细胞外ATP对周围神经损伤后脊髓神经元作用及机制的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
周围神经损伤后轴突的再生是实现功能恢复的前提,如何维持神经轴突的生长,影响因素很多,其中,与损伤有关的神经细胞体活性的变化、坏死程度、坏死后的再生以及再生后的神经细胞是否具有正常细胞的功能是决定轴突生长、功能恢复的先决条件,神经细胞的凋亡与神经轴突的再生和修复有关。因此,认清神经元在轴突损伤后的病理变化过程具有重要意义。研究发现一系列的神经营养因子(Neurotrophic factors,NTF)、神神经递质和激素等在神经生长、发育、细胞增殖、凋亡、再生等过程中起重要作用。细胞外ATP类物质不仅可以作为神经递质及调质参与神经系统的功能,还可对胶质细胞及神经元产生营养作用,广泛参与细胞分化及凋亡、细胞线粒体形态变化、刺激细胞因子及神经生长因子的合成及释放等过程,对神经系统的发育及可塑性变化产生重要的影响。脊髓神经元和雪旺细胞表面P2Y受体亚型的存在及其介导的神经细胞的电生理变化和细胞增殖,证明细胞外ATP可以保护受损的神经元,这种作用是通过P2Y受体介导的。细胞的损伤修复启动时,发现MAPK系统激活,细胞外信号调节因子(ERK1/2)被激活,而这种信号途径也与P2Y受体有关。近来发现:Na+-K+-ATPase不仅具有离子泵的功能,还具有信号转导分子的作用。细胞内Ca2+离子作为一种重要的信号分子,参与细胞内多种生理生化反应。肌浆网丰富的Ca2+-ATPase对细胞内Ca2+平衡起着重要作用,ATPase能通过与细胞内其它蛋白质和因子的相互作用起传递细胞外信号的作用,调节细胞的功能。糖原合成酶激酶3(Glycogen synthasekinase3,GSK3)是信号传递系统中一个重要的高度保守的激酶,在许多输入信号通路中发挥作用,而其亚型GSK-3β是凋亡信号通路中一个重要的因子。那么,为了了解周围神经损伤后,神经元会主要发生什么样的变化,细胞外ATP对这种变化的作用如何,ATPase和P2Y受体在这个过程中的变化和作用如何这些问题,我们设计了这个实验。本实验主要分为以下三部分。第一部分细胞外ATP对坐骨神经损伤后脊髓前角运动神经元和靶肌肉ATPase活性影响的研究
     目的了解细胞外ATP对坐骨神经损伤后腓肠肌和相应脊髓节段ATP aase活性的影响。方法成年SD大鼠105只,随机分成三组,A组为损伤组:右侧坐骨神经损伤后靶肌肉局部注射生理盐水组,B组为对照组:右侧坐骨神经损伤后立即修复并靶肌肉局部注射生理盐水组;C组为实验组:右侧坐骨神经损伤后立即修复并靶肌肉局部注射0.5mgATP组。术后分别于12h、1d、3d、7d、14d、28d、56d测定腓肠肌和L4-6水平脊髓前角运动神经元Na+-K+-ATPase及Ca2+-ATPase活性和相应时期的肌湿重变化情况。结果细胞外ATP与修复神经后能显着改善ATPase的活性,这种改变与肌湿重的变化相一致,与损伤组和对照组对比有显着差异(P<0.05)。结论细胞外ATP可以通过对ATPase的影响对失神经骨骼肌和脊髓前角运动神经元具有一定的保护和促进功能恢复作用。
     第二部分坐骨神经损伤后脊髓前角运动神经元的变化及细胞外ATP对其作用的实验研究
     目的探讨大鼠坐骨神经损伤后,对应神经元的变化转归以及局部注射ATP后对脊髓神经元这种变化的影响及其方式。方法成年SD大鼠210只,随机分成三组,A组为损伤组:选择右坐骨神经损伤后靶肌肉局部注射生理盐水组,B组为对照组:右侧坐骨神经损伤后立即修复并靶肌肉局部注射生理盐水组;C组为实验组:右侧坐骨神经损伤后立即修复并靶肌肉局部注射0.5mgATP组。术后分别于12h、1d、3d、7d、14d、28d、56d通过免疫组织化学和Western Blot技术检测神经元结构及p-GSK-3β(ser9)表达变化情况,评价神经损伤后对应脊髓神经元的变化及ATP对这种变化的影响作用。结果坐骨神经损伤后对应脊髓神经元发生以凋亡为主的变化,细胞外ATP与修复神经后能显着改善凋亡的发生并能对GSK-3β的活性产生影响。结论周围神经损伤后脊髓神经元发生凋亡,局部注射ATP可以起到保护神经元的作用,这种作用与GSK-3 p有关。
     第三部分细胞外ATP对体外培养的机械损伤的脊髓前角运动神经元作用机制的实验研究
     目的研究细胞外ATP对体外培养的机械损伤的脊髓前角运动神经元的作用机制。方法取新生大鼠脊髓,通过常规的原代细胞培养程序,采用差速贴壁法分离出大鼠脊髓前角运动神经元,培养成熟后制作神经元机械损伤体外模型,分为A组:对照组、B组:100μMATP组、C组:100gMATP+20μg/ml Suramin组和D组:100μM ATP+IOμM Ouabain+10μg/ml Thapsigargin组,对各组机械损伤的运动神经元进行培养,1天后分别进行运动神经元计数、MTT比色实验观察运动神经元的存活及活性、流式细胞仪分析机械损伤的脊髓前角运动神经元凋亡百分率和Werstern Blot技术检测p-GSK-3β(ser9)的表达。结果A组机械损伤的神经元在培养1天后,运动神经元计数和神经元存活及活性值最低,与D组相比没有显著差异,但是与A组和C组差异显著;其凋亡细胞百分率最高,与其它三组相比有显著差异。B组运动神经元计数及MTT比色实验结果最高,与C组相比差异并不显著,但是与A组和D组有明显差异;其神经元凋亡百分率最低,与其它三
    组相比其结果有显著差异性;C组凋亡细胞百分率与其它三组有明显差异,但其结
    果优于A组差于其它两组;其活细胞数与B组差异不大,明显优于A组和D组。D
    组神经元凋亡百分率明显低于A组,与B组和C组相比没有显著差异,但是其存
    活细胞数与B组和C组存在显著差异,与A组差异不大。A组中可见p-GSK-3β(ser9)
    阳性产物低表达,B组和D组见较多量p-GSK-3p(ser9)阳性产物表达,表达显
    著,c组中可见中量的p-GSK-3β(ser9)阳性产物表达。结论机械损伤的脊髓
    前角运动神经元会发生坏死,这种坏死改变以凋亡为主,p-GSK-3β参与到这种凋
    亡信号的传递中。细胞外ATP对损伤的细胞能起到保护作用,减少凋亡的发生,
    这种作用可以通过P2Y受体介导,ATPase也能在这个信号传递系统中发挥作用,
    保护细胞,避免损伤加重。
When the peripheral nerve injured, the precondition of recovery of function is the regeneration of axon. There are many factors can influence the growth of axon. The change of activity, the extent of necrosis, the regeneration after necrosis and the function after the regeneration of neuron connected with peripheral nerve are the prerequisite of the axon growth and recovery of function. The neuron apoptosis is connected with axon regeneration and repair. So, it has an important meaning to identify clearly the pathological change of the axon after injury. The research found that some neurotrophic factors, neurotransmitters and hormones have an important effect on the nerve growth, development, cell proliferation, apoptosis and regeneration. The species of extracellular ATP can participate the effect of nerve system not only as the neurotransmitter and modulator but also has a trophic action to glial cell and neuron. It participates in many courses, e.g. cell differentiation and apoptosis, the morphologic change of chondriosome, to stimulate the synthesis and release of cytokine and nerve growth factor. It has a great influence to neurological growth and plasticity. The found of receptor P2Y on the neuron and schwann cell and the change of it mediated on electrophysiology variation and cell proliferation, these improved that the extracellular ATP can protect the injured neuron, and this effect has been mediated with receptor P2Y. When the reparation start after injury, we found the MAPK system been activated, the ERK1/2 been activated, and the course concerned with receptor P2Y. In recent years, people found that Na-K-ATPase can not only as a ion pump, but also have the feature of as a signal transduction molecule. The ion Ca in cell is an important signal molecule in many physiological and biochemical event of cell living. The abundant Ca- ATPase in arcoplasmic reticulum can balance the ion Ca in the cell. The ATPase through the interaction with other proteins in the cell can transfer the extracellular signal into the cell and regulate the cell functions. The Glycogen synthase kinase3(GSK3) is a conservative kinase in the signal transmission system, it can produce a marked effect in many input signal path, and its subtype GSK—3β is an important factor of apoptosis. In order to understand the change of neuron following peripheral injury, what the effect of extracellular ATP and what's the effect of ATPase and receptor P2Y in the course, we design the experiment. The experiment is divided into three parts as following.
    Part 1
    Effects of extracellular ATP on the ATPase activity of denervated skeletal muscle and motor neurons of anterior spinal cord
    Objective To investigate the effect of extracellular ATP on ATPase activity of denervated gastrocnemius and motor neurons of anterior spinal cord following sciatic nerve injury in SD rat. Method Sprague-Dawley rats were used, randomly divided into three groups: The right side sciatic nerves were transected but not sutured group (injury group), the right side sciatic nerves were transected and sutured immediately, and the ATP (experimental group) and normal sodium (control group) were injected into the right side gastrocnemius with same volume. After 12hour、 1day、 3day、 7day、 14day、 28day and 56day of the operation, measure the muscles wet weight and Na~+-K~+-ATPase and Ca~(2+) -ATPase activities with both of the two tissues. Result Compared with the three groups, The ATPase bioactivity in experimental and control groups were superior to that in the injury group at some times, and this change was the same with the change of the muscle wet weight. Statistically significant significance was found. Conclusions The effect of extracellular ATP can improve the ATPase activity of denervated muscles and motor neurons of anterior spinal cord at SD rat, which suggested it has certain protective and promote regeneration effects on denervated muscle and motor neurons of anterior spinal cord, and these effects may produce through ATPase.
    Part 2
    Experimental Study of Change of motor neurons of anterior spinal cord following sciatic nerve injury and the effect of extracellular ATP
    Objective To explor the Change of motor neurons of anterior spinal cord following sciatic nerve injury and the effect of extracellular ATP on the motor neurons SD rat. Method Sprague-Dawley rats were used, randomly divided into three groups: The right side sciatic nerves were transected but not sutured group (injury group), the right side sciatic nerves were transected and sutured immediately, and the ATP (experimental group) and normal sodium (control group) were injected into the right side gastrocnemius with same volume. After 12hour、 1day、 3day、 7day、 14day、 28day and 56day of the operation, observe the motor neuron's change on immunohistochemistry and measure the change of protein of p—GSK—3β(ser9). Result After the injury of sciatic nerve, the main change of motor neurons of anterior spinal cord is apoptosis. Use extracellular ATP and ripair sciatic nerve can decrease neuron apoptosis and influence the activity of protein GSK—3β. Conclusion The main change of motor neuron of anterior spinal cord following sciatic nerve injury is apoptosis, after inject with ATP, it can protect the motor neuron and this effection may concern with protein GSK—3β.
    Part 3
    Experimental Study of the Mechanism of Action of Extracellular ATP on Motor Neurons of Anterior Spinal Cord in Vitro Following Machinery Injury Objective To explore the mechanism of action of extracellular ATP on motor neurons in vitro following machinery injury. Method Get the neonate Sprague-Dawley rat's medulla spinalis, through the conventional primary cell culture procedure, we use the method of difference adherence time and get the motor neurons of anterior spinal cord. When the neuron is in maturity, we make the mechanical injury model in vitro. All the models were divided into four groups: group A is control group; group B is 100μM ATP group; group C is 100μM ATP+20μg/ml suramin group and group D is 100μM ATP+10μM ouabain+10μg/ml Thapsigargin group. Culture the four groups neurons, after one day, we count the motor neuron, observe the survival and activity of neurons through MTT shade selection experiment, use flow cytometry to analyze the percentage of apoptosis of motor neurons of anterior spinal cord and detect the expression of protein p-GSK-3β (ser9) through Western-Blot technology. Result After we cultured the neuron one day, we found the counting of motor neuron and the survival and activity of neurons of group A was the lowest. They had no significant deviation controlling with group D, and had significant deviation controlling with group A and C. The percentage of apoptosis of motor neurons in group A was the highest, it had significant deviation controlling with others. The counting of motor neuron and the survival and activity of neurons of group B was the highest. They had no significant deviation controlling with group C, and had significant deviation controlling with group A and D. The percentage of apoptosis of motor neurons in group B was the lowest, it had significant deviation controlling with others. The percentage of apoptosis of neurons of group C was better than group A and worth than the others, the counting of living cells was no significant deviation controlling with group B, but better than group A and D. The percentage of apoptosis of neurons of group D was lower than group A, but had no significant deviation with others. The counting of living cells had significant deviation controlling with group B and C, and had no significant deviation controlling with group A in it. In group A, we can see the lower expression of p-GSK-3β (ser9) , and in group B and D, we only can see a amounts of it, it was significant. In the group C had a few expression of p-GSK-3β (ser9) . Conclusion The cultured machinery injured motor neuron of anterior spinal cord will apoptosis. In the apoptosis, the GSK-3β may in the course of signal conduction. Extracellular ATP can protect the injured neurons, decrease the count of apoptosis and this effect may mediate with receptor P2Y, and ATPase can influence the signal conduction, produce a marked effect of protecting the neuron and lightening the damage.
引文
1、Lee Sk, wolfe SW. Peripheral nerve injury and repair. J Am Acad Orthop surg, 2000, 4:243-252
    2、张晓,李爱冬等.坐骨神经切断后脊髓神经细胞的凋亡变化.中国临床康复,2003,7(2):202-204
    3、Wang Jiaxin, Kong Kangnei, Qi Weili, et al. Chronic pressure injury influence on bigmotlse spinal cord of nerve nutrition infacL Zhongguo Linchuang kangfu (Chin J Clin Rehabil) 2002; 6(16): 2390
    4、Li Peijnin, Li Bingcang. Elect and application of nerve nutritive infat biology. Zhongguo Linchuang Kangfu(Chin J Clin Rehabil) 2001; 1(5): 70
    5、Moom KA. Kohno T, Kamhewski LA, et al. Partial peripheral nerve injury promotes a selective Ioss of GABAergic inhibition in the superficial dorsal horn of the spinal cord, Neurotic 2002; 22(15): 6724—31
    6、Nishizaki T, Mori M. Diverse signal transduction pathways medited by endogenous P2 receptors in cultured rat cerebral cortical neurons. J. Neurophysiol, 1998,79:2513-2521
    7、Neary J T, Rathbone M P, Cattabeni F, et al. Trends Neurosci, 1996; 19(1): 13-18.
    8、Neary J T. J Auton Nero Sust, 2000, 81(1-3): 200-204.
    9、王栓科,洪光祥等。非选择性ATP拈抗剂对坐骨神经再生轴突诱向作用影响的实验研究.中华显微外科杂志,2003,4:279-281
    10、王同光,洪光祥,王发斌等。细胞外ATP对外周神经再生作用的实验研究。中华显微外科杂志,2001,3:198-200
    11、Dalzie HH, Westfall DE Receptors for adenine nucleotides and nucleosides: subclassification, distribution and molecular characterization. Pharmacol Rev, 1994,46:449-466
    12、Ikeuchi Y and Nishizaki T. ATP-regulated K channel and cytosolic Ca mobilization in cultured rat spinal neurons. Eur J Pharmcol, 1996,302:163-169
    13、Lilina N. Berti M, Pamela L, et al. Purinergic receptors regulate phospholipase C and adenylate cyclase activities in immortalized Schwann cells. J Biochem, 1996,314:555-561
    14、顾立强,裴国庆.周围神经损伤基础与临床.北京:人民军医出版社,2001:70-100,105-112
    15、Yang L, Cranson D, Trinkaus-Randall V. Cellular injury induces activation of MAPK via P2Y receptors. J Cell Biochem. 2004 Apr 1;91 (5):938-50
    16、Bulanova E, Budagian V, Orinska Z, et al. Extracellular ATP Induces Cytokine Expression and Apoptosis through P2X7 Receptor in Murine Mast Cells. J Immunol. 2005 Apt 1; 174(7):3880-90
    17、Zijian Xie, Ting Cai. J Molecular Interventions, Na+-K+-ATPase-Mediated Signal Transduction: From Protein Interaction to Cellular Function. 2003: 3(3); 157-168
    18、Xie Z. Ouabain interaction with cardiac Na+-K+-ATPase reveals that the enzyme can act as a pump and a signal transducer. Cell. Mol. Biol, 2003, 47: 383-390.
    19、Wang H., Haas M., Cai, T., et al. Sodium pump as a signal transducer: A role of caveolae. Biophysical, 2003, 83: 268a
    20、徐建广,顾玉东,等.被动活动对失神经支配骨骼肌超微结构及酶组织化学影响.骨与关节损伤杂志 2003,18(1):27-29.
    21、徐建广,顾玉东,等.电刺激对失神经支配骨骼肌超微结构及酶活性的影响.上海第二医科大学学报,2003,23(5):396-399.
    22、王占友,石玉秀,等.经损伤后外源性神经生长因子对骨骼肌钙泵活性的影响.中国医科大学学报,1998,27(6):574-576
    23、Doble, B.W. and Woodgett, J.R. (2003) J. Cell Sci. 116, 11175-1186
    24、Woodgett, J.R. (1990) EMBO J. 9, 2431-2438
    25、Kolb HA, Wskelam MJ. Transmitter-like action of ATP on patched membranes of cultured myoblasts and myotubes. Nature, 1983, 303:621-623
    26、王同光,洪光祥,王发斌.细胞外ATP促进体外培养大鼠脊髓前角运动神经元存活的研究.中华手外科杂志,2001,17(增刊):56-58
    27、Fn WM, Huang FL. Potentiation by endogenously released ATP of spontaneous transmitter secretion developing neuromuscular synapses in Xenopus cell cultures [J]. Br J Pharmcol, 1994, 111:880-886
    28、王同光,洪光祥,王发斌,等.细胞外ATP防治失神经肌萎缩的试验研究.现代康复.,2001,5(1):66-67.
    29、王同光,洪光祥,王发斌,等.细胞外ATP对外周神经再生作用的试验研究.中华显微外科杂志,2001,24(3):198-200.
    1、张晓,李爱冬等.坐骨神经切断后脊髓神经细胞的凋亡变化.中国临床康复,2003,7(2):202-204
    2、Wang Jiaxin, Kong Kangnei, Qi Weili, et al. Chronic pressure injury influence on bigmotlse spinal cord of nerve nutrition infacL Zhongguo Linchuang kangfu (Chin J ClinRehabil) 2002; 6(16): 2390
    3、Li Peijnin,Li Bingcang. Efect and application of nerve nutritive infat biology. Zhongguo Linchuang Kangfu(Chin J Clin Rehabil) 2001; 1 (5): 70
    4、Moom KA. Kohno T, Kamhewski LA, et al. Partial peripheral nerve injury promotes a selective Ioss of GABAergic inhibition in the superficial dorsal horn of the spinalcord, Neurotic 2002; 22(15): 6724—31
    5、Woodgett, J.R. (1990) EMBO J. 9, 2431-2438
    6、Karelle L, Jean-Pierre B. Developmental expression and localization of glycogen synthase kinase-3b in rat brain. Journal of Chemical Neuroanatomy, 1999, 16:279-293
    7、Doble, B.W. and Woodgett, J.R. (2003) J. Cell Sci. 116, 1175-1186
    8、Wyllie AH, Morres RG, Smith AL. Chromatin cleavage in apoptosis: association with condensed chromatin morphology and dependence on macromolecular sunthesis. J Pathol, 1984, 142(1): 67-77
    9、Tong JX, Rich KM. Diphenylpiperazines enhance regeneration after facial nerve injury. J Neurocytol. 1997, 26(5):339-347
    10、Oliveira AL, Risling M, Deckner M, et al. Neonatal sciatic nerve transaction induces TUNEL labeling of neurons in the rat spinal cord and DRG. Neuroreport. 1997, 8(12):2837-2840
    11、Ekstrom PAR. Neurones and glial cells of the mouse sciatic nerve undergo apoptosis agter injury in vivo and in vitro. Neuroreport, 1995, 6(7): 1029-1032
    12、Gillardon F, Wickert H, Zimmermann M. Differential expression of bcl-2 and bax mRNA in axotomized dorsal root ganglia of young and adult rats, Eur J Neurosci, 1994,6(10):1641-1644
    
    13 , Rabizadeh S, Oh J, Zhong LT, et al. Induction of apoptosis by the low-affinity NGF receptor. Science, 1993, 261(16): 345-348
    
    14, Lutz BS, Wei FC. Ma SF. Et ah Effects of insulin-like growth factor-1 in motor nerve regeneration after nervetransection and repair v8. nerve crushing injury in the rat. Acta Neurochir 1999; 141(10): 1101—6
    
    15, Schwab ME. Repairing the injured spinal cord. Science 2002; 295(5557): 1029—31
    
    16, Frame S, Cohen P: GSK3 takes centre stage more than 20 yearsafter its discovery. Biochem J 2001, 359:1-16.
    
    17, Leroy K, Brion J-P: Developmental expression and localization ofglycogen synthase3βin rat brain. J Chem Neuroanat 1999, 16:279-293.
    
    18, Dudek H, Datta SR, Franke TF, Birnbaum MJ, Yao R, Cooper GM,Segal RA, Kaplan DR, Greenberg ME: Regulation of neuronalsurvival by the serine-threonine protein kinase Akt. Science 1997, 275:661-665.
    
    19, Bhat RV, Shanley J, Correll MP, et ah Regulation and localization of tyrosine 216 phosphorylation of glycogen synthase kinase-3βin cellular and animal models of neuronal degeneration. Proc Natl Acad Sci USA. 2000, 97: 11074-11079.
    
    20, O' connor SE, Dainty IA, Leff P. Further subclassification of ATP receptors based on agonist studies. Trends Pharmocol Sci, 1991,12:137-141
    
    21, Neary JT, Rathbone MP, Cattabeni F, et al. Trophic actions of extracdllular nucleotides and necleosides on glial and neuronal cells. Trends Neuroseci, 1996, 19:13-18
    22, Dalziel HH, Westfall DP. Receptors for adenine nucleotides and nucleosides: subclassification, distribution and molecular characterization. Pharmacol Res, 1994,46:449-466
    23, Ikeuchi Y, Nishizaki T. ATP-regulated K channel and cytosolic Ca mobilization in cultured rat spinal neurons. Eur J Pharmcol, 1996, 302:163-169
    24、王同光,洪光祥,王发斌等.细胞外ATP促进体外培养的大鼠脊髓前角运动神经元存活的研究.中华手外科杂志,2001,17:56-58
    25、王同光,王栓科,洪光祥等.细胞外ATP对外周神经再生作用的实验研究.中华显微外科杂志,2001,24:198-200
    26、王栓科,洪光祥,王同光.细胞外ATP对周围神经导管中再生轴突诱导作用的实验研究.中华手外科杂志,2001,18(3):138-140
    1、Wang Jiaxin, Kong Kangnei, Qi Weili, et al. Chronic pressure injury influence on bigmotlse spinal cord of nerve nutrition infacL Zhongguo Linchuang kangfu (Chin J ClinRehabil) 2002; 6(16): 2390
    2、Li Peijnin,Li Bingcang. Elect and application of nerve nutritive infat biology. Zhongguo Linchuang Kangfu(Chin J Clin Rehabil) 2001; 1 (5): 70
    3、Moom KA. Kohno T, Kamhewski LA, et al. Partial peripheral nerve injury promotes a selective Ioss of GABAergic inhibition in the superficial dorsal horn of the spinal cord, Neurotic2002; 22(15): 6724—31
    4、Xie Z. Ouabain interaction with cardiac Na+-K+-ATPase reveals that the enzyme can act as a pump and a signal transducer. Cell. Mol. Biol, 2003, 47: 383-390.
    5、Wang H., Haas M., Cai, T., et al. Sodium pump as a signal transducer: A role of caveolae. Biophysical, 2003, 83: 268a
    6、Neary J T, Rathbone M P, Cattabeni F, et al. Trends Neurosci, 1996; 19(1): 13-18.
    7、Neary J T. J Auton Nero Sust, 2000, 81(1-3): 200-204
    8、Yang L, Cranson D, Trinkaus-Randall V. Cellular injury induces activation of MAPK via P2Y receptors. J Cell Biochem. 2004 Apr 1; 91 (5):938-50.
    9、Karelle L, Jean-Pierre B. Developmental expression and localization of glycogen synthase kinase-3b in rat brain. Journal of Chemical Neuroanatomy, 1999, 16:279-293
    10、郑永唐,贲昆龙.测定细胞活性和增殖的MTT方法建立.免疫杂志学,1992,vol8(4):266-269
    11、Neary J T, Rathbone M P, Cattabeni F, et al. Trends Neurosci, 1996; 19(1): 13-18.
    12、Neary J T. J Auton Nero Sust, 2000, 81(1-3): 200-204.
    13、王栓科,洪光祥等。非选择性ATP拮抗剂对坐骨神经再生轴突诱向作用影响的实验研究.中华显微外科杂志,2003,4:279-281
    14、王同光,洪光祥,王发斌等。细胞外ATP对外周神经再生作用的实验研究。中华显微外科杂志,2001,3:198-200
    15、O'connor SE, Dainty IA, Left E Further subclassification of ATP receptors based on agonist studies. Trends Pharmocol Sci, 1991,12:137-141
    16、Neary JT, Rathbone MP, Cattabeni F, et al. Trophic actions of extracdllular nucleotides and necleosides on glial and neuronal cells. Trends Neuroseci, 1996, 19:13-18
    17、Dalziel HH, Westfall DP. Receptors for adenine nucleotides and nucleosides: subclassification, distribution and molecular characterization. Pharmacol Res, 1994,46:449-466
    18、张一红,赵志奇.克隆的P2受体亚型的药理学研究进展.生命科学,2001,13(4):170-173
    19、Salter MW, de Koninck, Henry JL. Physiological roles for adenosine and ATP in synaptic transmission in the spinal dorsal horn. Prog Neurobiol, 1993,41:125-156
    20、Zijian Xie, Ting Cai. J Molecular Interventions, Na+-K+-ATPase-Mediated Signal Transduction: From Protein Interaction to Cellular Function. 2003: 3(3); 157-168
    21、Xie Z. Ouabain interaction with cardiac Na+-K+-ATPase reveals that the enzyme can act as a pump and a signal transducer. Cell. Mol. Biol, 2003, 47: 383-390.
    22、Wang H., Haas M., Cai, T., et al. Sodium pump as a signal transducer: A role of caveolae. Biophysical, 2003, 83: 268a
    23、Pap M, Cooper GM. Role of glycogen synthase kinase-3 in the phosphatidylinositol 3-kinase/Akt cell survival pathway. J Biol Chem, 1998,273:19929-19932
    24、Bijur GN, De Sarno P, Jope RS Glycogen synthase kinase-3 β gacilitates sstaurosparine-and heat, shock-induced apoptosis. Protection by lithium. J Biol Chem, 2000, 275:7583-7590
    25、Cross DA, Culbert AA, Chalmers KA, et al. Selective small-molecule inhibitors of glycogen synthase kinase-3 activity protect primary neurons from death. J Neurochem, 2001,77:94-102
    
    26、 Hetman W, Cavanaugh JE, Kimelman D, et al. Role of glycogen synthase kinase-3 β in neuronal apoptosis induced by trophic withdrawal. JNeurosci,2000,20:2567-2574
    1. Skou, J.C. The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim. Biophys. Acta 23,394-401 (1957).
    
    2. Lingrel, J.B. and Kuntzweiler, T.Na+,K+-ATPase. J. Biol. Chem. 269,19659-19662 (1994).
    3. Dunbar L.A. and Caplan M.J. Ionpumps in polarized cells: Sorting and regulation of the Na+,K+- and H+,K+-ATPases. J. Biol. Chem. 276,29617-29620 (2001).
    4. Kaplan, J.H. Biochemistry of Na+,K+-ATPase. Annu. Rev. Biochem.71, 511-535 (2002).
    5. Akera, T. and Brody, T.M. Inotropic action of digitalis and ion transport.Life Sci. 18, 135-142 (1976).
    6. Schwartz, A., Grupp, G., et al.Role of the Na+,K+-ATPase in the cardiotonic action of cardiac glycosides. Prog. Clin. Biol. Res.268B, 321-338 (1988).
    7. Eisner, D.A. and Smith, T.W. The Heart and Cardiovascular System (2~(nd) ed.). Edited by H.A. Fozzard, E.Haber, R.B. Jennings, A.M. Katz,H.E. Morgan, Raven Press, New York, pp863-902 (1992).
    8. Barry, W.H., Hasin, Y., et al. Sodium pump inhibition,enhanced calcium influx via sodium-calcium exchange, and positive inotropic response in cultured heart cells. Circ. Res. 56,231-241(1985).
    9. Xie, Z. Ouabain interaction with cardiac Na+-K+-ATPase reveals that the enzyme can act as a pump and asignal transducer. Cell. Mol. Biol. 47,383-390 (2001).
    10. Szamel, M., Schneider, S., et al. Functional interrelationship between Na+/K+-ATPase and lysolecithin acyltransferase in plasma membrane of mitogenstimulated rabbit thymocytes. J. Biol.Chem. 256, 9198-9204 (1981).
    11. Nakagawa, Y., Petricoin, et al. Interferon-_-induced gene expression:Evidence for a selective effect of ouabain on activation of the ISGF3 transcription complex. Virology 190,210-220 (1992).
    12. Liu, J., Tian, J., et al. Ouabain interaction with cardiac Na+/K+-ATPase initiates signal cascades independent of changes in intracellular Na+ and Ca2+. J. Biol. Chem. 275, 27838-27844 (2000).
    13. Tian, J., Gong, X., et al.Signal-transducing function of Na+/K+-ATPase is essential for ouabain's effect on [Ca2+]i in rat cardiac myocytes. Am. J. Physiol.281, H1899-H1907 (2001).
    14. Aydemir-Koksoy, A., Abramowitz, J., et al. Ouabain induced signaling and vascular smooth muscle cell proliferation. J. Biol. Chem. 276, 46605-46611 (2001).
    15. Aizman, O., Uhlen, P., et al. Ouabain,a steroid hormone that signals with slow calcium oscillations. Proc. Natl.Acad. Sci. U.S.A. 98, 13420-13424 (2001).
    16. Nakagawa, Y., Rivera, V., et al. A role for the Na+/K+-ATPase in the control of human c-fos and cjun transcription. J. Biol. Chem. 267,8785-8788 (1992).
    17. Peng, M., Huang, L., et al. Partial inhibition of Na+/K+-ATPase by ouabain induces the Ca2+-dependent expressions of earlyresponse genes in cardiac myocytes.J. Biol. Chem. 271, 10372-10378 (1996).
    18. Kometiani, P., Li, J., et al.Multiple signal transduction pathways link Na+/K+-ATPase to growth-related genes in cardiac myocytes: The roles of Ras and mitogen-activated protein kinases. J.Biol. Chem. 273, 15249-15256(1998).
    19. Xie, Z., Kometiani, P., et al.Intracellular reactive oxygen species mediate the linkage of Na+-K+-ATPase to hypertrophy and its marker genes in cardiac myocytes. J.Biol. Chem. 274, 19323-19328(1999).
    20. Contreras, R.G., Shoshani, L., et al. Relationship between Na+,K+-ATPase and cell attachment. Cell Sci. 112,4223-4232(1999).
    21 . Haas, M, Askari, A., et al.Involvement of Src and epidermal growth factor receptor in the signal transducing function of Na+/K+-ATPase. J. Biol. Chem. 275,27832-27837 (2000).
    22. Haas, M., Wang, H., et al. Src-mediated interceptor cross-talk between the Na+-K+-ATPase and the EGF receptor relays the signal from ouabain to mitogen-activated protein kinases. J.Biol. Chem. 277, 18694-18702(2002).
    23. Pressley, T.A. Ionic regulation of Na,K-ATPase expression. Semin. Nephrol. 12, 67-71 (1992).
    24. Kaplan, J.G. Membrane cation transport and the control of proliferation of mammalian cells.Annu . Rev.Physiol. 40, 19-41(1978).
    
    25. Askari, A. Significance of proteinprotein interactions to Na+/K+-ATPase functions. In: Na+-K+—ATPase and Related ATPase, K.Taniguchi and S. Kaya, Eds.,Excerpta Medica Interaat. Congress Series 1207, Elsevier, Amsterdam,(2000).
    26. Axelsen, K.B. and Palmgren, M.G.Evolution of substrate specificities in the P-type ATPase superfamily. J.Mol. Evol. 46, 84-101 (1998).
    27. Takeyasu, K., Okamura, H. et al. P-type ATPase diversity and evolution: The origins of ouabain sensitivity and subunit assembly. Cell Mol. Biol. 47,325-333 (2001).
    28. Liu, L., Mohammadi, K., et al. Role of caveolae in the signal transducing function of cardiac Na+/K+-ATPase. Am. J. Physiol. 2002vl (2003).
    29. Wang, H., Haas, M., et al. Sodium pump as a signal transducer: A role of caveolae. Biophysical J. 83, 268a (2003).
    30. Mohammadi, K., Kometiani, P., et al. Role of protein kinase C in the signal pathways that link Na+,K+-ATPase to ERK1/2. J.Biol. Chem. 276, 42050-42056 (2001).
    31. Done, S.C., Leibiger, I.B., et al. Tyrosine 537 within the Na+,K+-ATPase -subunit is essential for AP-2 binding and clathrin-dependent endocytosis. J. Biol. Chem. 277, 17108-17111 (2002).
    32. Zhou, X., Jiang, G., et al. Inhibition of Na+,K+-ATPase activates PI3 kinase and inhibits apoptosis in LLC-PK1 cells. Biochem. Biophys. Res. Commun. 285, 46-51 (2001).
    33. Feraille, E., Carranza, M.L. et al. Insulin-induced stimulation of Na+,K+-ATPase activity in kidney proximal tubule cells depends on phosphorylation of the _ subunit at Tyr10. Mol Biol Cell. 10, 2847-2859 (1999).
    34. Sweadner, K.J. and Rael, E. The FXYD gene family of small ion transport regulators or channels: cDNA sequence, protein signature sequence, and expression. Genomics. 68, 41-56 (2000).
    35. Crambert, G. and Geering, K. FXYD proteins: New tissue-specific regulators of the ubiquitous Na+,K+-ATPase. Sci. STKE. 2003, rel(2003).
    36. Nelson, W.J., Veshnock, P.J. Ankyrin binding to Na+,K+-ATPase and implications for the organization of membrane domains in polarized cells. Nature 328, 533-536 (1987).
    37. Ferrandi, M., Salardi, S.,. et al. Evidence for an interaction between adducin and Na+,K+-ATPase: Relation to genetic hypertension. Am. J. Physiol. 277, H1338-H1349 (1999).
    38. Manunta, P., Barlassina, C, et al. Adducin in essential hypertension. FEBS Lett. 430,41-44(1998).
    39. Yudowski, G.A., Efendiev, R., et al.M.Phosphoinositide-3 kinase binds to a proline-rich motif in the Na+,K+-ATPase _ subunit and regulates its trafficking. Proc. Natl. Acad. Sci.U.S.A. 97, 6556-6561 (2000).
    40. Vondriska, T.M., Klein, J.B., et al. Use of functional proteomics to investigate PKC epsilon-mediated cardioprotection: The signaling module hypothesis. Am. J. Physiol. 280, H1434-H1441 (2001).
    41. Yingst, D.R., Yang, S.Y., et al. Purification of active Na+-K+-ATPase using a new ouabain-affinity column. Am. J.Physiol 275, C1167-C1177 (1998).
    42. Caplan, M. Pagel, P., et al. A search for novel pump-interacting proteins. Ann. N. Y. Acad. Sci. in press (2003)
    43. Yuan, Z., Cai, T., et al. Sodium pump as a signal transducer: Proteomic identification of ouabainactivated signaling modules. Biophysical J. 83, 267a (2003).
    44. Thomas, S.M. and Brugge, J.S.Cellular functions regulated by Src family kinases. Annu. Rev. Cell. Dev. Biol. 13, 513-609 (1997).
    45. Young, M.A., Gonfloni, S., et al.Dynamic coupling between the SH2 and SH3 domains of c-Src and Hck underlies their inactivation by Cterminal tyrosine phosphorylation. Cell 105, 115-126 (2001).
    46. Xu, W., Harrison, S.C., et al. Three-dimensional structure of the tyrosine kinase c-Src. Nature 385, 595-602 (1997).
    47. Tian, J., Cai, T., et al. Sodium pump as a signal transducer: Interaction with Src. Biophysical J. 83, 267a (2003).
    48. Costa, C.J., Gatto, C, et al Interactions between Na+,K+-ATPase _-subunit ATP binding domains. J. Biol. Chem, [epub ahead of print] (2003).
    49. Lee, K., Jung, J., Kim, M., et al. Interaction of the alpha subunit of Na+,K+-ATPase with cofilin. Biochem J. 353, 377-385 (2001).
    50. Zhang, Z., Devarajan, P., et al. Structure of the ankyrin-binding domain of Na+,K+-ATPase. J. Biol. Chem. 273,18681-18684 (1998).
    51. Prenzel, N., Fischer, O.M., et al. The epidermal growth factor receptor family as a central element for cellular signal transduction and diversification. Endocr. Relat. Cancer 8, 11-31 (2001).
    52. Kuroki, D.W., Minden, A., et al. Regulation of a c-Jun amino-terminal kinase/stress-activated protein kinase cascade by a sodium-dependent signal transduction pathway. J. Biol. Chem. 272, 23905-23911 (1997).
    53. Li, S. and Wattenberg, E.V.Differential activation of mitogenactivated protein kinases by palytoxin and ouabain, two ligands for the Na+,K+-ATPase. Toxicol. Appl. Pharmacol. 151, 377-384 (1998).
    54. Juhaszova, M. and Blaustein, M.P.Na+ pump low and high ouabain affinity alpha subunit isoforms are differentlydistributed in cells. Proc. Natl. Acad. Sci. U.S.A. 94, 1800-1805(1997).
    55. Liu, P., Rudick, M., et al Multiple functions of caveolin-1. J. Biol. Chem. 277, 41295-41298 (2002).
    56. Razani, B., Woodman, S.E. et al. Caveolae: From cell biology to animal physiology. Pharmacol. Rev. 54, 431-467 (2002).
    57. Hamlyn, J.M., Blaustein, M.P., et al. Identification and characterization of a ouabain-like compound from human plasma. Proc. Natl. Acad. Sci. U.S.A. 81, 6259-6263 (1991).
    58. Fedorova, O.V., Doris, P.A., et al. Endogenous marinobufagin-like factor in acute plasma volume expansion. Clin. Exp. Hypertens. 20, 581-591 (1998).
    59. Laredo, J., Shah, J.R., et al. Angiotensin II stimulates secretion of endogenous ouabain from bovine adrenocortical cells via angiotensin type 2 receptors. Hypertension 29,401-407(1997).
    60. Manunta, P., Rogowski, et al.Ouabain-induced hypertension in the rat: Relationships among plasma and tissue ouabain and blood pressure. J. Hypertens. 12, 549-560 (1994).
    61. Dmitrieva, R.I. and Doris, P.A. Cardiotonic steroids: Potential endogenous sodium pump ligands with diverse function. Exp. Biol. Med. 227, 561-569 (2002).
    62. Schoner, W. Endogenous cardiac glycosides, a new class of steroid hormones. Eur. J. Biochem. 269, 2440-2448 (2002).
    63. Xie, Z., Wang, Y., et al.Studies on the specificity of the oxygen free radical effects on cardiac sodium pump. J. Mol. Cell. Cardiol. 22, 911-920 (1990).
    64. Huang, W., Wang, Y., et al. Different sensitivities of the Na+-K+-ATPase isoforms to oxidants. Biochim. Biophys. Acta 1190, 108-114 (1994).
    65. Kajikawa, M, Fujimoto, S., et al. Ouabain suppresses glucoseinduced mitochondrial ATP production and insulin release by generating reactive oxygen species in pancreatic islets. Diabetes 51,2522-2529 (2002).
    66. Bereta, J., Cohen, M.C., et al. Stimulatory effect of ouabain on VCAM-1 and iNOS expression in murine endothelial cells: Involvement of NF-_B. FEBS Lett. 377, 21-25 (1995).
    67. Matsumori, A., Ono, K., et al. Modulation of cytokine production and protection against lethal endotoxemia by the cardiac glycoside ouabain. Circulation 96, 1501-1506(1997).
    68. Rajasekaran, S.A., Palmer, L.G., et al. Na+,K+-ATPase activity is required for formation of tight junctions, desmosomes, and induction of polarity in epithelial cells. Mol. Biol. Cell 12, 3717-3732 (2001).
    69. Baudouin-Legros, M., Brouillard, F., et al. Effect of ouabain on CFTR gene expression in human Calu-3 cells. Am. J. Physiol. Cell Physiol. 284, C620-C626 (2003).
    70. Vega, C, Pellerin, L., et al. Long-term modulation of glucose utilization by IL-1_ and TNF-_ in astrocytes: Na+pump activity as a potential target via distinct signaling mechanisms. Glia 39, 10-18 (2002).
    71. McGowan, M.H., Russell, P., et al. Na+, K+-ATPase inhibitors down-regulate gene expression of the intracellular signaling protein 14-3-3 in rat lens.J. Pharmacol. Exp. Ther.289,1559-1563 (1999).
    72. Shiratori, O. Growth inhibitory effect of cardiac glycosides and aglycones on neoplastic cells: In vitro and in vivo studies. Gann 58, 521-528 (1967).
    73. Stenkvist, B., Pengtsson, E., et al. Cardiac glycosides and breast cancer, revisited. N. Engl. J. Med. 306, 484 (1982).
    74. Carver, J.H., Adair, G.M., et al. Mutagenicity testing in mammalian cells. II. Validation of multiple drug-resistance markers having practical application for screening potential mutagens. Mutat.Res. 72, 207-230 (1980).
    75. Price, E.M. and Lingrel, J.B.Structure-function relationships in the Na+,K+-ATPase alpha subunit: Site-directed mutagenesis of glutamine111 to arginine, and asparagine122 to aspartic acid generates a ouabain-resistant enzyme. Biochemistry 27, 8400-8408 (1988).
    76. Watabe, M, Kawazoe, N., et al. Bcl-2 protein inhibits bufalin-induced apoptosis through inhibition of mitogen-activated protein kinase activation in human leukemia U937 cells. Cancer Res. 57, 3097-3100 (1997).
    77. Watabe, M., Ito, K., et al. Activation of AP-1 is required for bufalin-induced apoptosis in human leukemia U937 cells. Oncogene 16, 779-787 (1998).
    78. Kawazoe, N., Watabe, M, et al.Tiaml is involved in the regulation of bufalin-induced apoptosis in human leukemia cells. Oncogene 18, 2413-2421 (1999).
    79. McConkey, D.J., Lin, Y., et al.Cardiac glycosides stimulate Ca2+ increases and apoptosis in androgenindependent, metastatic human prostate adenocarcinoma cells. Cancer Res. 60, 3807-3812 (2000).
    80. Chueh, S.C., Guh, J.H., et al. Dual effects of ouabain on the regulation of proliferation and apoptosis in human prostatic smooth muscle cells. J. Urol. 166, 347-353 (2001).
    81. Akiyama, M., Ogura, M., et al. Effect of bufalin on growth and differentiation of human skin carcinoma cells in vitro. Hum.Cell. 12, 205-209 (1999).
    82. Xiao, A.Y., Wei, L., et al. Ionic mechanism of ouabain-induced concurrent apoptosis and necrosis in individual cultured cortical neurons.J. Neurosci. 22, 1350-1362 (2002).
    83. Murata, Y., Matsuda, T., et al. Ouabaininduced cell proliferation in cultured rat astrocytes. Jpn. J. Pharmacol. 72, 347-353 (1996).
    84. Golomb, E., Hill, M.R., et al. Ouabain enhances the mitogenic effect of serum in vascular smooth muscle cells. Am. J.Hypertens. 7, 69-74 (1994). 85. Huang, L., Li, H., and Xie, Z. Ouabain-induced hypertrophy in cultured cardiac myocytes is accompanied by changes in expressions of several late response genes. J. Mol. Cell. Cardiol 29, 429-437(1997).
    86. Huang, L., Kometiani, P., et al.Differential regulation of Na+-K+-ATPase alpha-subunit isoform gene expressions in cardiac myocytes by ouabain and other hypertrophic stimuli. J. Mol. Cell Cardiol. 29, 3157-3167 (1997).
    87. Priydarshi, S., Valentine, B., et al. Effect of green tea extract on cardiac hypertrophy following 5/6~(th) nephrectomy in the rat. Kidney Int.[in press] (2003).
    88. Christian, H.A. The use of digitalis other than in the treatment of cardiac decompensation. JAMA 100, 789-792 (1933).
    89. Williams, J.F. Jr. Braunwald, E. Studies on digitalis XI. Effects of digitoxin on the development of cardiac hypertrophy in the rat subjected to aortic constriction. Am. J. Cardiol. 16, 534-539 (1965).
    90. Cutilletta, A.F., Rudnik, M., et al. Effect of prophylactic digitalization on the development of myocardial hypertrophy. Am. J. Physiol. 233, H600-H604 (1977).
    91. Wendt, L., Geppert, M.P., et al. Uber die beziehungen zwischen herzhypertrophie und digitalis wirkung. Virchows Archiv Abt B Zellpathol. 210, 291-325 (1951).
    92. Pierdomenico, S.D., et al.Endogenous ouabain and hemodynamic and left ventricular geometric pattems in essential hypertension. Am. J. Hypertens. 14, 44-50 (2001).
    93. Marban, E. and Tsien, R.W.Enhancement of calcium current during digitalis inotropy in mammalian heart: Positive feed-back regulation by intracellular calcium? J. Physiol. 329, 589-614 (1982).
    94. Lederer, W.J. and Eisner, D.A. The effects of sodium pump activity on the slow inward current in sheep cardiac Purkinje fibres. Proc. R. Soc.Lond. B Biol. Sci. 214, 249-262 (1982).
    95. Tian, J., Liu, J., Shapiro, J.I., et al. Involvement of mitogen-activated protein kinases and reactive oxygen species in the inotropic action of ouabain on cardiac myocytes. A potential role for mitochondrial KATP channels.Mol. Cell. Biochem. 242, 181-187(2003).
    96. Fitzgerald, E.M. Regulation of voltage-dependent calcium channels in rat sensory neurones involves a Ras-mitogen-activated protein kinase pathway. J. Physiol. 527, 433-444 (2000).
    97. Nishio, M., Ruch, S.W.,et al. Positive inotropic effects of ouabain in isolated cat ventricular myocytes in sodium-free conditions. Am. J. Physiol. Heart Circ. Physiol. 283, H2045-H2053 (2002).
    98. Garlid, K.D., Paucek, P., et al. Cardioprotective effect of diazoxide and its interaction with mitochondrial ATP-sensitive K+channels. Possible mechanism of cardioprotection. Circ. Res. 81,1072-1082 (1997).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700