 50(6): 1244-52.
    8. Cazzolli R, Craig DL, Biden TJ, et al. Inhibition of glycogen synthesis by fatty acid in C(2)C(12) muscle cells is independent of PKC-alpha, -epsilon, and -theta.Am J Physiol Endocrinol Metab, 2002, 282(6): E1204-13.
    9. Kim YB, Kotani K, Ciaraldi TP, et al. Insulin-stimulated protein kinase C lambda/zeta activity is reduced in skeletal muscle of humans with obesity and type 2 diabetes: reversal with weight reduction. Diabetes, 2003, 52(8): 1935-42.
    10. Powell DJ, Turban S, Gray A, et al. Intracellular ceramide synthesis and proteinkinase Czeta activation play an essential role in palmitate-induced insulin resistance in rat L6 skeletal muscle cells. Biochem J, 2004, 382(Pt 2): 619-29.
    11. Cousin SP, Hugl SR, Wrede CE, et al. Free Fatty Acid-Induced Inhibition of Glucose and Insulin-Like Growth Factor I-Induced Deoxyribonucleic Acid Synthesis in the Pancreatic ?-Cell Line INS-1. Endocrinology, 2001, 142(1): 229-40.
    12.陈秋,夏永鹏,邱宗荫.吡格列酮对胰岛素抵抗HepG2细胞模型的药理学评价.中国药理学通报,2006,22(2):248-51.
    13. Chun Y, Yin ZD. Glycogen assay for diagnosis of female genital Chlamydia trachomatis infection. J Clin Microbiol, 1998, 36(4): 1081-2.
    14. Michael MD, Kulkarni RN, Postic C, et al. Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol Cell, 2000, 6(1): 87-97.
    15. Bruning JC, Michael MD, Winnay JN, et al. A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. Mol Cell, 1998, 2(5): 559-69.
    16. Fukuchi S, Hamaguchi K, Seike M, et al. Role of fatty acid composition in the development of metabolic disorders in sucrose-induced obese rats. Exp Biol Med (Maywood), 2004, 229(6): 486-93.
    17. Pessin JE, Saltiel AR. Signaling pathways in insulin action: molecular targets of insulin resistance. J Clin Invest, 2000, 106(2): 165-9.
    18. Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature, 2001, 414(6865): 799-806.
    19. Franke TF, Kaplan DR, Cantley LC, et al. Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate. Science, 1997, 275(5300): 665-8.
    20. Hajduch E, Litherland GJ, Hundal HS. Protein kinase B (PKB/Akt)--a key regulator of glucose transport? FEBS Lett, 2001, 492(3): 199-203.
    21. Alessi DR,Andjelkovic M, Caudwell B, et al. Mechanism of activation of proteinkinase B by insulin and IGF I. EMBO J, 1996, 15(23): 6541-6551.
    22. Welch H, Eguinoa A, Stephens LR, et al. Protein kinase B and rac are activated in parallel within a phosphatidylinositide 3OH-kinase-controlled signaling pathway. J Biol Chem, 1998, 273(18): 11248-11256.
    23. Eldar-Finkelman H, Krebs EG. Phosphorylation of insulin receptor substrate 1 by glycogen synthase kinase 3 impairs insulin action. Proc Natl Acad Sci U S A, 1997, 94(18): 9660-4.
    24. Lochhead PA, Coghlan M, Rice SQ, et al. Inhibition of GSK-3 selectively reduces glucose-6-phosphatase and phosphatase and phosphoenolypyruvate carboxykinase gene expression. Diabetes, 2001, 50(5): 937-46.
    25. Nikoulina SE, Ciaraldi TP, Mudaliar S, et al. Potential role of glycogen synthase kinase-3 in skeletal muscle insulin resistance of type 2 diabetes. Diabetes, 2000, 49(2): 263-271.
    26. Ring DB, Johnson KW, Henriksen EJ, et a1. Selective glycogen synthase kinase-3 inhibitors potentiate insulin activation of glucose transport and utilization in vitro and in vivo. Diabetes, 2003, 52(3): 588-595.
    27. Coghlan MP, Culbert AA, Cross DA, et al. Selective small molecule inhibitors of glycogen synthase kinase-3 modulate glycogen metabolism and gene transcription. Chem Biol, 2000, 7(10): 793-803.
    28. Hurley JH, Misra S. Signaling and subcellular targeting by membrane-binding domains. Annu Rev Biophys Biomol Struct. 2000, 29, 49-79.
    29. Saito N, Kikkawa U, Nishizuka Y. The family of protein kinase C and membrane lipid mediators. J Diabetes Complications, 2002, 16(1): 4-8.
    30. Farese RV. Function and dysfunction of aPKC isoforms for glucose transport in insulin-sensitive and insulin-resistant states. Am J Physiol Endocrinol Metab, 2002, 283(1): E1-11.
    31. Kanoh Y, Sajan MP, Bandyopadhyay G, et al. Defective activation of atypical protein kinase C zeta and lambda by insulin and phosphatidylinositol-3,4,5-(PO4)(3) inskeletal muscle of rats following high-fat feeding and streptozotocin-induced diabetes. Endocrinology, 2003, 144(3): 947-54.
    32. Cipok M, Aga-Mizrachi S, Bak A, et al. Protein kinase Calpha regulates insulin receptor signaling in skeletal muscle. Biochem Biophys Res Commun, 2006, 345(2): 817-24.
    33. Chalfant CE, Ciaraldi TP, Watson JE, et al. Protein kinase Ctheta expression is increased upon differentiation of human skeletal muscle cells: dysregulation in type 2 diabetic patients and a possible role for protein kinase Ctheta in insulin-stimulated glycogen synthase activity. Endocrinology, 2000, 141(8): 2773-8.
    34. Schmitz-Peiffer C, Browne CL, Oakes ND, et al. Alterations in the expression and cellular localization of protein kinase C isozymes epsilon and theta are associated with insulin resistance in skeletal muscle of the high-fat-fed rat. Diabetes, 1997, 46(2): 169-78.
    35. Sajan MP, Rivas J, Li P, et al. Repletion of atypical protein kinase C following RNA interference-mediated depletion restores insulin-stimulated glucose transport. J Biol Chem, 2006, 281(25): 17466-73.
    36. Maroni P, Bendinelli P, Piccoletti R. Intracellular signal transduction pathways induced by leptin in C2C12 cells. Cell Biol Int, 2005, 29(7): 542-50.
    1. Reaven GM. Banting Lecture 1988. Role of insulin resistance in human disease. 1988. Nutrition, 1997, 13(1): 65.
    2. McGarry JD. Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes, 2002, 51(1): 7-18.
    3. Marshall JA, Bessesen DH, Hamman RF. High saturated fat and low starch and fibre are associated with hyperinsulinaemia in a non-diabetic population: the San Luis Valley Diabetes Study. Diabetologia, 1997, 40(4): 430-8.
    4. Fukuchi S, Hamaguchi K, Seike M, et al. Role of fatty acid composition in the development of metabolic disorders in sucrose-induced obese rats. Exp Biol Med (Maywood), 2004, 229(6): 486-93.
    5.陈秋,夏永鹏,邱宗荫.吡格列酮对胰岛素抵抗HepG2细胞模型的药理学评价.中国药理学通报,2006,22(2): 248-51.
    6. Alessi DR, Andjelkovic M, Caudwell B, et al. Mechanism of activation of protein kinase B by insulin and IGF I. EMBO J, 1996, 15(23): 6541-6551.
    7. Halse R, Rochford JJ, McCormack JG, et al. Control of glycogen synthesis in cultured human muscle cells. J Biol Chem, 1999, 274(2): 76-80.
    8. Lochhead PA, Coghlan M, Rice SQ, et al. Inhibition of GSK-3 selectively reducesglucose-6-phosphatase and phosphatase and phosphoenolypyruvate carboxykinase gene expression. Diabetes, 2001, 50(5): 937-46.
    9. Eldar-Finkelman H, Krebs EG. Phosphorylation of insulin receptor substrate 1 by glycogen synthase kinase 3 impairs insulin action. Proc Natl Acad Sci U S A, 1997, 94(18): 9660-4.
    10. Coghlan MP, Culbert AA, Cross DA, et al. Selective small molecular inhibitor of glycogen syhthase kinase-3 modulate glycogen metabolism and transcription. Chem Biol, 2000, 7(10): 793-803.
    11. Das UN. Essential fatty acid metabolism in patients with essential hypertension, diabetes mellitus and coronary heart disease. Prostaglandins Leukot Essent Fatty Acids, 1995, 52(6): 387-91.
    12. Leighton B, Budohoski L, Lozeman FJ, et al. The effect of prostaglandins E1.E2 and F2αand indomethacin on the sensitivity of glycolysis and glycogen synthesis to insulin in the stripped soieus muscle of the rat. Biochem J, 1985, 227(1): 337-340.
    13. Rosenthal MJ, Hwang IK, Song MK. Effects of arachidonic acid and cyclo(his-pro) on zinc transport across small intestine and muscle tissues. Life Sci, 2001, 70(3): 337-348.
    14. Nikoulina SE, Ciaraldi TP, Mudaliar S, et al. Potential role of glycogen synthase kinase-3 in skeletal muscle insulin resistance of type 2 diabetes. Diabetes, 2000, 49(2): 263-271.
    15. Ring DB, Johnson KW, Henriksen EJ, et a1. Selective glycogen synthase kinase-3 inhibitors potentiate insulin activation of glucose transport and utilization in vitro and in vivo. Diabetes, 2003, 52(3): 588-595.
    1. Tzotzas T, Krassas GE. Prevalence and trends of obesity in children and adults of South Europe. Pediatr Endocrinol, 2004, Suppl 3: 448-54.
    2. Flegal KM, Carroll MD, Ogden CL, et al. Prevalence and trends in obesity among US adults, 1999-2000. JAMA, 2002, 288(14): 1723-1727.
    3. Kahn BB, Flier JS. Obesity and insulin resistance. J Clin Invest, 2000, 106(4): 473-481.
    4. Hallfrisch J, lazar F, Jorgensen C, et al. Insulin and glucose responses in rats fed sucrose or starch. Am J Clin Nutr, 1979, 32(4): 787-93.
    5. Fukuchi S, Hamaguchi K, Seike M, et al. development of metabolic disorders in sucrose-induced obese rats. Exp Biol Med (Maywood), 2004, 229(6): 486-93.
    6. Das UN. Essential fatty acid metabolism in patients with essential hypertension, diabetes mellitus and coronary heart disease. Prostaglandins Leukot Essent Fatty Acids, 1995, 52(6): 387-91.
    7. Vuguin P, RaabE, Liu B, et al. Hepatic insulin resistance precedes the development of diabetes in a model of intrauterine growth. Metabolism, 2004, 53(9): 1107-12.
    8. Chang JC, Wu MC, Liu IM, et al. Increase of insulin sensitivity by stevioside in fructose-rich chow-fed rats. Horm Metab Res, 2005, 37(10): 610-6.
    9. Jomain-Baum M, Schramm V. Kinetic mechanism of phosphoenolpyruvatecarboxykinase (GTP) from rat liver cytosol. Product inhibition, isotope exchange at equilibrium, and partial reactions. J Biol Chem, 1978, 253(10): 3648-59.
    10. Kam Cheong Wong, Zhiqiang Wang. Prevalence of type 2 diabetes mellitus of Chinese populations in Mainland China, Hong Kong, and Taiwan. Diabetes Research and Clinical Practice, 2006, 73(2): 126–134.
    11. Leung SS, Lee WT, Lui SS, et al. Fat intake in Hong Kong Chinese children. Am J Clin Nutr, 2000, 72(5 Suppl):1373S-1378S.
    12. Cheng C, Campbell KL, Kushner H, et al. Correlation of oral glucose tolerance test-derived estimates of insulin sensitivity with insulin clamp measurements in an African-American cohort. Metabolism, 2004, 53(9): 1107-12.
    13. Hwang IK, Go VL, Harris DM, et al. Effect of arachidonic acid plus zinc on glucose disposal in genetically diabetic (ob/ob) mice. Diabetes, Obesity and Metabolism, 2002, 4(2): 124-131.
    14. Song MK, Hwang IK, Rosenthal MJ, et al. Antidiabetic action of arachidonic acid and Zinc in genetically type 2 diabetic Goto-Kakizaki rats. Metabolism, 2003, 52(1): 7-12.
    15. Rosenthal MJ, Hwang IK, Song MK. Effects of arachidonic acid and cyclo(his-pro) on zinc transport across small intestine and muscle tissues. Life Sci, 2001, 70(3): 337-348.
    16. Nugent C, Prins JB, Whitehead JP, et al. Arachidonic acid stimulates glucose uptake in 3T3-L1 adipocytes by increasing GLUT1 and GLUT4 levels at the plasma membrane. Evidence for involvement of lipoxygenase metabolites and peroxisome proliferator-activated receptor gamma. J Biol Chem, 2001, 276(12): 9149-57.
    17. Haugen F, Zahid N, Dalen KT, et al. Resistin expression in 3T3-L1 adipocytes is reduced by arachidonic acid. J Lipid Res, 2005, 46(1): 143-53.
    18. Moon B, Kwan JJ, Duddy N, et al. Resistin inhibits glucose uptake in L6 cells independently of changes in insulin signaling and GLUT4 translocation. Am J Physiol Endocrinol Metab, 2003, 285(1): 106-115.
    19. Steppan CM, Bailey ST, Bhat S, et al. The hormone resistin links obesity to diabetes. Nature, 2001, 409(6818): 307-312.
    20. Leighton B, Budohoski L, Lozeman FJ, et al. The effect of prostaglandins E1.E2 and F2αand indomethacin on the sensitivity of glycolysis and glycogen synthesis to insulin in the stripped soieus muscle of the rat. Biochem J, 1985, 227(1): 337-340.
    21. Ezaki O. IIb group metal ions (Zn2+, Cd2+, Hg2+) stimulate glucose transport activity by post-insulin receptor kinase mechanism in rat adipocytes. J Biol Chem, 1989, 264(27): 16118-22.
    22. Dixon G, Nolan J, McClenaghan NH, et al. Arachidonic acid, palmitic acid and glucose are important for the modulation of clonal pancreatic beta-cell insulin secretion, growth and functional integrity. Clin Sci (Lond), 2004, 106(2): 191-9.
    23. Elks ML. Divergent effects of arachidonate and other free fatty acids on glucose-stimulated insulin release from rat islets. Cell Mol Biol (Noisy-le-grand), 1994, 40(6): 761-8.
    24. Puljak L, Pagliassotti MJ, Wei Y, et al. Inhibition of cellular responses to insulin in a rat liver cell line. A role for PKC in insulin resistance. J Physiol, 2005, 563(Pt 2):: 471-82.
    25. Talukdar I, Szeszel-Fedorowicz W, Salati LM. Arachidonic acid inhibits the insulin induction of glucose-6-phosphate dehydrogenase via p38 MAP kinase. J Biol Chem, 2005, 280(49): 40660-7.
    26. Wan Xue-dong, Wang Xi-ming, Xia Yan-zhi, et al. Study on the improved effect of arachidonic acid on free fatty acid-induced hepatic insulin resistance. China Journal of the Practical Chinese with Modern Medicine, 2005, 18(9): 1388-1390.
    27. Xia Yan-zhi, Wang Xi-ming, Duan Qiu-hong, et al. Role of PKC in insulin resistance and study on prevention effect of Arachidonic acid. China Journal of Modern Medicine, 2005, 15(18): 2746-2749.
    28. Zhao WH, Xiao JZ, Yang WY, et al. Relationship between hepatic insulin resistance and the expression of genes involved in hepatic glucose output. Zhonghua Gan ZangBing Za Zhi, 2006, 14(1): 45-8.
    29. Altomonte J, Richter A, Harbaran S, et al. Inhibition of Foxo1 function is associated with improved fasting glycemia in diabetic mice. Am J Physiol Endocrinol Metab, 2003, 285(4): E718-28.
    30. Marzban L, Rahimian R, Brownsey RW, et al. Mechanisms by which bis (maltolato) oxovanadium (IV) normalizes phosphoenolpyruvate carboxykinase and glucose-6- phosphatase expression in streptozotocin-diabetic rats in vivo. Endocrinology, 2002, 143(12): 4636-45.
    1. Welch H, Eguinoa A, Stephens LR, et al. Protein kinase B and rac are activated in parallel within a phosphatidylinositide 3OH-kinase-controlled signaling pathway. J Biol Chem, 1998, 273(18): 11248-11256.
    2. Ciaraldi TP, Nikoulina SE, Henry RR. Role of glycogen synthase kinase-3 in skeletal muscle insulin resistance in Type 2 diabetes. J Diabetes Complications, 2002, 16(1): 69-71.
    3. Nikoulina SE, Ciaraldi TP, Mudaliar S, et al. Potential role of glycogen synthase kinase-3 in skeletal muscle insulin resistance of type 2 diabetes. Diabetes, 2000, 49(2): 263-71.
    4. Aiston S, Coghlan MP, Agius L. Inactivation of phosphorylase is a major component of the mechanism by which insulin stimulates hepatic glycogen synthesis. Eur J Biochem, 2003, 270(13): 2773-81.
    5. Dietze D, Koenen M, Rohrig K, et al. Impairment of insulin signaling in human skeletal muscle cells by co-culture with human adipocytes. Diabetes, 2002, 51(8): 2369-76.
    6. Diez JJ, Iglesias P.The role of the novel adipocyte-derived hormone adiponectin in human disease. Eur J Endocrinol, 2003, 148(3): 293-300.
    7. Weye C ,Funahashi T, Tanaka S,et al. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endoclinol Metab, 2001, 86(5): 1930-1935.
    8. Spranger J, Kroke A, Mohlig M,et al.Adiponectin and protection against type 2 diabetes mellitus. Lancet, 2003, 361(9353):226-8.
    9. Evan DM , Silvana O, Sanjay B, et al. Role of resistin in diet-induced hepatic insulin resistance. J Clin Invest, 2004, 114(2): 232-9.
    10. Haroaki S, Audrey N, Philip DG, et al. Adenovirus–mediated chronic“hyper-resistinemia”leads to in vivo insulin resistance in normal rats. J Clin Invest, 2004, 114(2): 224-231
    11. Haugen F, Zahid N, Dalen KT, Hollung K, et al. Resistin expression in 3T3-L1 adipocytes is reduced by arachidonic acid. J Lipid Res, 2005, 46(1): 143-53.
    1. Acevedo-Duncan M, Cooper DR, Standaert ML, et al. Immunological evidence that insulin activates protein kinase C in BC3H-1 myocytes. FEBS Lett, 1989, 244(1): 174-6.
    2. Chalfant CE, Ohno S, Konno Y, Fisher AA, et al. A carboxy-terminal deletion mutant of protein kinase C beta II inhibits insulin-stimulated 2-deoxyglucose uptake in L6 rat skeletal muscle cells. Mol Endocrinol, 1996, 10(10): 1273-81.
    3. Braiman L, Alt A, Kuroki T, et al. Insulin induces specific interaction between insulin receptor and protein kinase C delta in primary cultured skeletal muscle. Mol Endocrinol, 2001, 15(4): 565-74.
    4. Braiman L, Alt A, Kuroki T, et al. Activation of protein kinase C zeta induces serine phosphorylation of VAMP2 in the GLUT4 compartment and increases glucose transport in skeletal muscle. Mol Cell Biol, 2001, 21(22): 7852-61.
    5. Cho W. Membrane targeting by C1 and C2 domains. J Biol Chem, 2001, 276(35): 32407-10.
    6. Saito N, Kikkawa U, Nishizuka Y. The family of protein kinase C and membrane lipid mediators. J Diabetes Complications, 2002, 16(1): 4-8.
    7. Hirai T, Chida K. Protein kinase Czeta (PKCzeta): activation mechanisms and cellular functions. J Biochem (Tokyo), 2003, 133(1):1-7.
    8. Cipok M, Aga-Mizrachi S, Bak A,et al. Protein kinase Calpha regulates insulin receptor signaling in skeletal muscle.Biochem Biophys Res Commun, 2006, 345(2): 817-24.
    9. Oriente F, Andreozzi F, Romano C, et al. Protein kinase C-alpha regulates insulin action and degradation by interacting with insulin receptor substrate-1 and 14-3-3 epsilon. J Biol Chem, 2005, 280(49): 40642-9.
    10. Rosenzweig T, Braiman L, Bak A, et al. Differential effects of tumor necrosis factor-alpha on protein kinase C isoforms alpha and delta mediate inhibition of insulin receptor signaling. Diabetes, 2002, 51(6): 1921-30.
    11. Ono Y, Kikkawa U, Ogita K, et al. Expression and properties of two types of protein kinase C: alternative splicing from a single gene. Science, 1987, 236(4805):1116-20.
    12. Ono Y, Kurokawa T, Fujii T, et al. Two types of complementary DNAs of rat brain protein kinase C. Heterogeneity determined by alternative splicing. FEBS Lett, 1986, 206(2): 347-52.
    13. Patel NA, Apostolatos HS, Mebert K, et al. Insulin regulates protein kinase CbetaII alternative splicing in multiple target tissues: development of a hormonally responsive heterologous minigene. Mol Endocrinol, 2004, 18(4):899-911.
    14. Patel NA, Kaneko S, Apostolatos HS, et al. Molecular and genetic studies imply Akt-mediated signaling promotes protein kinase CbetaII alternative splicing via phosphorylation of serine/arginine-rich splicing factor SRp40. J Biol Chem, 2005, 280(14): 14302-9.
    15. Toker A, Meyer M, Reddy KK, et al. Activation of protein kinase C family members by the novel polyphosphoinositides PtdIns-3,4-P2 and PtdIns-3,4,5-P3. J Biol Chem, 1994, 269(51): 32358-67.
    16. Braiman L, Sheffi-Friedman L, Bak A, et al. Tyrosine phosphorylation of specific protein kinase C isoenzymes participates in insulin stimulation of glucose transport in primary cultures of rat skeletal muscle. Diabetes, 1999, 48(10): 1922-9.
    17. Chalfant CE, Ohno S, Konno Y, et al. A carboxy-terminal deletion mutant of proteinkinase C beta II inhibits insulin-stimulated 2-deoxyglucose uptake in L6 rat skeletal muscle cells. Mol Endocrinol, 996, 10(10):1273-81.
    18. Standaert ML, Bandyopadhyay G, Galloway L, et al. Effects of knockout of the protein kinase C beta gene on glucose transport and glucose homeostasis. Endocrinology, 1999, 140(10): 4470-7.
    19. Bossenmaier B, Mosthaf L, Mischak H, et al. Protein kinase C isoforms beta 1 and beta 2 inhibit the tyrosine kinase activity of the insulin receptor. Diabetologia, 1997, 40(7): 863-6.
    20. Patel NA, Chalfant CE, Yamamoto M, et al. Acute hyperglycemia regulates transcription and posttranscriptional stability of PKCbetaII mRNA in vascular smooth muscle cells. FASEB J, 1999, 13(1): 103-13.
    21. Formisano P, Oriente F, Miele C, et al. In NIH-3T3 fibroblasts, insulin receptor interaction with specific protein kinase C isoforms controls receptor intracellular routing. J Biol Chem, 1998, 273(21): 13197-202.
    22. Braiman L, Alt A, Kuroki T, et al. Protein kinase Cdelta mediates insulin-induced glucose transport in primary cultures of rat skeletal muscle. Mol Endocrinol, 1999, 13(12): 2002-12.
    23. Rosenzweig T, Aga-Mizrachi S, Bak A, et al. Src tyrosine kinase regulates insulin-induced activation of protein kinase C (PKC) delta in skeletal muscle. Cell Signal, 2004, 16(11):1299-308.
    24. Yu KT, Werth DK, Pastan IH, et al. src kinase catalyzes the phosphorylation and activation of the insulin receptor kinase. J Biol Chem, 1985, 260(9): 5838-46.
    25. Horovitz-Fried M, Cooper DR, Patel NA, et al. Insulin rapidly upregulates protein kinase Cdelta gene expression in skeletal muscle. Cell Signal, 2006, 18(2): 183-93.
    26. Cooper DR, Watson JE, Dao ML. Decreased expression of protein kinase-C alpha, beta, and epsilon in soleus muscle of Zucker obese (fa/fa) rats. Endocrinology, 1993, 133(5):2241-7.
    27. Cooper DR, Watson JE, Patel N, et al. Ectopic expression of protein kinase CbetaII,-delta, and -epsilon, but not -betaI or -zeta, provide for insulin stimulation of glucose uptake in NIH-3T3 cells. Arch Biochem Biophys, 1999, 372(1): 69-79.
    28. Kellerer M, Mushack J, Mischak H, et al. Protein kinase C (PKC) epsilon enhances the inhibitory effect of TNF alpha on insulin signaling in HEK293 cells. FEBS Lett, 1997, 418(1-2): 119-22.
    29. Schmitz-Peiffer C, Craig DL, Biden TJ. Ceramide generation is sufficient to account for the inhibition of the insulin-stimulated PKB pathway in C2C12 skeletal muscle cells pretreated with palmitate. J Biol Chem, 1999, 274(34): 24202-10.
    30. Lin Y, Brady MJ, Wolanske K, et al. Alterations of nPKC distribution, but normal Akt/PKB activation in denervated rat soleus muscle. Am J Physiol Endocrinol Metab, 2002, 283(2): E318-25.
    31. Serra C, Federici M, Buongiorno A, et a1. Transgenic mice with dominant negative PKC-theta in skeletal muscle: a new model of insulin resistance and obesity. J Cell Physiol, 2003, 196 (1):89-97.
    32. Kim JK, Fillmore JJ, Sunshine MJ, et a1. PKC-theta knockout mice are protected from fat-induced imsulin resistance. J Olin Invest, 2004, 114(6): 823-827.
    33. Li Y, Soos TJ, Li X, et a1. Protein kinase C [theta] inhibits insulin signaling by phosphorylating IRS1 at ser1101. J Biol Chem, 2004, 279 (44): 45304-45307.
    34. Gao z, Zhang X, Zuberi A, et a1. Inhibition of insulin sensitivity by free fatty acids requires activation of multiple serine kinases in 3T3-L1 adipocytes. Mol Endocrinol, 2004, 18 (8): 2024-2034.
    35. Gray S, Idris I, Davis KR, et a1. Increased skeletal muscle expression of PKC-theta but not PKC-alpha mRNA in type 2 diabetes:inverse relationship with in-vivo insulin sensitivity. Eur J Clin Invest, 2003, 33(11): 983-987.
    36. Nishizuka Y. Protein kinase C and lipid signaling for sustained cellular responses. FASEB J, 1995; 9(7): 484-96.
    37. Standaert ML, Bandyopadhyay G, Kanoh Y, et al. Insulin and PIP3 activate PKC-zeta by mechanisms that are both dependent and independent of phosphorylationof activation loop (T410) and autophosphorylation (T560) sites. Biochemistry, 2001, 40(1): 249-55.
    38. Le Good JA, Ziegler WH, Parekh DB, et al. Protein kinase C isotypes controlled by phosphoinositide 3-kinase through the protein kinase PDK1. Science, 1998, 281(5385): 2042-5.
    39. Storz P, Toker A. 3'-phosphoinositide-dependent kinase-1 (PDK-1) in PI 3-kinase signaling. Front Biosci, 2002, 7: d886-902.
    40. Saltiel AR, Pessin JE. Insulin signaling pathways in time and space. Trends Cell Biol, 2002, 12(2): 65-71.
    41. Takata M, Ogawa W, Kitamura T, et al. Requirement for Akt (protein kinase B) in insulin-induced activation of glycogen synthase and phosphorylation of 4E-BP1 (PHAS-1). J Biol Chem, 1999, 274(29): 20611-8.
    42. Peak M, Rochford JJ, Borthwick AC, et al. Signalling pathways involved in the stimulation of glycogen synthesis by insulin in rat hepatocytes. Diabetologia, 1998, 41(1): 16-25.
    43. Daitoku H, Yamagata K, Matsuzaki H, et al. Regulation of PGC-1 promoter activity by protein kinase B and the forkhead transcription factor FKHR. Diabetes, 2003, 52(3): 642-9.
    44. Schmoll D, Walker KS, Alessi DR, et al. Regulation of glucose-6-phosphatase gene expression by protein kinase Balpha and the forkhead transcription factor FKHR. Evidence for insulin response unit-dependent and -independent effects of insulin on promoter activity. J Biol Chem, 2000, 275(46): 36324-33.
    45. Matsumoto M, Ogawa W, Akimoto K, et al. PKClambda in liver mediates insulin-induced SREBP-1c expression and determines both hepatic lipid content and overall insulin sensitivity. J Clin Invest, 2003, 112(6): 935-44.
    46. Horton JD, Goldstein JL, Brown MS. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest, 2002, 109(9): 1125-31.
    47. Krook A, Whitehead JP, Dobson SP, et al. Two naturally occurring insulin receptortyrosine kinase domain mutants provide evidence that phosphoinositide 3-kinase activation alone is not sufficient for the mediation of insulin's metabolic and mitogenic effects. J Biol Chem, 1997, 272(48): 30208-14.
    48. Jiang T, Sweeney G, Rudolf MT, et al. Membrane-permeant esters of phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem, 1998, 273(18): 11017-24.
    49. Kanoh Y, Bandyopadhyay G, Sajan MP, et al. Thiazolidinedione treatment enhances insulin effects on protein kinase C-zeta /lambda activation and glucose transport in adipocytes of nondiabetic and Goto-Kakizaki type II diabetic rats. J Biol Chem, 2000, 275(22): 16690-6.
    50. Ribon V, Saltiel AR. Insulin stimulates tyrosine phosphorylation of the proto-oncogene product of c-Cbl in 3T3-L1 adipocytes. Biochem J, 1997, 324 ( Pt 3): 839-45.
    51. Chiang SH, Baumann CA, Kanzaki M, et al. Insulin-stimulated GLUT4 translocation requires the CAP-dependent activation of TC10. Nature, 2001, 410(6831): 944-8.
    52. JeBailey L, Rudich A, Huang X, et al. Skeletal muscle cells and adipocytes differ in their reliance on TC10 and Rac for insulin-induced actin remodeling. Mol Endocrinol, 2004, 18(2): 359-72.
    53. Khayat ZA, Tong P, Yaworsky K, et al. Insulin-induced actin filament remodeling colocalizes actin with phosphatidylinositol 3-kinase and GLUT4 in L6 myotubes. J Cell Sci, 2000, 113 Pt 2: 279-90.
    54. Li-Zhong Liu, Ai-Bin He, Xiao-Jun Liu, et al. Protein Kinase Cζand Glucose Uptake. Biochemistry (Moscow), 2006, 71(7): 701-706.
    55. Kanzaki M, Pessin JE. Caveolin-associated filamentous actin (Cav-actin) defines a novel F-actin structure in adipocytes. J Biol Chem, 2002, 277(29): 25867-9.
    56. Kanzaki M, Pessin JE. Insulin-stimulated GLUT4 translocation in adipocytes is dependent upon cortical actin remodeling. J Biol Chem, 2001, 276(45): 42436-44.
    57. Hayashi T, Hirshman MF, Kurth EJ, et al. Evidence for 5' AMP-activated protein kinase mediation of the effect of muscle contraction on glucose transport. Diabetes, 1998, 47(8): 1369-73.
    58. Chen HC, Bandyopadhyay G, Sajan MP, et al. Activation of the ERK pathway and atypical protein kinase C isoforms in exercise-and aminoimidazole-4- carboxamide-1- beta-D-riboside (AICAR)-stimulated glucose transport. J Biol Chem, 2002, 277(26): 23554-62.
    59. Perrini S, Henriksson J, Zierath JR, et al. Exercise-induced protein kinase C isoform-specific activation in human skeletal muscle. Diabetes, 2004, 53(1): 21-4.
    60. Nielsen JN, Frosig C, Sajan MP, et al. Increased atypical PKC activity in endurance-trained human skeletal muscle. Biochem Biophys Res Commun, 2003, 312(4): 1147-53.
    61. Kanoh Y, Bandyopadhyay G, Sajan MP, et al. Thiazolidinedione treatment enhances insulin effects on protein kinase C-zeta /lambda activation and glucose transport in adipocytes of nondiabetic and Goto-Kakizaki type II diabetic rats. J Biol Chem, 2000, 275(22): 16690-6.
    62. Standaert ML, Kanoh Y, Sajan MP, et al. Cbl, IRS-1, and IRS-2 mediate effects of rosiglitazone on PI3K, PKC- , and glucose transport in 3T3/L1 adipocytes. Endocrinology, 2002, 143(5): 1705-1716.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700