雷公藤甲素对APP/PS1双转基因AD模型小鼠海马内老年斑形成和炎症反应的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     阿尔茨海默病(Alzheimer’s disease,AD)的脑内病变是一个慢性炎症的观点,已经普遍被人们接受。AD脑内慢性炎症反应的特征包括:与β-淀粉样蛋白(β-amyloid,Aβ)沉积和老年斑(senile plaques,SP)形成有关的小胶质细胞激活,反应性星形胶质细胞增生,以及补体成份和致炎性细胞因子的表达增加等。非甾体类抗炎药(non-steroidal anti-inflammatory drugs,NSAIDs)不仅可以降低AD发生的危险性,而且可以延缓AD的进程。动物实验研究证实,NSAIDs可以抑制AD转基因模型小鼠脑内Aβ的沉积和SP的形成,并抑制小胶质细胞活化和反应性星形胶质细胞增生以及IL-1β等致炎性细胞因子的表达与分泌。因此,抗炎治疗AD具有重要的价值。但是,由于NSAIDs严重的毒副作用,可能限制其在临床上的使用。
     雷公藤甲素(triptolide,T10)是中药雷公藤提取物的有效成份之一,具有抗炎和免疫抑制的作用,临床上被应用于治疗风湿和类风湿关节炎,系统性红斑狼疮等自身免疫和炎症反应性疾病。不少的体外研究证实,雷公藤甲素的抗炎和免疫抑制效应是通过抑制炎症介质如IL-1β、TNFα等的表达释放和抑制诱导型一氧化氮合酶(inducible nitric oxide synthase,iNOS)和环氧化酶-2(Cyclooxygenase-2,COX-2)诱导表达实现的。最近的研究表明,雷公藤甲素具有神经保护作用,可以保护中脑黑质多巴胺能神经元免受脂多糖(lipopolysaccharide,LPS)的损伤,其机制可能与雷公藤甲素抑制LPS所致的小胶质细胞的活化以及抑制LPS所致的炎症反应有关。T10对AD脑内炎症和免疫反应影响的研究,到目前为止还少见有文献报道。本研究首次用T10处理β-淀粉样前体蛋白(β-Amyloid precursor protein,APP)基因和早老素Ⅰ(Presinilin 1,PS1)基因双转基因AD模型小鼠(APP/PS1 dtg),研究T10对APP/PS1 dtg的影响,探讨T10治疗AD的可能性及其可能机制,为AD的防治提供新的方法。
     目的
     研究雷公藤甲素(T10)对APP/PS1双转基因AD模型小鼠海马内Aβ沉积与SP形成、小胶质细胞和星形胶质细胞的活化以及COX-2诱导表达的影响及其可能机制,为T10防治AD提供新的理论依据。
     方法
     1.动物实验取18只4.5月龄健康雄性APP/PS1双转基因AD模型小鼠,随机分为3组,分别腹腔注射5μg/kg.d T10(T10 H组)、1μg/kg.d T10(T10 L组)和等容量的溶媒(PLC组)共计45天;另取5只野生型非转基因同龄雄性小鼠,不作任何处理作为对照。45天后取材,左侧半大脑用于组织学染色,右侧半大脑用于蛋白分析。组织学研究:按无偏性体视学(Unbiased stereology)SUR原则(Systematic-Uniform-Random principle),每10片取1片收集切片,6E10、GFAP、MAC1、COX-2免疫组织化学方法染色结合无偏性体视学定量分析研究Aβ、星形胶质细胞、小胶质细胞和COX-2等的变化,刚果红染色显示老年斑形成的改变,6E10与GFAP、6E10与MAC1、COX-2与GFAP、COX-2与MAC1等免疫荧光双标记显示星形胶质细胞和小胶质细胞与Aβ和COX-2等的关系。Western Blot蛋白分析海马Aβ和COX-2等蛋白水平的变化。
     2.细胞培养实验:(1)培养A172人星形胶质细胞,分别用0.2、1和5μg/L T10预处理A172细胞1h,随后用1mg/L LPS处理细胞3h和6h,逆转录-PCR(Reverse transcription-PCR,RT-PCR)、Western blot研究不同浓度T10对LPS所致COX-2表达的影响;电泳迁移率检测(Electrophoretic Mobility Shift Assay,EMSA)研究T10对LPS所致的NF-κB/DNA结合活性的影响。(2)培养高表达人类COX-2蛋白(hCOX-2)的sf-9细胞系,分别用T10、COX-2酶活性抑制剂NS398和吲哚美辛处理细胞,放射免疫(Radioimmunoassay,RIA)检测培养液中PGE2的含量,研究T10对COX-2酶活性的影响。
     结果
     1动物实验结果:(1)T10处理APP/PS1 dtg 45 d,①可以抑制Aβ在海马的沉积,减少SP的形成。无偏性体视学定量分析发现,与PLC组的6E10阳性的Aβ斑的总面积比较,T10 H组海马Aβ斑的总面积减少了35%(P<0.001),T10 L组海马Aβ斑的总面积减少了18%(P<0.05)。此外,T10 H组较T10 L组减少了21%,差异有统计学意义(P<0.05)。②Western Blot蛋白分析也显示,海马内T10 H组Aβ蛋白水平最低,PLC组Aβ蛋白水平最高,T10 L组Aβ蛋白水平介于二者之间;③T10还可以减少6E10阳性的神经元的数量;④T10可以抑制沉积的Aβ聚集和纤维化,减少SP的形成。无偏性体视学定量分析发现,与PLC组的刚果红阳性SP比较,T10 H组海马SP总面积减少了32%(P<0.001),T10 L组海马SP总面积减少了21%(P<0.05)。
     (2) T10可以抑制神经胶质细胞的活化与增生:①T10可以抑制小胶质细胞的活化与增生,减少小胶质细胞团簇的面积,无偏性体视学定量分析发现,与PLC组比较,T10 H组海马小胶质细胞总数减少了30%(P<0.01),T10 L组减少18%(P<0.05);T10 H组较T10 L组减少17%(P<0.05)。②T10可以抑制星形胶质细胞活化,减少GFAP的表达以及抑制星形胶质细胞的增生,无偏性体视学定量分析发现,与PLC组比较,T10 H组海马星形胶质细胞总数减少了20%(P<0.01),T10 L组减少13%(P>0.05)。
     (3) T10可以抑制APP/PS1 dtg AD模型小鼠海马内COX-2的表达/活化:①T10抑制COX-2在APP/PS1 dtg海马神经元内的表达/活化,减少COX-2阳性神经元的数量;②野生型小鼠海马内星形胶质细胞不表达COX-2,但在APP/PS1 dtg小鼠海马内星形胶质细胞表达COX-2,T10处理45天后,海马内COX-2阳性星形胶质细胞总数分别减少28%(T10 H,P<0.01)和12%(T10 L,P>0.05);③Western blot蛋白分析显示,PLC组海马COX-2蛋白水平最高,其次为野生型小鼠,T10 H组海马内COX-2蛋白水平最低。
     2.细胞培养结果:
     (1) LPS刺激培养的A172人星形胶质细胞,可以导致COX-2表达增加,PGE2产生增加,T10呈剂量依赖性降低COX-2的表达和PGE2的产生;
     (2) T10对高表达hCOX-2的sf-9细胞系COX-2酶活性没有影响,提示T10对COX-2的抑制发生在转录水平;
     (3) LPS刺激培养的A172人星形胶质细胞可以引起NF-κB/p50/P65 DNA结合活性明显增高,T10呈剂量依赖性抑制NF-κB结合活性。
     结论
     本实验的结果表明,T10可以抑制APP/PS1 dtg小鼠海马内Aβ的沉积与纤维化形成SP,并且抑制小胶质细胞和星形胶质细胞的活化与增殖以及抑制活化的星形胶质细胞诱导表达COX-2。说明T10具有NSAIDs的部分特性,对该模型小鼠或AD脑内慢性炎症反应具有一定的抑制作用,或可用于AD的预防和治疗。由于T10没有NSAIDs的毒副作用,因而可能在一定程度上优于NSAIDs。
BACKGROUND
     The pathological changes seen in Alzhemier's disease(AD) brains are a series of chronic inflammation processes. The chronic inflammation response is characterized by the presence of abundant activated microglia, and reactive astrocytes proliferation associated with deposition of fibrillarβ-amyloid(Aβ), and increases expression of pro-inflammatory cytokines and complement components. Non-steroidal anti-inflammatory drugs(NSAIDs) may not only reduce the risk of AD, moreover, they may delay AD progression. Animal experimental studies confirmed that NSAIDs may 1. suppress Aβdeposition and plaque formation, 2. Inhibit microglia activation and reactive astrocytes proliferation, and 3. decrease the expression and secretion of pro-inflammatory cytokines such as TNFα、and IL-1βin the AD brain. Therefore, the anti-inflammation effect of NSAIDs in AD seems to have an important value. However, as a result of the NSAIDs treatment there is serious and poisonous side effects, which limits its clinical usage.
     The Triptolide(T10) compound is one of the active components from an extract of Traditional Chinese Medicine Tripterygium wilfordii hook F. It possesses anti-inflammation and immuno-suppression functionality and has been used to treat rheumatism and rheumatism arthritis, systematic lupus erythematosus and other auto-immunity and inflammatory responsive diseases. Previous in vitro research has indicated that T10 anti-inflammation and immunosuppression effects is via it's suppression of the expression and releasing of pro-inflammatory cytokines like IL-1β, TNFα, and as well as suppression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2(COX-2) induction. Current research suggested that T10 has a neurotrophic function and may protect the DOPAminergic neurons in the mesencephalon from lipopolysaccharide (LPS)injury. The suggested T10's neuronal protective mechanism is involved in inhibiting microglia activation and suppresses the inflammatory reaction. There has been found no literature that reports on the effect of T10 on the inflammatory and immune cascade seen in the AD brain. The present research is the first that used T10 to treat APP/PS1 double transgenic mice model of AD(APP/PS1 dtg). This is a preliminary study to assess the effects of T10 on APP/PS1 dtg mice and discusses the possibility and the possible mechanism for T10 to treat or prevent AD.
     OBJECTIVES
     To examine the effects of T10 using the APP/PS1 dtg mouse model of AD on: 1. Aβdeposition and senile plaques formation. 2. Microglia and astrocytes activation and proliferation. 3. COX-2 induction and possible mechanism of T10 inhibits expression of COX-2. METHODS
     1. Research in vivo: 18 Male APP/PS1 dtg mice aged at 4.5 months were used in this study. The mice were divided into 3 groups randomly, High-5μg/kg.d T10(T10 H, n=6), Low-1μg/kg.d T10(T10 L, n=6) and placebo(PLC, n=6). Intraperitoneal administration of T10 and capacity solvents (PLC group) was in a period of a total of 45 days. In addition, five male wild type non-transgenic mice of comparable age and receiving no treatment were used for comparison. After 45 days of treatment, the mice were sacrificed and the brains removed for processing. The brains were separated along the middle sagittal sulcus. The left side was used for the histological study and the right half was used for protein analysis. Histological research: According to unbiased stereological system SUR (Systematic-Uniform-Random) principle, every tenth section was collected for immunohistochemistry. 6E10, GFAP, MAC1, COX-2 Immunohistochemical staining combined with unbiased stereological methods was used to quantitative analyze Aβ、astrocytes、microglia cells and COX-2 as well as changes of Congo red positive senile plaques(SP) in hippocampus. Double immunofluorescence staining to showed the relationship between microglia cells and astrocytes with Aβand COX-2. Western blot protein analysis assessed changes of protein level for Aβand COX-2.
     2. Research in vitro: (1) Cultured human A172 astrocytes cell lines were pretreated with a low, middle and high dose of T10(0.2, 1 and 5μg/L T10) for 1h subsequent to use of 1mg/L LPS processing cells for 3 h and 6 h. Reverse transcription PCR(RT-PCR), and Western blot methods were used to analyze the effects of the different concentrations of T10 on the COX2 expression induced by LPS; electrophoretic mobility shift assay(EMSA) studied the effects of T10 on the NF-κB/DNA binding activity in the cells. (2) Cultured high expresses the human COX-2 protein(hCOX-2) sf-9 cell lines were processed with T10, COX-2 activity inhibitor NS398 and indomethine. Radioimmunoassay method was used to analyses PGE2 level in the media to study the effects of T10 on the COX-2 enzyme activity.
     RESULTS
     1. Results in vivo
     A. Findings indicate(1) T10 may suppress Aβdeposition in the hippocampus, and reduces senile plaques formation. Unbiased stereology quantitative analysis showed that the total area of 6E10 positive Aβplaques in the hippocampus compared with the PLC group's, Aβplaques of T10 H was reduced 35%(P<0.001), and that of T10 L reduced 18%(P<0.05). In addition, the T10 H group compared with the T10 L group showed a reduction of 21%(P<0.05). (2) Western blot protein analysis also displayed that T10 H group Aβprotein levels in the hippocampus was lowest, Aβprotein levels in PLC group was highest, and Aβprotein levels in T10 L group was moderate; (3) T10 also may reduce the number of 6E10 positive neuron in the CA1 region of hippocampus; (4) T10 may suppress Aβaggregation and fibrils, and reduces SP formation. Compared with PLC group's Congo red positive SP, the total area of SP in the hippocampus of T10 H group was reduced 32%(P<0.001), and in the T10 L reduced 27%(P<0.05).
     B. T10 may also inhibit neuroglia cell activation and proliferation: (1) T10 may suppress the microglia cell activation by reducing the cluster area of microglia cell. Compared with the PLC group, the total number of microglia cells in hippocampus of T10 H was reduced 30%(P<0.01), the T10 L was reduced 18%(P<0.05). When comparing T10 H with the T10 L a reduction of 17%(P<0.05) was found. These results indicate that T10 assumes a dosage dependent inhibition of microglia proliferation. (2) T10 may suppress astrocytes activation, reduces GFAP expression as well as the suppression of astrocytes proliferation. Compared with the PLC group, the total number of astrocytes in the hippocampus of T10 H was reduced 20%(P<0.01), the T10 L reduced by 13%(P>0.05).
     Co T10 may suppress COX-2 expression/activation in the hippocampus of APP/PS1 dtg mice model of AD: (1) T10 may suppresses COX-2 expression/activation in hippocampus of APP/PS1 dtg; reduces the total number of COX-2 positive neurons in the CA2-4 region of hippocampus; (2) In the hippocampus of the wild type non-transgenic controls astrocytes was not seen to express COX-2, but astrocytes in the hippocampus of APP/PS1 dtg mice showed COX-2 expression. After 45 days T10 treatment, the total number of COX-2 positive astrocytes in hippocampus was reduced by 28%(T10H, P<0.01) and 12%(T10L, P>0.05) compared to the group PLC respectively; (3) Western blot protein analysis showed that COX-2 protein level was lowest in the hippocampus of wild type non-transgenic control, followed by the T10 H, the T10 L, and highest in the PLC group.
     2. Results in vitro
     A. LPS stimulated the A172 human astrocytes resulting in COX-2 expression enhancement; the level of PGE2 in the media was significant increased, and T10 showed the dosage-dependent manner to reduce COX-2/PGE2 production;
     B. T10 when administered to the high expressing human COX-2 sf-9 cell lines didn't change the COX-2 enzyme activity which suggested that T10 may have an effect on the transcription level for COX-2 expression.
     C. LPS stimulates cultured A172 human astrocytes line resulting in the increased binding of NF-kB/p50/P65; T10 assumes the dosage dependence response to suppress the NF-kB active binding.
     CONCLUSIONS:
     The results in present research indicated that T10 suppresses Aβproduction and deposition and inhibits its aggregation and plaques formation in the hippocampus of APP/PS1 dtg mouse, and inhibits microglia and astrocytes activation and proliferation. And T10 may also suppress activated astrocytes and neurons COX-2 induction. Theses results suggested that T10 possibly possesses some of NSAIDs identities and may suppress the chronic inflammation in the AD brain and/or may be useful in AD prevention and treatment. Because of T10 therapy there is no serious and poisonous side effects of NSAIDs, which may has advantage over the NSAIDs to be used for AD patients.
引文
[1] Rozemuller AJ, van Gool WA, Eikelenboom P. The neuroinflammatory response in plaques and amyloid angiopathy in Alzheimer's disease: therapeutic implications. Curr Drug Targets CNS Neurol Disord, 2005, 4(3): 223-233.
    [2] Borchelt DR, Thinakaran G, Eckman CB, et al. Familial Alzheimer's disease-linked presenilin 1 variants elevate Abetal-42/1-40 ratio in vitro and in vivo. Neuron, 1996, 17(5): 1005-1013.
    [3] Gordon MN, Holcomb LA, Jantzen PT, et al. Time Course of the development of Alzheimer-like pathology in the doubly transgenic PSI+APP mouse. Exp Neurol, 2002, 173(2): 183-195.
    [4] Price DL, Wong PC, Markowska AL, et al. The value of transgenic models for the study of Neurodegenerative disease. Ann New York AcAD Sci, 2000, 920: 179-191
    [5] Akiyama H, Barger S, Barnum S, et al. Inflammation and Alzheimer's disease. Neurobiol Aging, 2000, 21(3): 383~421.
    [6] Sastre M, Klockgether T and Heneka MT. Contribution of inflammatory processes to Alzheimer's disease: molecular mechanisms. Int J Dev Neurosc, 2006, 24(2-3): 167-176.
    [7] 第一作者.App/psl双转基因AD模型小鼠脑内胶质细胞的激活及iNOS的表达.解剖学报,2004,35(5):507-511.
    [8] Matsuoka Y, Picciano M, Malester B, et al. Inflammatory response to amyloidosis in a transgenic mouse model of Alzheimer's disease. Am J Pathol, 2001, 158(4): 1345~1354.
    [9] Gasque P, Dean YD, Mcgreal EP, et al. Complement components of the innate immune system in health and disease in the CNS.Immunopharmacology, 2000, 49(1-2):171-186.
    [10] Rogers J, Lue LF, Yang LB, et al. Complement activation by neurofibrillary tangles in Alzheimer's disease. Neuroscience, 1998, 24:1268(Abstract).
    [11] Casolini P, Catalani A, Zuena AR, et al. Inhibition of COX-2 reduces the age-dependent increase of hippocampal inflammatory markers, corticosterone secretion, and behavioral impairments in the rat. J Neurosci Res, 2002, 68(3):337-343.
    [12] Oka A, Takashima. Induction of Cyclooxygenase 2 in brains of patients with Down's and dementia of Alzheimer type: specific localization in affected neurons and axons. Neuroreport, 1997, 8(5): 1161-1164.
    [13] Pasinetti GM. Cyclooxygenase as a target for the antiamyloidogenic activities of nonsteroidal anti-inflammatory drugs in Alzheimer's disease. Neurosignals, 2002, 11(5): 293-297.
    [14] Mcgeer PL and Mcgeer EG. NSAIDs and Alzheimer disease: Epidemiological, animal model and clinical studie. Neurobiol Aging. 2007, 28(5): 639-647.
    [15] Stewart WF, Kawas C, CorrADa M, et al. Risk of Alzheimer's disease and duration of NSAIDs use. Neurology 1997, 48(6): 626-632.
    [16] Cholerton B, Gleason CE, Baker LD, et al. Estrogen and Alzheimer's disease. Drugs Aging, 2002, 19(6): 405-427
    [17] Bruce-Keller AJ, Keeling JL, Keller JN, et al. Anti-inflammatory effects of estrogen on microglial activation.Endocrinol, 2000, 141(10): 3646-3656
    [18] 第一作者.雌激素对app/ps1双转基因阿尔茨海默病模型小鼠海马老年斑形成的抑制作用.解剖学杂志,2005,28(1):5-7
    [19] Weggen S, Eriksen JL, Das P. A subset of NSAIDs lower amyloidogenic Abeta42 independently of cyclooxygenase activity. Nature, 2001, 414(6860): 212-216.
    [20] Smith JW, Al-Khamees O, Costall B, et al. Chronic aspirin ingestion improves spatial learning in adult and aged rats. Pharmacol Biochem Behav, 2002, 71(1-2): 233-238.
    [21] Vane J. Aspirin and other anti-inflammatory drugs. Thorax, 2000, 55: 35-40.
    [22] 程晓馨,李丰桥,黄敏,等.雷公藤录内酯醇对帕金森大鼠多巴胺神经元的保护作用。药学学报,2002,37:339-342.
    [23] Tao X, Cush JJ, Garret M, et al. A phase Ⅰ study of ethyl acetate extract of the Chinese antirheumatic herb Tripterygium wilfordii hook F in rheumatoid arthritis. J Rheumatol, 2001, 28(10): 2160-2167.
    [24] 刘春芳,林娜.雷公藤甲素抗类风湿性关节炎机制研究进展.中国中药杂志,2006,31(19):1575—1579.
    [25] Wu Y, Wang Y, Zhong C, et al. The suppressive effect of triptolide on experimental autoimmune uveoretinitis by down-regulating Th1-type response. Int. Immunopharmacol, 2003, 3(10-11): 1457-1465.
    [26] Lin N, Liu C, Jia H, et al. Triptolide, a diterpenoid triepoxide, suppresses inflammation and cartilage destruction in collagen-induced arthritis mice. Biochem Pharmacol, 2007, 73(1):136-146.
    [27] Wang J, Xu R, Jin R, et al. Immunosuppressive activity of the Chinese medicinal plant Tripterygium wilfordii. Ⅰ. Prolongation of rat cardiac and renal allograft survival by the PG27 extract and immunosuppressive synergy in combination therapy with cyclosporine. Transplantation, 2000, 70(3): 447-455.
    [28] Chen BJ, Liu C, Cui X, et al. Prevention of graft-versus-host disease by a novel immunosuppressant, PG490-88, through inhibition of alloreactive T cell expansion. Transplantation, 2000, 70(10): 1442-1447.
    [29] Liacini A., Sylvester J, Zafarullah M. Triptolide suppresses proinflammatory cytokine-induced matrix metalloproteinase and aggrecanase-1 gene expression in chondrocytes. Biochem. Biophys. Res. Commun, 2005, 327(1): 320-327.
    [30] Sylvester J, Liacini A, Li WQ, et al. Tripterygium wilfordii Hook F Extract suppresses proinflammatory cytokine-Induced expression of matrix metalloproteinase genes in articular chondrocytes by inhibiting activating protein-1 and nuclear factor-kB activities. Mol Pharmacol, 2001, 59(5): 1196-1205.
    [31] Zhou HF, Niu DB, Xue B, et al. Triptolide inhibits TNF-alpha, IL- 1 beta and NO production in primary microglial cultures. Neuroreport, 2003, 14(7): 1091-1095.
    [32] Liu Q, Chen T, Shu X, et al. Triptolide impairs dendritic cell migration by inhibiting CCR7 and COX-2 expression through PI3-K/Akt and NF-kappaB pathways. Mol Immunol, 2007, 44(10): 2686-2696.
    [33] Yao H, Zhou J, Li D, et al. FK506 enhances triptolide-induced down-regulation of cyclooxygenase-2, inducible nitric oxide synthase as well as their products PGE2 and NO in TNF-alpha-stimulated synovial fibroblasts from rheumatoid arthritic patients. Eur. J. Med. Res, 2005, 10(3): 110-116.
    [34] Li FQ, Cheng XX, Liang XB, et al. Neurotrophic and neuroprotective effects of tripchlorolide, an extract of Chinese herb Tripterygium wilfordii Hook F, on dopaminergic neurons. Exp Neurol. 2003,179(1): 28-37.
    [35] Li FQ, Lu XZ, Liang XB, et al. Triptolide, a Chinese herbal extract, protects dopaminergic neurons from inflammation-mediated damage through inhibition of microglial activation. J Neuroimmunol, 2004,148(1-2): 24-31.
    [36] Zhou HF, Liu XY, Niu DB, et al. Triptolide protects dopaminergic neurons from inflammation-mediated damage induced by lipopolysaccharide intranigral injection. Neurobiol. Dis, 2005,18(3): 441-449.
    [37] Mouton PR. Principal and practices of unbiased stereology: an introduction for bioscientists. Johns Hopkins University Press: Baltimore. 2002, P 29-87.
    
    [38] 第一作者. Effects of estrogen and raloxifene on neuroglia number and morphology in the hippocampus of aged female mice. Neuroscience. 2003, 121(3): 659-666.
    
    [39] Neve RL. A new wrestler in the battle between alpha- and beta-secretases for cleavage of APR Trends Neurosc, 2003,26(9): 461-463.
    
    [40] Selkoe DJ. The genetics and molecular pathology of Alzheimer's disease: roles of amyloid and the presenilins. Neuol Clin, 2000,18(4): 903-922.
    
    [41] McGeer PL, Schulzer M, McGeer EG. Inflammation, anti-inflammatory agents and Alzheimer disease: the last 12 years. J Alzheimers Dis, 2006, 9(3 Suppl): 271-276.
    
    [42] in't Veld BA, Ruitenberg A, Hofman A, et al. Nonsteroidal antiinflammatory drugs and the risk of Alzheimer's disease. New Engl J Med, 2001,345 (21): 1515-1521.
    
    [43] Lim GP, Yang F, Chu T, et al. Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer's disease. J Neurosci, 2000,20(15): 5709-5714.
    [44] Yan Q, Zhang J, Liu H, et al., Anti-inflammatory drug therapy alters beta-amyloid processing and deposition in an animal model of Alzheimer's disease. J Neurosci, 2003, 23(20): 7504-7509.
    [45] Heneka MT, Sastre M, Dumitrescu-Ozimek L, et al., Acute treatment with the PPARgamma agonist pioglitazone and ibuprofen reduces glial inflammation and Abetal-42 levels in APPV717I transgenic mice. Brain, 2005, 128(Part 6): 1442-1453.
    [46] 谭德福,余立萍.雷公藤免疫抑制作用的研究进展.湖北中医学院学报,2000,24(3):223-224.
    [47] Qiu S and Kao PN. Anti-inflammatory mechanisms of triptolide, the principal active diterpenoid from the Chinese medicinal herb Tripterygium wilfordii Hook. f. Drugs R D, 2003, 4(1): 1-18.
    [48] 黎钢,马嵘,徐颖,等.雷公藤内酯醇对脂多糖诱导黑质多巴胺能神经元变性的保护作用.中国中西医结合杂志,2006,26(8):715-718.
    [49] 顾明,周慧芳,薛冰,等.雷公藤单体T10对Aβ1—42所致PC12细胞凋亡的抑制作用.生理学报,2004,56(1):73-78.
    [50] 吕诚,胡小令,石嘉庆,等.雷公藤多甙对大鼠海马内注射Aβ所致学习记忆障碍的改善作用.中国行为医学科学,2005,14(1):39-41.
    [51] Lim GP, Chu T, Yang F, et al. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosc, 2001, 21(21): 8370-8377.
    [52] Yan JJ,Cho JY, Kim HS.Protection against β amyloid peptide toxicity in vivo with long-term administration of ferulic acid. Br J Pharmacol, 2001; 133(1): 89-96.
    [53] Jantzen PT, Connor KE, DiCarlo G, et al. Microglial activation and beta-amyloid deposit reduction caused by a nitric oxide-releasing nonsteroidal anti-inflammatory drug in amyloid precursor protein plus presenilin-1 transgenic mice. J Neurosci, 2002, 22(6): 2246-2254.
    [54] 通讯作者.雷公藤甲素对LPS诱导的神经炎症中星形胶质细胞和小胶质细胞激活的抑制作用.神经解剖学杂志,2006,22(6):648-652.
    [55] 吕诚,胡小令,张宪郁,等.雷公藤多甙对大鼠海马内注射β—淀粉样蛋白 后小胶质细胞反应的影响.解剖学杂志,2005,28(2):225-226.
    [56] Nakamura K, Ohya W, Funakoshi H, et al. Possible role of scavenger receptor SRCL in the clearance of amyloid-beta in Alzheimer's disease. J Neurosci Res, 2006, 84(4):874-890.
    [57] Yan SD, Chen X, Fu J, et al. RAGE and amyloid-beta peptide neurotoxicity in Alzheimer's disease. Nature, 1996, 382(6593): 685-691.
    [58] Lue LF, Shen Y, Yang LB, Rydel RE, Hampel H, Rogers J. Constitutive and amyloid β peptide-stimulated secretion of inflammatory mediators by Alzheimer's disease and control microglia. In: Rogers J, editor. Neuroinflammation and Alzheimer's disease. Basel: Birkhauser Press, 2001, 3-52.
    [59] Koenigsknecht J Talboo J, Landreth GE. Microglial phagocytosis of fibrillar beta-amyloid through a betal integrin-dependent mechanism. J Neurosci, 2004, 24(44): 9838-9846.
    [60] Osaka H, Mukherjee P, Aisen PS, et al. Complement-derived anaphylatoxin C5a protects against glutamate- mediated neurotoxicity. J Cell Biochem, 1999, 73(3): 303-311.
    [61] Guillemin GJ, Williams KR, Smith DG, et al. Quinolinic acid in the pathogenesis of Alzheimer's disease. Adv Exp Med Biol, 2003, 527:167-176.
    [62] Oliver JD, Van der Wal FJ, Bulleid NJ, et al. Interaction of the thiol-dependent reductase ERp57 with nascent glycoproteins. Science, 1997, 275(5296): 86-88.
    [63] Koenigsknecht J, Landreth G. Microglial phagocytosis of fibrillar beta-amyloid through a betal integrin-dependent mechanism. J Neurosci. 2004, 24(44): 9838-9846.
    [64] Logan MR, Odemuyiwa SO, Moqbel R. Understanding exocytosis in immune and inflammatory cells: the molecular basis of mediator secretion. J Allergy Clin Immunol. 2003, 111(5): 923-932.
    [65] Colton CA, Chernyshev ON, Gilbert DL. Microglial contribution to oxidative stress in Alzheimer's disease.Ann N Y Acad Sci, 2000; 899:292-307.
    [66] Inoue K. Microglial activation by purines and pyrimidines. Glia, 2002, 40(2): 156-163.
    [67] 胡小令,吕诚,温尉,等.雷公藤多甙对大鼠海马内注射β—淀粉样蛋白后星形胶质细胞反应的影响.解剖学杂志,2004,27(6):302-305.
    [68] Wegiel J, Wang KC, Imaki H, et al. The role of microglial cells and astrocytes in fibrillar plaque evolution in transgenic APP (SW) mice. Neurobiology Aging, 2001, 22(1): 49-61.
    [69] Apelt J, Schliebs R. Beta-amyloid-induced glial expression of both pro- and anti-inflammatory cytokines in cerebral cortex of aged transgenic Tg2576 mice with Alzheimer plaque pathology. Brain Res, 2001, 894(1): 21-30.
    [70] Igbavboa U, Johnson-Anuna LN, Rossello X, et al. Amyloid beta-protein1-42 increases cAMP and apolipoprotein E levels which are inhibited by beta1 and beta2-adrenergic receptor antagonists in mouse primary astrocytes. Neuroscience. 2006, 142(3): 655-660.
    [71] Holtzman DM, Bales KR, Tenkova T, et al. Apolipoprotein E isoform-dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer's disease. Proc Natl Acad Sci U S A, 2000, 97(6): 2892-2897.
    [72] Hirst WD, Young KA, Newton R, et al. Expression of COX-2 by normal and reactive astrocytes in the adult rat central nervous system. Mol Cell Neurosci, 1999, 13:57-68.
    [73] Maslinska D, Wozniak R, Kalissek A, et al. Expression of cyclooxygenase-2 in astrocytes of human brain after global ischemia. Folia Neuropathol, 1999,37(2): 75-79.
    [74] Sang N, Zhang J, Marcheselli V. Postsynaptically synthesized prostaglandin E2 (PGE2) modulates hippocampal synaptic transmission via a presynaptic PGE2 EP2 receptor. J Neurosci. 2005, 25(43): 9858-9870.
    [75] Wu Chen R, Zhang Y, Rose ME, et al. Cyclooxygenase-2 activity contributes to neuronal expression of cyclin D 1 after anoxia/ischemia in vitro and in vivo. Brain Res Mol Brain Res. 2004, 132(1): 31-37.
    [76] Wang T, Qin L, Liu B, et al. Role of reactive oxygen species in LPS-induced production ofprostaglandin E2 in microglia. J Neurochem. 2004, 88(4): 939-947.
    [77] Hoozemans J J, Veerhuis R, Janssen D, et al The role of cyclo-oxygenase 1 and 2 activity in prostaglandin E (2) secretion by cultured human adult microglia: implications for Alzheimer's disease. Brain Res., 2002,951(2): 218-26.
    [78] Kim SJ, Jeong HJ, Kim BK, et al. Anti-inflammatory effect of jeongshintang through suppression of p38 activation in human astrocytoma, U373MG cells. Exp Mol Pathol, 2006, 81(1): 85-91.
    [79] Xu J, Chalimoniuk M, Shu Y, et al. Prostaglandin E2 production in astrocytes: regulation by cytokines, extracellular ATP, and oxidative agents. Prostaglandins Leukot Essent Fatty Acids, 2003, 69(6): 437-448.
    [80] Takemiya T, Maehara M, Matsumura K, et al. Prostaglandin E2 produced by late induced COX-2 stimulates hippocampal neuron loss after seizure in the CA3 region. Neurosci Res, 2006, 56(1): 103-110.
    [81] Yermakova AV, O'Banion MK. Downregulation of neuronal cyclooxygenase -2 expression in end stage Alzheimer's disease. Neurobiol. Aging, 2001,22,22(6): 823-836.
    [82] Lukiw WJ, Bazan NG. Strong nuclear factor-kappaB-DNA binding parallels cyclooxygenase-2 gene transcription in aging and in sporadic Alzheimer's disease superior temporal lobe neocortex. J Neurosci Res, 1998, 53(5): 583-592
    [83] Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem, 1987, 162(1): 156-159.
    [84] Zhang WY, Yang XN, Jin DZ, et al. Expression and enzyme activity determination of human cyclooxygenase-1 and -2 in a baculovirus-insect cell system. Acta. Pharmacol. Sin, 2004,25(8): 1000-1006.
    [85] Liu HQ, Zhu XZ, Weng EQ. Intracellular dopamine oxidation mediates rotenone-induced apoptosis in PC12 cells. Acta. Pharmacol. Sin, 2005, 26(1): 17-26.
    [86] Ahn KY, Kim BH, Lee YR, et al. Dual inhibitory effects of furonaphthoquinone compound on enzyme activity and lipopolysaccharide-induced expression of cyclooxygenase-2 in macrophages. Biochem. Biophys. Res. Commun, 2005, 336(1): 93-99.
    [87] Liu Q, Chen T, Chen H, et al. Triptolide (PG-490) induces apoptosis of dendritic cells through sequential p38 MAP kinase phosphorylation and caspase 3 activation. Biochem. Biophys. Res. Commun, 2004,319(3): 980-986.
    [88] Yasojima K, Schwab C, McGeer EG, et al. Distribution of cyclooxygenase-1 and cyclooxygenase-2 mRNAs and proteins in human brain and peripheral organs. Brain Res, 1999, 830(2): 226-36.
    [89] Sung S, Yang H, Uryu K, et al. Modulation of nuclear factor-kappa B activity by indomethacin influences A beta levels but not A beta precursor protein metabolism in a model of Alzheimer's disease. Am J Pathol. 2004, 165(6): 2197-2206.
    [90] Tocco G, Freire-Moar J, Schreiber SS, et al. Maturational regulation and regional induction of cyclooxygenase-2 in rat brain: implications for Alzheimer's disease. Exp Neural, 1997,144(2): 339-349.
    [91] Adams J, Collaco-Moraes Y, de Belleroche J. Cyclooxygenase-2 induction in cerebral cortex: an intracellular response to synaptic excitation. J Neurochem, 1996, 66(1): 6-13.
    [92] Pasinetti GM, Aisen PS. Cyclooxygenase-2 expression is increased in frontal cortex of Alzheimer's disease brain. Neuroscience, 1998, 87(2): 319-324.
    [93] Ho L, Pieroni C, Winger D, et al. Regional distribution of cyclooxygenase-2 in the hippocampal formation in Alzheimer's disease. J Neurosci Res, 1999, 57(3): 295-303.
    [94] Minghetti L. Cyclooxygenase-2 (COX-2) in inflammatory and degenerative brain diseases. J Neuropathol Exp Neurol, 2004,63(9): 901-910.
    [95] Kelley KA, Ho L, Maruyama T, et al. Potentiation of excitotoxicity in transgenic mice overexpressing neuronal cyclooxygenase-2. Am J Pathol, 1999, 155(3): 995-1004.
    [96] Andreasson KI, Savonenko A, Vidensky S, et al. Age-dependent cognitive deficits and neuronal apoptosis in cyclooxygehase-2 transgenic mice. J Neurosc, 2001,21(20): 8198-8209.
    
    [97] Hoozemans JJM, Veerhuis R, Annemieke JM, et al. Non-steroidal anti- inflammatory drugs and cyclooxygenase in Alzheimer's disease. Curr Drug Targets. 2003, 4(6): 461-468.
    [98] Tao X, Schulze-Koops H, Ma L, et al. Effects of Tripterygium wilfordii hook F extracts on induction of cyclooxygenase 2 activity and prostaglandin E2 production. Arthritis Res, 1998, 41(1): 130-138.
    [99] Schmitz C, Rutten BP, Pielen A, et al. Hippocampal Neuron Loss Exceeds Amyloid Plaque Load in a Transgenic Mouse Model of Alzheimer's Disease. Am J Pathol, 2004, 164(4): 1495-1502.
    [100] 通讯作者 雷公藤甲素对海仁藻酸所致的海马神经元的保护和行为改变的影响.(待发表)
    [101] Molina-Holgado E, Ortiz S, Molina-Holgado E, et al. Induction of COX-2 and PGE(2) biosynthesis by IL-1beta is mediated by PKC and mitogen-activated protein kinases in murine astrocytes. Br J Pharmacol, 2000, 131(1): 152-159.
    [102] Hoozemans JJ, O'Banion MK. The role of COX-1 and COX-2 in Alzheimer's disease pathology and the therapeutic potentials of non-steroidal antiinflammatory drugs. Curr Drag Targets CNS Neurol Disord, 2005,4(3): 307-15.
    [103] Chen Y, Zhang J, Lio J, et al. Triptolide inhibits B7-H1 expression on proinflammatory factor activated renal tubular epithelial cells by decreasing NF-kappaB transcription. Mol Immunol, 2006, 4 3(8): 1088-1098.
    [104] Liu H, Liu ZH, Chen ZH, et al. Triptolide: a potent inhibitor of NF-kappa B in T-lymphocytes. Acta Pharmacol Sin, 2000, 21(9): 782-786.
    [105] Zhang W, Potrovita I, Tarabin V, et al. Neuronal activation of NF-kappaB contributes to cell death in cerebral ischemia. J Cereb Blood Flow Mateb, 2005, 25(1): 30-40.
    [106] Yamamoto Y, Gaynor RB. Therapeutic potential of inhibition of the NF-kappaB pathway in the treatment of inflammation and cancer. J Clin Invest, 2001, 107(2): 135-142.
    [107] 通讯作者。Triptolide inhibits COX-2 expression via NF-kappa B pathway in astrocytes. Neuroscience Research, 2006, 55(2): 154-160.
    [1] Hebert LE, Scherr PA, Bienias JL, Bennett DA, Evans DA. Alzheimer disease in the US population: prevalence estimates using the 2000Census. Arch Neurol. 2003,60(8): 1119-1122.
    [2] Selkoe DJ. Defining molecular targets to prevent Alzheimer disease. Arch Neurol, 2005, 62(2): 192-195.
    [3] Hoenicka J. Genes in Alzheimer's disease. Rev Neurol, 2006,42(5): 302-305
    [4] Selkoe DJ. Folding proteins in fatal ways. Nature, 2003, 426(6968): 900-904.
    [5] Walsh DM and Selkoe DJ. Deciphering the molecular basis of memory failure in Alzheimer's disease. Neuron, 2004, 44(1): 181-193.
    [6] McGeer PL and. McGeer EG. Inflammation, autotoxicity and Alzheimer disease. Neurobiol Aging, 2001, 22(6): 799-809.
    [7] Sastre M, Klockgether T and Heneka MT. Contribution of inflammatory processes to Alzheimer's disease: molecular mechanisms. Int J Dev Neurosc, 2006,24(2-3): 167-176.
    [8] Nakamura K, Ohya W, Funakoshi H, et al. Possible role of scavenger receptor SRCL in the clearance of amyloid-beta in Alzheimer's disease. J Neurosci Res, 2006, 84(4): 874-890.
    [9] Yan SD, Roher A, Schmidt AM, et al. Cellular cofactors for amyloid β-peptide- induced cell stress. Moving from cell cultures to in vivo. Am. J. Pathol, 1999, 155(5): 1403-1411.
    [10]Shen Y and Men S. Ying and yang: complement activation and regulation in Alzheimer's disease. Prog. Neurobiol, 2003, 70(6): 463-472.
    [11]Mahley RW, Huang Y. Apolipoprotein (apo) E4 and Alzheimer's disease: unique conformational and biophysical properties of apoE4 can modulate neuropathology. Acta Neurol Scand Suppl. 2006; 185(1): 8-14.
    [12]Papassotiropoulos A, Bagli M, Jessen F, Bayer TA, Mayer W, Rao ML, Heun R. A genetic variation of the inflammatory cytokine interleukin-6 delays the initial onset and reduces the risk of sporadic Alzheimer's disease. Ann Neurol, 1999,45: 666-668
    [13]in't Veld BA, Ruitenberg A, Hofman A, et al. Nonsteroidal antiinflammatory drugs and the risk of Alzheimer's disease. New Engl J Med, 2001,345 (21): 1515-1521.
    [14] Tan J, Town T and Paris D. Microglial activation resulting from CD40-CD40L interaction after β-amyloid. Science, 1999,286(5448): 2352-2355.
    [15]Fetler L and Amigorena S. Neuroscience. Brain under surveillance: the microglia patrol. Science, 2005,309(5733): 392-393.
    [16] Liu B and Hong JS. Role of Microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. JPET, 2003,304(1): 1-7.
    [17]Boucsein C, Kettenmann H, Nolte C. Electrophysiological properties of microglial cells in normal and pathologic rat brain slices. Eur J Neurosci, 2000, 12(6): 2049-2058.
    [18] Ladeby R, Wirenfeldt M, Garcia-Ovejero D. Microglial cell population dynamics in the injured adult central nervous system. Brain Res Brain Res Rev, 2005, 48(2): 196-206.
    [19] Weisman D, Hakimian E, Ho GJ. Interleukins, inflammation, and mechanisms of Alzheimer's disease. Vitam Horm, 2006, 74(3): 505-530.
    [20] Mrak RE, Griffin WS. Potential inflammatory biomarkers in Alzheimer's disease. J Alzheimers Dis, 2005, 8(4): 369-75.
    [21] Griffin WS. Inflammation and neurodegenerative diseases. Am J Clin Nutr, 2006, 83(2): 470S-474S.
    [22] Griffin WS, Sheng JG, Roberts GW and Mrak RE. IL-1 expression in different plaque types in Alzheimer's disease: significance in plaque evolution. J Neuropathol Exp Neurol, 1995, 54(2): 276-281.
    [23] Xia MQ, Qin SX, Wu LJ, et al. Immunohistochemical study of the beta-chemokine receptors CCR3 and CCR5 and their ligands in normal and Alzheimer's disease brains. Am J Pathol, 1998, 153(1): 31-37.
    [24] D'Andrea MR, Cole GM and Ard MD. The microglial phagocytic role with specific plaque types in the Alzheimer disease brain. Neurobiol. Aging, 2004, 25 (5): 675-683.
    [25] DeGiorgio LA, Shimizu Y, Chun HS, et al. Amyloid precursor protein gene disruption attenuates degeneration of substantia nigra compacta neurons following axotomy. Brain Res, 2002, 938 (1-2): 38-44.
    [26] Heneka MT, O'banion MK. Inflammatory processes in Alzheimer's disease. J Neuroimmunol, 2007, 184(1-2): 69-91.
    [27] Wilcock DM, Munireddy SK, Rosenthal A, et al. Microglial activation facilitates Abeta plaque removal following intmcranial anti-Abeta antibody administration. Neurobiol Dis, 2004, 15(1): 11-20.
    [28] XXX App/ps1双转基因AD模型小鼠脑内胶质细胞的激活及iNOS的表达. 解剖学报 2004; 5:35(5): 497-501.
    [29] Davis JB, McMurray HF and Schubert D. The amyloid beta-protein of Alzheimer's disease is chemotactic for mononuclear phagocytes. Biochem Biophys Res Commun, 1992,189 (2): 1096-1100.
    [30] Rogers J and Lue LF. Microglial chemotaxis, activation, and phagocytosis of amyloid P-peptide as linked phenomena in Alzheimer's disease. Neurochemistry International, 2001,39 (5-6): 333-340.
    [31]Ito S, Sawada M, Haneda M, et al. Amyloid-beta peptides induce several chemokine mRNA expressions in the primary microglia and Ra2 cell line via the PI3K/Akt and/or ERK pathway. Neurosci Res. 2006, 56(3): 294-299.
    [32]Weldon DT, Rogers SD, Ghilardi JR, et al. Fibrillar beta-amyloid induces microglial phagocytosis, expression of inducible nitric oxide synthase, and loss of a select population of neurons in the rat CNS in vivo. J Neurosc, 1998,18 (6): 2161-2173.
    [33] Thomas DM, Kuhn DM. MK-801 and dextromethorphan block microglial activation and protect against methamphetamine-induced neurotoxicity. Brain Res, 2005,1050(1-2): 190-198.
    [34]Mattson MP and Barger SW. Roles for calcium signaling in structural plasticity and pathology in the hippocampal system. Hippocampus, 1993, 3 (1): 73-87.
    [35]Wojtera M, Sikorska B, Sobow T, et al. Microglial cells in neurodegenerative disorders. Folia Neuropathol, 2005,43(4): 311-321.
    [36]Rostasy KM. Inflammation and neuroaxonal injury in multiple sclerosis and AIDS dementia complex: implications for neuroprotective treatment. Neuropediatrics, 2005, 36(4): 230-239.
    [37] Streit WJ. Microglia and Alzheimer's Disease Pathogenesis. J Neurosci Res. 2004; 77(1): 1-8.
    [38] Lue LF, Rydel R, Brigham EF, et al. Inflammatory repertoire of Alzheimer's disease and nondemented elderly microglia in vitro. Glia , 2001; 35(1): 72-79.
    [39] Kopek KK and Carroll RT. Alzheimer's beta-amyloid peptide 1-42 induces a phagocytic response in murine microglia. J. Neuroch, 1998,71 (5): 2123-2131.
    [40] Koenigsknecht J, Landreth G. Microglial phagocytosis of fibrillar beta-amyloid through a beta1 integrin-dependent mechanism. J Neurosci, 2004, 24(44): 9838-9846.
    [41] Ggochikyan A, Petrushina I, Lees A, et al. Abeta-immunotherapy for Alzheimer's disease using mannan-amyloid-Beta peptide immunoconjugates. DNA Cell Biol, 2006,25(10): 571-580.
    [42]Bradt BM, Kolb WP and Cooper NR. Complement-dependent proinflammatory properties of the Alzheimer's disease beta-peptide. J Exp Med, 1998,188 (3): 431-138.
    [43] Adams DO, Hamilton, TA. Molecular basis of macrophage activation. The Macrophage. Oxford: IRL, 1992.
    [44]Koo BS, Kwon TS, Kim CH. Salviae miltiorrhizae radix inhibits superoxide generation by activated rat microglias and mimics the action of amphetamine on in vitro rat striatal dopamine release. Neurochem Res, 2004,29(10): 1837-1845.
    [45]Jekabsone A, Mander PK, Tickler A, et al. Fibrillar beta-amyloid peptide Abeta1-40 activates microglial proliferation via stimulating TNF-alpha release and H2O2 derived from NADPH oxidase: a cell culture study. J Neuroinflammation. 2006,3(24): 1-13.
    [46]Vilhardt F. Microglia: phagocyte and glia cell. Int J. Biochem Cell Biol. 2005; 37(1): 17-21
    [47]Oide T, Kinoshita T, Arima K. Regression stage senile plaques in the natural course of Alzheimer's disease. Neuropathol Appl Neurobiol, 2006, 32(5): 539-556.
    [48]Tuppo EE, Arias HR. The role of inflammation in Alzheimer's disease. Int J Biochem Cell Biol, 2005, 37(2): 289-305.
    [49] Kurt MA, Davies DC and Kidd M. β-amyloid immunoreactivity in astrocytes in Alzheimer's disease brain biopsies: an electron microscope study. Exp Neurol, 1999,158 (1): 221-228.
    [50]Wyss-Coray T, Loike JD, Brionne TC, et al. Adult mouse astrocytes degrade amyloid-β in vitro and in situ. Nature Med, 2003, 9 (4): 453-457.
    [51] Rossner S, Lange-Dohna C, Zeitschel U et al. Alzheimer's disease β-secretase BACE1 is not a neuron-specific enzyme. J. Neuroche, 2005, 92 (2): 226-324.
    [52] Nagele RG, D'Andrea MR, Lee H, et al. Astrocytes accumulate Aβ42 and give rise to astrocytic amyloid plaques in Alzheimer disease brains. Brain Res, 2003, 971(2): 197-209.
    [53] Wegiel J, Wang KC, Tarnawski M, et al. Microglial cells are the driving force in fibrillar plaque formation, whereas astrocytes are a leading factor in plaque degradation. Acta Neuropathol, 2000, 100 (4): 356-364.
    [54] Smits HA, Rijsmus A, Van Loon JH, et al. Amyloid-beta-induced chemokine production in primary human macrophages and astrocytes. J Neuroimmunol, 2002, 127(1-2): 160-168.
    [55] Sheng JG, Mrak RE and Griffin WS. Glial-neuronal interactions in Alzheimer disease: progressive association of IL-lalpha + microglia and S100beta + astrocytes with neurofibrillary tangles stages. J Neuropathol Exp Neurol, 1997, 56 (3): 285-290.
    [56] Oka A and Takashima S. Induction of cyclo-oxygenase 2 in brains of patients with Down's syndrome and dementia of Alzheimer type: specific localization in affected neurones and axons. Neuroreport, 1997, 8(5): 1161-1164.
    [57] Friedman WJ. Cytokines regulate expression of the Type 1 interleuken-1 receptor in rat hippocampal neurons and glia. Exp Neurol, 2001,168(1): 23-31.
    [58] Li R, Shen Y, Yang BL, et al. Estrogen enhances uptake of amyloid beta-protein by microglia derived from the human cortex. J Neuroch, 2000, 75 (4): 1447-1454.
    [59] Renauld AE and Spengler RN. Tumor necrosis factor expressed, by primary hippocampal neurons SH-SY5Y cells is regulated by alpha (2)-adrenergic receptor activation. J Neurosc Res, 2002, 67(2): 264-274.
    [60] Chen S, Frederickson RC and Brunden KR. Neuroglial-mediated immunoin-flammatory responses in Alzheimer's disease: complement activation and therapeutic approaches. Neurobiol Aging, 1996, 17 (5): 781-787
    [61] Loeffler DA. Using animal models to determine the significance of complement activation in Alzheimer's disease. J Neuroinflammation, 2004,1(1): 18-30.
    [62]Bradt BM, Kolb WP and Cooper NR. Complement-dependent proinflammatory properties of the Alzheimer's disease beta-peptide. J Exp Med, 1998,188 (3): 431-438.
    [63]Moore AH and O'Banion MK. Neuroinflammation and anti-inflammatory therapy for Alzheimer's disease. Advanced Drug Delivery Reviews, 2002, 54(12): 1627-1656.
    [64] McGeer EG, Klegeris A, McGeer PL. Inflammation, the complement system and the diseases of aging. Neurobiol Aging, 2005,26 (Suppl 1): 94-97.
    [65]Rozemuller AJ, van Gool WA, Eikelenboom P. The neuroinflammatory response in plaques and amyloid angiopathy in Alzheimer's disease: therapeutic implications. Curr Drug Targets CNS Neurol Disord, 2005,4(3): 223-233.
    [66] Shen Y, Li R, McGeer EG, et al. Neuronal expression of mRNAs for complement proteins of the classical pathway in Alzheimer brain. Brain Res, 1997, 769 (2): 391-395.
    [67]Mrak RE and Griffin WST. Interleukin-1, neuroinflammation, and Alzheimer's disease. Neurobiol Aging, 2001,22 (6): 903-908.
    [68] Koppal Lam AG, GUO L, et al. S100B proteins that lack one or both cysteine residues can induce inflammatory responses in astrocytes .and microglia. Neurochem Int. 2001,39(5-6): 401-407.
    [69] Das S, Potter H. Expression of the Alzheimer amyloid-promoting factor antichymotrypsin is induced in human astrocytes by IL-1. Neuron, 1995, 14(2): 447-56.
    [70] Heneka MT, Sastre M, Dumitrescu-Ozimek L. Focal glial activation coincides with increased BACE1 activation and precedes amyloid plaque deposition in APP [V717I] transgenic mice. J Neuroinflammation. 2005,2(1): 22-30.
    [71]Fabrizi C, Businaro R, Lauro GM, et al. Role of alpha2-macroglobulin in regulating amyloid beta-protein neurotoxicity: protective or detrimental factor? J Neurochem. 2001,78(2): 406-412.
    [72]Chodorowska G, Czelej D, Rogus-Skorupska D. Interleukin-6 and some acute phase proteins plasma activity in drug-induced maculopapular eruptions. Ann Univ Mariae Curie Sklodowska, 2004; 59(1): 180-184.
    [73]Orellana DI, Quintanilla RA, Maccioni RB. Neuroprotective effect of TNFalpha against the beta-amyloid neurotoxicity mediated by CDK5 kinase. Biochim Biophys Acta. 2007,1773(2): 254-263.
    [74]Leonoudakis D, Braithwaite SP, Beattie MS, et al. TNFalpha-induced AMPA-receptor trafficking in CNS neurons; relevance to excitotoxicity? Neuron Glia Biol, 2004,1(3): 263-273.
    [75]Blasko I, Marks F, Steiner E, et al. TNF alpha plus IFN gamma induce the production of Alzheimer beta-amyloid peptides, and decrease the secretion of APPs. FASEB J, 1999,13 (8): 63-68.
    [76]Ke J, Long X, Liu Y, et al. Role of NF-{kappa}B in TNF-{alpha}-induced COX-2 Expression in Synovial Fibroblasts from Human TMJ. J Dent Res, 2007,86(4): 363-367.
    [77]Minghetti L, Polazzi E, Nicolini A et al. Opposite regulation of prostaglandin E2 synthesis by transforming growth factor-beta1 and interleukin 10 in activated microglial cultures. J Neuroimmunol, 1998, 82 (1): 31-39.
    [78]Luo J, Lang JA and Miller MW. Transforming growth factor beta1 regulates the expression of cyclooxygenase in cultured cortical astrocytes and neurons. J Neurochem, 1998,71 (2): 526-534.
    [79] Flanders KC, Ren RF and Lippa CF. Transforming growth factor-betas in neurodegenerative disease. Prog Neurobiol, 1998, 54 (1): 71-85.
    [80]Lim GP, Yang F, Chu T, et al. Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer's disease. J Neurosci, 2000, 20 (15): 5709-5714.
    [81]Zandi PP and Breitner JCS. Do NSAIDs prevent Alzheimer's disease? And, if so, why? The epidemiological evidence. Neurobiol Aging, 2001,22 (6): 811-817o
    [82] Stewart WF, Kawas C, Corrada M et al. Risk of Alzheimer's disease and duration of NSAID use. Neurol, 1997,48 (3): 626-632.
    [83] Rich JB, Rasmusson DX, Folstein MF, et al. Nonsteroidal anti-inflammatory drags in Alzheimer's disease. 1995,Neurol, 45 (1): 51-55.
    [84] Stuchbury G, Munch G. Alzheimer's associated inflammation, potential drag targets and future therapies. J Neural Transm, 2005,112(3): 429-453.
    [85] Mackenzie IR and Munoz DG. Nonsteroidal anti-inflammatory drag use and Alzheimer-type pathology in aging. Neurol, 1998, 50 (4): 986-990.
    [86]Netland EE, Newton JL, Majocha RE et al. Indomethacin reverses the microglial response to amyloid P-protein. Neurobiol Aging, 1998,19 (3): 201-204.
    [87]McGowan E, Eriksen J and 1 Hutton M. A decade of modeling Alzheimer's disease in transgenic mice. Trends Genet, 2006,22(5): 281-289.
    [88] Yan Q, Zhang J, Liu H, et al. Anti-inflammatory drag therapy alters beta-amyloid processing and deposition in an animal model of Alzheimer's disease. J Neurosci, 2003,23(20): 7504-7509.
    [89] Jantzen PT, Connor KE, DiCarlo G, et al. Microglial activation and beta-amyloid deposit reduction caused by a nitric oxide-releasing nonsteroidal anti-inflammatory drag in amyloid precursor protein plus presenilin-1 transgenic mice. J Neurosci, 2002,22(6): 2246-2254.
    [90]Heneka MT, Sastre M, Dumitrescu-Ozimek L, et al. Acute treatment with the PPARgamma agonist pioglitazone and ibuprofen reduces glial inflammation and Abeta1-42 levels in APPV717I transgenic mice. Brain, 2005, 128(Pt 6): 1442-1453.
    [91]Dinchuk JE, Car BD, Focht RJ,et al. Renal abnormalities and an altered inflammatory response in mice lacking cyclooxygenase II. Nature, 1995, 378 (6555): 406-409.
    [92] Baldwin AS. The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu. Rev. Immunol, 1996,14:649-683.
    [93]Yoshiyama Y,. Arai K, Hattori T. Enhanced expression of I-kappaB with neurofibrillary pathology in Alzheimer's disease. NeuroReport, 2001,12(12): 2641-2645.
    [94] Sung S, Yang H., Uryu K, et al. Modulation of nuclear factor-kappa B activity by indomethacin influences A beta levels but not A beta precursor protein metabolism in a model of Alzheimer's disease. Am J Pathol, 2004,165(6): 2197-2206.
    [95]Scali C, Giovannini MG, Prosperi C,et al. The selective cyclooxygenase-2 inhibitor rofecoxib suppresses brain inflammation and protects cholinergic neurons from excitotoxic degeneration in vivo. Neuroscience, 2003, 117(4): 909-919.
    [96]Weggen S, Eriksen JL, Das P, et al. A subset of NSAIDs lower amyloidogenic Aβ42 independently of cyclooxygenase activity. Nature 2001, 414(6860): 212-216.
    [97]Zhou Y, Su Y, Li B, et a., Nonsteroidal anti-inflammatory drugs can lower amyloidogenic Aβ42 by inhibiting Rho. Science, 2003, 302(5648): 1215-1217.
    [98] Ray I, Chauhan A, Wisniewski HM, et al. Binding of amyloid β-protein to intracellular brain proteins in rat and human. Neurochem Res, 1998, 23(10): 1277-1282.
    [99] Cairo E, Trejo JL, Gomez-Isla T, et al. Serum insulin-like growth factor I regulates brain amyloid-beta levels. Nat. Med, 2002, 8(12): 1390-1397.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700