促肾上腺皮质激素释放因子相关肽对电压依赖性钙通道的影响及机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     促肾上腺皮质激素释放因子(CRF)属于一类结构相关的肽类家族,其中还包括尿紧张素,蛙皮降压肽,以及最近在哺乳动物中发现的尿紧张素类似肽urocortin 1-3(UCN1-3)。据报道,CRF肽类家族主要通过与相应的七个跨膜片段的G-蛋白偶联CRF受体(CRFR1及CRFR2)相结合,调节机体内分泌、自律性以及对应急的行为反应等生理功能。实验证明尿紧张素,蛙皮降压肽,以及UCN对CRFR2的结合比CRF高1000倍左右。UCN2和UCN3被认为仅仅是哺乳动物CRFR2的内在配体,而UCN1是CRFR1以及CRFR2的内在配体。UCN是40个氨基酸的小分子CRF类肽,与CRF有43%的结构相似性,参与哺乳动物应激反应。其最早在中枢神经系统内发现并作用,近年越来越多的研究表明UCN可以通过自分泌和/或旁分泌的方式与CRF受体相结合在各个系统发挥重要作用,并且它的这种作用在某些系统,如心血管,神经,生殖系统,比CRF更为显著。在体及离体实验研究发现,在缺血-再灌注损伤以及高血压等心血管病症中,UCN能保护心肌细胞免受损伤,起到心血管保护作用。此外,UCN剂量依赖性的增加主动脉和睾丸动脉的血流量,抑制食欲,维持胎盘功能,并能激活子宫肌肉收缩。报道表明,在男性生殖系统内也有UCN的表达,提示UCN可能通过影响精子的功能而跟着床和妊娠有关。此外,UCN2通过结合CRFR2在神经及心血管保护方面,比如,缺血再灌注,缺氧损伤过程中保护心肌,病理性抑制凋亡,保护神经细胞等。然而,也有报道显示,UCN2能激活不表达CRFR2的神经细胞,导致不依赖于CRFR2活性的神经元放电。这种CRF受体依赖的和非依赖的UCN的作用,其机制迄今为止尚不是很明确。文献显示,UCN能抑制缺血再灌注可能跟PKC/K_(ATP)有关,保护缺氧损伤跟PKA/MAPK有关,神经保护跟PKC及PLC信号通路相关,CRF受体非依赖性自由基及PKA/K_(ATP)信号通路在心肌缺氧保护中起一定作用。
     电压门控性钙通道对细胞内钙的调节起很重要的作用。细胞内钙离子浓度迅速升高能诱发神经递质释放,精子获能,肌肉收缩等。病理性的钙超载导致心肌重构,血管结构紊乱,细胞凋亡等。此外,在病理性心脏重构中,钙离子通道也表达异常。大量的文献报道显示,电压依赖性钙通道对于体内各个系统病理及生理调节起非常重要的作用。根据电生理和药理特性的不同,钙离子通道分为长时程型L钙通道,短时程型T通道,神经源性N型,浦肯野(氏)细胞P型,粒细胞型Q型,以及毒素耐受型R型。体内L型,T型,以及N型电压门控钙通道据报道能被与跨膜的G蛋白藕联的受体,以及下游的PKA,PKC,PLC以及钙调蛋白2型酶广泛调控,然而,对于CRF类肽,UCN及UCN2是否CRF受体依赖或非依赖的作用于钙离子通道,而发挥体内调节功能,目前领域研究还是个空白。
     目的
     1.研究促肾上腺皮质激素释放因子(CRF)家族类肽UCN及其受体在小鼠生殖系统中的表达和定位,阐述UCN在雄性小鼠中的生理功能,并探讨其与细胞内钙相关的发生机制;
     2.通过进一步研究UCN对小鼠生精细胞T型钙通道电流的影响,进一步阐述其在小鼠生殖功能中的作用;
     3.从亚细胞水平探讨CRFR1调节T型钙通道亚单位的信号通路,阐述其调节正常神经生殖内分泌功能的信号机制;
     4.探讨CRF家族类肽UCN2在神经系统内的表达并阐述其神经保护的离子机制;
     5.探讨CRF家族类肽UCN2的血管保护作用,阐述其抗高血压血管重构过程中与L-型钙通道、细胞内钙离子浓度相关的离子作用机制。
     方法
     1.UCN在雄性小鼠生殖系统中的表达及影响:逆转录PCR(RT-PCR)法及WESTERN BLOT检测小鼠生精细胞UCN,CRFR1及CRFR2的表达,免疫组织化学定位UCN及CRF受体的定位,检测UCN对小鼠精子功能及顶体反应的作用,流式细胞术检测细胞内钙在UCN生殖功能中的变化。
     2.UCN对雄性小鼠生殖功能影响的机制研究:分离小鼠生精细胞,采用全细胞膜片钳技术观察UCN对T型钙通道的影响。
     3.CRFR1激活对T通道亚单位的影响及机制:RT-PCR,Westernblotting,及激光共聚焦定位CRFR1在HEK293转染系统的表达。cAMP检测CRFR1的功能。全细胞膜片钳技术观察UCN及CRF对转染的3个T型钙通道的亚单位的影响并用药理学方法(使用PKA,PKC,PLC,CaMK,QEHA,及SKEE等阻断剂)阐明其信号通路作用机制。克隆CRFR1,全细胞膜片钳技术观察UCN及CRF对CRFR1共转染后的Cav3.2的影响。
     4.UCN2在神经细胞中的表达及其神经保护机制:RT-PCR检测PC12 UCN及CRF受体的表达,激光共聚焦检测UCN2对PC12细胞内钙浓度的影响,全细胞膜片钳技术检测UCN2对PC12细胞电流的影响,药理学方法(CRFR阻断剂,硝苯地平,P/Q通道毒素阻断剂等)观察UCN2的通道作用类型,全细胞膜片钳技术检测UCN2对急性分离大鼠神经细胞大脑皮层神经元的影响。
     5.UCN2高血压血管系统中的作用及其作用机制:分离高血压大鼠平滑肌细胞,TUNNEL检测UCN2对平滑肌凋亡的影响,激光共聚焦检测UCN2对SHR中VSMC细胞内钙浓度的影响,全细胞膜片钳技术检测UCN2对平滑肌细胞钙通道电流的影响,并观察UCN2对重组L型钙通道Cav1.2的影响。
     结果
     1.UCN及CRF受体在RNA水平和蛋白水平在小鼠睾丸组织有不同定位与表达:UCN在精子细胞上表达,CRFR1在精母细胞表达,而CRFR2在精原和精母细胞中都有表达,UCN的蛋白表达随顶体反应的进行而减少。
     2.UCN对雄性小鼠的生殖功能,如精子活动,顶体反应等,有抑制作用。
     3.UCN对男性生殖细胞细胞内钙的浓度有降低作用,并阻断生精细胞T型钙离子通道电流。
     4.UCN及CRF选择性阻断Cav3.2,对Cav3.1和Cav3.3没有影响。
     5.HEK293细胞内源性表达CRFR1,蛋白定位在细胞膜,并发挥激活腺苷酸环化酶的作用。
     6.UCN左移Cav3.2的失活曲线,对激活曲线却没有影响。
     7.阻断G蛋白作用能消除UCN对Cav3.2的作用,UCN对Cav3.2的抑制不受PKC,PKA及PLC的影响,却被QEHA所阻断。
     8.UCN2内源性表达于PC12细胞中,降低PC12细胞内钙,并选择性抑制L型钙电流,这种阻断不被CRFR阻断剂astressin消除,同时UCN2能抑制急性分离的大脑皮质神经细胞电压依赖性钙通道电流。
     9.UCN2抑制高血压平滑肌细胞凋亡,降低Bay K8644和KCL诱导的平滑肌细胞内钙浓度的增加,UCN2抑制平滑肌细胞L型钙电流,CRFR阻断剂astressin对UCN2的L型钙通道的阻断作用没有影响,UCN2对人工重组Cav1.2有相似于平滑肌凋亡抑制的作用。
     结论
     1.UCN及其受体内源性表达于小鼠睾丸组织,并抑制男性生殖功能。
     2.UCN激活G蛋白藕联的CRFR1能抑制T型钙通道电流产生。
     3.CRFR1的激活选择性抑制Cav3.2是通过诱导beta-gamma复合体的产生。
     4.HEK293表达系统能功能性的内源产生CRFR1,可以提供一种基于CRFR1表达的转染模式。
     5.UCN2能通过非依赖于CRF受体而发挥神经保护作用,这种保护作用是非依赖于CRFR的作用于L型钙离子通道。
     6.UCN2的非依赖于CRF受体的L型阻断功能,可以阐述其抗高血压血管重构的基本机制。
BACKGROUND
     Corticotropin-releasing factor (CRF) belongs to a family of structurally relatedpeptides that includes fish urotensin 1, amphibian sauvagine, and the recentlyidentified urotensin homologue, urocortins, which includes urocortin 1-3. CRF familyhas two receptors, CRFR1 and CRFR2. Urotensin 1, sauvagine, and urocortin 1-3bind with up to 1000-fold higher affinities to the CRFR2 than species homologues ofCRF. UCN2 and UCN3 are generally considered to represent endogenous ligands formammalian CRFR2 variants, whereas UCN is thought to be an endogenous ligand forboth CRFR1 and CRFR2. UCN shares 43%homology with CRF at the amino acidlevel. Previous reports showed that UCN was involved in the modulation of a varietyof biological activities, such as causing a dose-dependent increase in coronary,testicular artery blood flow suppression of appetite, and maintenance of the placentalfunction & labor. CRF was observed to have modulating effects on male reproductionearly in late 80's. It was reported that UCN could activate the myometrial contractility.In addition, presence of UCN in the seminal fluid could be of relevance duringfertilization and pregnancy by influencing sperm transport through the female genitaltract. Therefore, these findings suggest that the CRF family, including UCN, CRF, andits receptors, may play important roles in various biological functions during the course of reproduction, which is highly associated with calcium channels. Previousreports also have showed that urocortin 2 had a number of physiological properties byinteracting with its CRFR2. However, urocortin 2 could also cause neural activationin cell groups that are involved in autonomic activation, but do not express either typeof CRF receptor. However, to date, the exact mechanisms for UCNs' effects viaCRFR-dependent or independent manner are not very clear. It has been demonstratedthat UCNs, espcically UCN and UCN2 protected neonatal cardiac myocytes in vitrowhen administered before hypoxia/ischemia, which suggests that calcium channelsmay play some roles since ischemia and hypoxia damage is highly associated withCa~(2+)-overload. Furthermore, it was reported that UCN2 played the cardiovascularprotective role via protein kinase A (PKA), PKC, PLC, and mitogen-activated proteinkinase (MAPK) pathway, which might lead to changes in the intracellular Ca~(2+), anddownstream regulation of the calcium channels.
     Voltage-gated calcium channels (VGCCs) first described in excitable cells aregenerally classified according to their electrophysiological, pharmacological andinactivation properties as T-type, long-lasting L-type, neuronal N-type, purkinje cellP-type, granular cell Q-type and toxin/drug-resistant R-type. So far, however, fewreports addressed UCNs' effects on VGCC. In addition, whether the effecs are CRFreceptor dependent or independent is still unknown.
     PURPOSE
     1. The aim of this study was to investigate the expression of UCN & its receptors and the effects of UCN on male reproductive functions, and identify the mechanismsof these effects relevant to intracellular calcium.
     2. The second goal is to investigate the effects of UCN on T-type calcium channels,and explore the mechanisms of UCN's role in male reproductive functions,especially in acrosome reaction (AR) and sperm motility.
     3. Thirdly, we aim to clarify the subcellular signaling pathway between CRFR1 andthe three isoforms of T-type calcium channels, and explore the mechanisms forneuroendrine systems.
     4. Another goal of this study is to observe the expressions of UCN2 in neural system,and the ion mechnisms for UCN2's neuroprotective effects.
     5. The last aim of this study is to explore the vascular protection of UCN2, charify theinhibition of UCN2 on vascular remodeling, and investigate the ion mechanismsrelevant to L-type calcium channels.
     METHODS
     1. Separate locations of UCN and its receptors in mouse testis and functions of UCNin male reproduction and the relevant mechanisms: Preparation of spermatozoaand spermatogenic cells, Reverse transcription-polymerase chain reaction(RT-PCR), Immunohistochemical staining, Double immunostaining for UCN,Measurement of sperm motility, Assay for acrosome reaction (AR), Determinationof [Ca~(2+)]_i by flow cytometry
     2. Mechanisms of UCN's effects on male reproductive in mice: Spermatogenic cell preparation and electrophysiology
     3. Activation of CRFR1 selectively inhibits Ca_v3.2 calcium channels: RT-PCR,Western, and Confocal Microscopy detect the expression of CRFR1 in HEK293,cAMP detection, Whole-cell patch clamp, Pharmacological methods (PKA, PKC,PLC, CaMK, QEHA, and SKEE etc.), Construct rat CRFR1
     4. Expression of UCN2 and mechanisms of its neuroprotection: Cell culture forrat undifferentiated pheochromocytoma (PC12) cells, Acute isolation of cerebralcortex neurons, Reverse transcription-polymerase chain reaction (RT-PCR),Measurements of [Ca~(2+)]_i by confocal laser scanning microscopy, Whole-CellPatch Clamp Recording
     5. Effects of UCN2 on vascular remodeling and the relevant mechanisms: Isolationof mesenteric arteries smooth muscle cells (MASMC) from SHR, TUNEL assayto detect the apoptosis of VSMC in SHR, Measurement of nitrite oxide (NO),Intracellular Ca~(2+) concentration ([Ca~(2+)]_i) measurements, Transient expression ofhuman Cav1.2 in HEK293 Cells, Whole-cell patch clamp recording
     RESULTS
     1. UCN expressed only in mature sperm while CRFR1 and CRFR2 existed inspermatocytes and spermatogonia, respectively. With AR proceeding, theexpression of UCN declined, and after ascrosome reaction, UCN could not bedetected any more.
     2. UCN significantly inhibited the motility of the sperm and AR in a concentration-dependent manner.
     3. UCN reduced the [Ca~(2+)]_i increase induced by high potassium and T-type calciumcurrents.
     4. Activation of CRFR1 selectively inhibited Cav3.2, instead of Cav3.1 and Cav3.3.
     5. HEK293 cells endogenously expressed functional CRFR1. The CRFR1 waslocalized in cell membrane, and activated the increase of cAMP.
     6. CRFR1 activation affected Cav3.2 channels by negatively shifting steady-stateinactivation properties.
     7. UCN inhibited Ca_v3.2 T-type calcium channels independent of PKA, PKC andPLC. UCN inhibited Ca_v3.2 T-type calcium channels via G_(βγ).
     8. UCN2 reduced the [Ca~(2+)]_i levels via inhibiting L-type VGCC in undifferentiatedPC12 cells, where both UCN2 and CRFR2β, but not CRFR1 or CRFR2α, wereexpressed.
     9. UCN2 reduced [Ca~(2+)]_i, inhibited MASMC apoptosis induced by hypoxia in SHR,and blocked Cav1.2.
     CONCLUSIONS
     1. UCN and its recepotrs endogenously express in mouse testis. UCN inhibits themale reproductive functions.
     2. Activation of CRFR1 inhibits T-type calcium channels, which may be responsiblefor its male reproductive inhibition.
     3. Activation of CRFR1 inhibits Ca_v3.2 T-type calcium channels via G_(βγ) subunits.
     4. HEK 293 cells endogenously express functional CRFR1, which may be used as anew transfection model for CRFR1.
     5. We provides evidence that UCN2, co-expressed with CRFR2βin undifferentiatedPC12 cells, decreases [Ca~(2+)]_i levels via inhibiting the L-type VGCC. It may be apotential endogenous protective agent under some pathophysiological conditions,such as brain ischemia and some neuronal degenerative diseases like Alzheimer'sand Parkinson's diseases, in which Ca~(2+)-overload plays very important roles.
     6. Our results provide convincing evidence of a possible link between theapoptosis-inhibitory effects of UCN2 and L-type calcium channels in SHR.Based on the theory that VSMC apoptosis plays a key role in hypertensivevasculopathy, these findings highly imply that UCN2 might be a beneficial agentin vascular pathology where Ca~(2+)-overload plays an important role.
引文
1 Reyes TM, Lewis K, Perrin MH, Kunitake KS, Vaughan J, Arias CA, Hogenesch JB, Gulyas J, Rivier J, Vale WW, Sawchenko PE. Urocortin II: a member of the corticotropin-releasing factor (CRF) neuropeptide family that is selectively bound by type 2 CRF receptors. PNAS 2001, 98,2843-2848.
    2 Takahashi K, Totsune K, Murakami 0, Shibahara S. Urocortins as cardiovascular peptides. Peptides 2004, 25,1723-1731.
    3 Brar BK, Jonassen AK, Egorina EM, Chen A, Negro A, Perrin MH, Mjos OD, Latchman DS, Lee KF, Vale W. Urocortin-II and urocortin-III are cardioprotective against ischemia reperfusion injury: an essential endogenous cardioprotective role for corticotropin releasing factor receptor type 2 in the murine heart. Endocrinology 2004. 145, 24-35.
    4 Chanalaris A, Lawrence KM, Stephanou A, Knight RD, Hsu SY, Hsueh A, Latchman DS. Protective effects of the urocortin homologues stresscopin (SCP) and stresscopin-related peptide (SRP) against hypoxia/reoxygenation injury in rat neonatal cardiomyocytes. J Mol Cell Cardiol 2003, 35, 1295-1305.
    5 Brar BK, Stephanoul A, Knight R, Latchman DS. Activation of Protein Kinase B/Akt by Urocortin is Essential for its Ability to Protect Cardiac Cells Against Hypoxia/Reoxygenation-induced Cell Death. J Mol Cell Cardiol 2002, 34, 483-492.
    6 Cohen ML, Bloomquist W, Li D, Iyengar S. Effect of acute and subchronic subcutaneous urocortin on blood pressure and food consumption in ob/ob mice. Gen Pharmacol 2000, 34, 371-377.
    7 Kageyama K, Furukawa K, Miki I, Terui K, Motomura S, Suda T: Vasodilative effects of urocortin II via protein kinase A and a mitogen-activated protein kinase in rat thoracic aorta. J Cardiovasc Pharmacol 2003, 42, 561-565.
    8 Nishijo N, Takamine S, Sugiyama F, Kimoto K, Taniguchi K, Horiguchi H, Ogata T, Murakami, K, Fukamizu A, Yagami K. Vascular remodeling in hypertensive transgenic mice. Exp Anim 2001, 48, 203-208.
    9 Mandegar M, Remillard CV, Yuan JX. Ion channels in pulmonary arterial hypertension. Prog Cardiovasc Dis 2002,45, 81-114.
    10 Guedes DN, Silva DF, Barbosa-Filho JM, Medeiros IA. Calcium antagonism and the vasorelaxation of the rat aorta induced by rotundifolone. Braz J Med Biol Res 2004,37,1881-1887.
    11 Dautzenberg FM, Higelin J, Teichert U. Functional characterization of corticotropin-releasing factor type 1 receptor endogenously expressed in human embryonic kidney 293 cells. Eur J Pharmacol 2000, 390, 51-59.
    12 Izumi T, Yamaguchi M. Overexpression of regucalcin suppresses cell death and apoptosis in cloned rat hepatoma H4-II-E cells induced by lipopolysaccharide, PD 98059, dibucaine, or Bay K 8644. J Cell Biochem 2004, 93, 598-608.
    13 Scarabelli T, Knight R. Urocortins: take them to heart. Curr. Med. Chem. Cardiovasc. Hematol Agents 2004, 2, 335-342.
    14 Chanalaris A, Lawrence KM, Townsend PA, Davidson S, Jamshidi Y, Stephanou A, Knight RD, Hsu SY, Hsueh AJ, Latchman DS. Hypertrophic effects of urocortin homologous peptides are mediated via activation of the Akt pathway. Biochem Biophys Res Commun 2005, 328, 442-448.
    15 Nemoto T, Mano-Otagiri A, Shibasaki T. Urocortin 2 induces tyrosine hydroxylase phosphorylation in PC12 cells. Biochem Biophys Res Commun 2005, 330,821-31.
    16 Armstrong CM, Matteson DR. Two distinct populations of calcium channels in a clonal line of pituitary cells. Science 1985, 227, 65-67.
    17 Bean BP, McDonough SI. Two for T. Neuron 1998, 20, 825-838.
    18 Bourinet E, Alloui A, Monteil A, Barrere C, Couette B, Poirot O, Pages A, McRory J, Snutch TP, Eschalier A, Nargeot J. Silencing of the Ca_V3.2 T-type calcium channel gene in sensory neurons demonstrates its major role in nociception. EMBO J 2005, 24, 315-324.
    19 Brody DL, Patil PG, Mulle JG, Snutch TP, Yue DT. Bursts of action potential waveforms relieve G-protein inhibition of recombinant P/Q-type Ca~(2+) channels in HEK 293 cells. J Physiol 2001,499, 637-644.
    20 Chemin J, Traboulsie A, Lory P. Molecular pathways underlying the modulation of T-type calcium channels by neurotransmitters and hormones. Cell Calcium 2006,40,121-134.
    1 Theoharides TC, Donelan JM, Papadopoulou N, Cao J, Kempuraj D, Conti P. Mast cells as targets of corticotropin-releasing factor and related peptides. Trends Pharmacol Sci. 2004,25, 563-568.
    2 Zhao L, Donaldson CJ, Smith GW, Vale WW. The structures of the mouse and human urocortin genes (Ucn and UCN). Genomics 1998, 50, 23-33.
    3 Li C, Chen P, Vaughan J, Lee KF, Vale W. Urocortin 3 regulates glucose-stimulated insulin secretion and energy homeostasis. Proc Natl Acad Sci USA. 2007,104,4206-4211.
    4 Okosi A, Brar BK, Chan M, D'Souza L, Smith E, Stephanou A, Latchman DS, Chowdrey HS, Knight RA. Expression and protective effects of urocortin in cardiac myocytes. Neuropeptides 2001, 32,167-171.
    5 Kageyama K, Bradbury MJ, Zhao L, Blount AL, Vale WW. Urocortin messenger ribonucleic acid: tissue distribution in the rat and regulation in thymus by lipopolysaccharide and glucocorticoids. Endocrinology 2003,140, 5651-5658.
    6 Smart D, Coppell A, Rossant C, Hall M, McKnight AT. Characterisation using microphysiometry of CRF receptor pharmacology. Eur J Pharmacol 1999, 379, 229-235.
    7 Bale T L, Giordano F J, Hickey R P, Huang Y, Nath AK, Peterson KL, Vale WW, Lee KF. Corticotropin-releasing factor receptor 2 is a tonic suppressor of vascularization. Proc Natl Acad Sci 2002,28, 7734-7739.
    8 von Mentzer B, Murata Y, Ahlstedt I, Lindstrom E, Martinez V. Functional CRF receptors in BON cells stimulate serotonin release. Biochem Pharmacol. 2007, 73, 805-13.
    9 Yutaka O, Hironobu S. Localization and physiological roles of urocortin. Peptides 2004,25,1745-1749.
    10 Tu H, Kastin AJ, Pan W. Corticotropin-releasing hormone receptor CRHR1 and CRHR2 are both trafficking and signaling receptors for urocortin. Mol Endocrinol. 2007,21,700-711.
    11 Pasquale F, Wylie V, Felice P. Urocortins in human reproduction. Peptides 2004, 25, 1751-1757.
    12 Petraglia F, Florio P, Gallo R, Simoncini T, Saviozzi M, Di Blasio AM, Vaughan J, Vale W. Human placenta and fetal membranes expresshuman urocortin mRNA and peptide. J Clin Endocrinol Metab 2006, 81, 3807-3810.
    13 Petraglia F, Florio P, Benedetto C, Marozio L, Di Blasio AM, Ticconi C, Piccione E, Luisi S, Genazzani AR, Vale W. Urocortin stimulates placental adrenocorticotropin and prostaglandin release and myometrial contractility in vitro. J Clin Endocrinol Metab 2001, 84,1420-1423.
    14 Vale W, Spiess J, Rivier C, Rivier J. Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and b-endorphin. Science 1981, 213, 1394-1397.
    15 Zoumakis E, Rice KC, Gold PW, Chrousos GP. Potential uses of corticotropin-releasing hormone antagonists. Ann N Y Acad Sci. 2006, 1083, 239-2351.
    16 Darszon A, Labarca P, Nishigaki T, Espinosa F. Ion channels in sperm physiology. Physiol Rev 2001, 79, 481-510.
    17 Lievano A, Santi CM, Serrano CJ, Trevino CL, Bellve AR, Hemandez-Cruz A, Darszon A. T-type Ca~(2+) channels and ale expression in spermatogenic cells, and their possible relevance to the sperm acrosome reaction. FEBS Lett 2003, 388, 150-154.
    18 Espinosa F, Lopez-Gonzalez I, Serrano C J, Gasque G, de la Vega-Beltran JL, Trevino CL, Darszon A. Anion channel blockers differentially affect T-type Ca~(2+) currents of mouse spermatogenic ceils, ale currents expressed in Xenopus oocytes and the sperm acrosome reaction. Dev Genet 1999, 25, 103-114.
    19 Goodwin LO, Leeds NB, Hurley I, Mandel FS, Pergolizzi RG, Benoff S. Isolation and characterization of the primary structure of testis-specific L-type calcium channel: implications for contraception. Mol Hum Reprod 1997, 3,255-268.
    20 Bai JP, Shi YL, Fang X, Shi QX. Effects of demethylzeylasteral and celastrol on spermatogenic cell Ca~(2+) channels and progesterone-induced sperm acrosome reaction. Biochem Biophy Res Com 2003, 464, 9-15.
    21 Fedeli A, Policani F, Ubaldi M, Cippitelli A, Massi M, Ciccocioppo R. Activation of the nociceptin/orphanin FQ system is unable to reverse CRF2 receptor mediated anorexia in the rat. Peptides. 2006, 27, 3284-3291.
    22 Chatzaki E, Lambropoulou M, Constantinidis TC, Papadopoulos N, Tache Y, Minopoulos G, Grigoriadis DE. Corticotropin-releasing factor (CRF) receptor type 2 in the human stomach: protective biological role by inhibition of apoptosis. J Cell Physiol. 2006,209, 905-911.
    23 Cheng LJ, Li J, Chen J, Ge Y, Yu Z, Han D, Zhou Z, Sha J. NYD-SP16, a novel gene associated with spermatogenesis of human testis. Biol Reprod 2003, 68, 190-198.
    24 Lu L, Lin M, Xu M, Zhou Z, Sha J. Gene functional research using polyethylenimine mediated in vivo gene transfection into mouse spermatogenic cells. Asian JAndrol 2006, 8, 53-59.
    25 Sasano H, Date F, Imatani A, Asaki S, Nagura H. Double immunostaining of c-erbB-2 and p53 in human stomach cancer cells. Hum Pathol 1993, 24, 584-589.
    26 Calle M, Jenks BG, Corstens GJ, Veening JG, Barendregt HP, Roubos EW. Localisation and physiological regulation of corticotrophin-releasing factor receptor 1 mRNA in the Xenopus laevis brain and pituitary gland. J Neuroendocrinol. 2006, 18, 797-805.
    27 Brar BK, Jonassen AK, Stephanou A, Santilli G, Railson J, Knight R A, Yellon DM, Latchman DS. Urocortin protects against ischemic and reperfusion injury via a MAPK-dependent pathway. J Biol Chem 2002,275, 8508-8514.
    28 Brar BK, Stephanou A, Knight R, Latchman DS. Activation of protein kinase B/Akt by urocortin is essential for its ability to protect cardiac cells against hypoxia/reoxygenation-induced cell death. J Mol Cell Cardiol 2002, 34,483-492.
    29 Parkes D G, Vaughan J, Rivier J, Vale W, May CN. Cardiac inotropic actions of urocortin in conscious sheep. Am J Physiol 2001,272, H2112-2125.
    30 Kageyama K, Hanada K, Moriyama T, Imaizumi T, Satoh K, Suda T. Differential regulation of CREB and ERK phosphorylation through corticotropin-releasing factor receptors type 1 and 2 in AtT-20 and A7r5 cells. Mol Cell Endocrinol. 2007, 263, 90-102.
    31 Ohkubo T, Inoue Y, Kawarabayashi T, Kitamura K. Identification and electrophysiological characteristics of isoforms of T-type calcium channel Ca(v)3.2 expressed in pregnant human uterus. Cell Physiol Biochem 2005, 16, 245-254.
    32 Darszon A, Lopez-Martinez P, Acevedo JJ, Hernandez-Cruz A, Trevino CL. T-type Ca~(2+) channels in sperm function. Cell Calcium 2006,40, 241-252.
    33 Tao J, Wu Y, Chen J, Zhu H, Li S. Effects of urocortin on T-type calcium currents in mouse spermatogenic cells. Biochem Biophys Res Commun 2005, 329, 743-748.
    34 Ren D, Navarro B, Perez G, Jackson AC, Hsu S, Shi Q, Tilly JL, Clapham DE. A sperm ion channel required for sperm motility and male fertility. Nature 2001, 413, 603-609.
    35 Zhang D, Chen J, Saraf A, Cassar S, Han P, Rogers JC, Brioni JD, Sullivan JP, Gopalakrishnan M. Association of Catsperl or -2 with Ca(v)3.3 leads to suppression of T-type calcium channel activity. J Biol Chem 2006, 281, 22332-22341.
    36 Garcia MA and Meizel S. Progesterone-mediated calcium influx and acrosome reaction of human spermatozoa: pharmacological investigation of T-type calcium channels. Biol Reprod 1999, 60,102-109.
    37 Blackmore PF and Eisoldt S. The neoglycoprotein mannose-bovine serum albumin, but not progesterone, activates T-type calcium channels in human spermatozoa. Mol Hum Reprod 2000, 5,498-506.
    38 Stamboulian S, Kim D, Shin HS, Ronjat M, De Waard M, Arnoult C. Biophysical and pharmacological characterization of spermatogenic T-type calcium current in mice lacking the CaV3.1 (alphalG) calcium channel: CaV3.2 (alphalH) is the main functional calcium channel in wild-type spermatogenic cells. J Cell Physiol 2004,200,116-124.
    1 Brar BK, Jonassen AK, Stephanou A, Santilli G, Railson J, Knight R A, Yellon DM, Latchman DS. Urocortin protects against ischemic and reperfusion injury via a MAPK-dependent pathway. J Biol Chem 2002, 275, 8508-8514.
    2 Zoumakis E, Rice KC, Gold PW, Chrousos GP. Potential uses of corticotropin-releasing hormone antagonists. Ann N Y Acad Sci. 2006, 1083, 239-2351.
    3 Zhao L, Donaldson CJ, Smith GW, Vale WW. The structures of the mouse and human urocortin genes (Ucn and UCN). Genomics 1998, 50, 23-33.
    4 Bamberger CM, Wald M, Bamberger A, Ergun S, Beil FU, Schulte HM. Human lyphocytes produce UCN, but not corticotrophin releasing hormone. J Clin Endocrinol Metab 2001, 83, 708-711.
    5 Parkes DG, Weisinger RS, May CN. Cardiovascular actions of CRH and urocortin: an update. Peptides 2001, 22, 821-827.
    6 Iino K, Sasano H, Oki Y, Andoh N, Shih RW, Kitamoto T, Takahashi K, Suzuki H, Tezuka F, Yoshimi T, Nagura H. Urocortin expression in the human central nervous system. Clin Endocrinol (Oxf) 1999, 50, 107-114.
    7 Tracy L, Bale F, Reed PH, Yan H, Anjali KN, Kirk LP, Wylie WV, Lee KF. Corticotropin-releasing factor receptor 2 is a tonic suppressor of vascularization. PNAS 2002,28, 7734-7739.
    8 Pasquale F, Wylie V, Felice P. Urocortins in human reproduction. Peptides 2004, 25,1751-1757.
    9 Okosi A, Brar BK, Chan M, D'Souza L, Smith E, Stephanou A, Latchman DS, Chwdrey HS, Knight RA. Expression and protective effects of urocortin in cardiac myocytes. Neuropeptides 1998, 32,167-171.
    10 Latchman DS. Urocortin protects against ischemic injury via a MAPK-dependent pathway. Peptides 2001, 11,167-169.
    11 Brar BK, Jonassen AK, Stephanou A, Santilli G, Railson J, Knight RA, Yellon DM, Latchman DS. Urocortin protects against ischemic and reperfusion injury via a MAPK-dependent pathway. J Biol Chem 2000, 275, 8508-8514.
    12 Sheng Z, Knowlton K, Chen J, Hoshijima M, Brown H, Chien KR. Cardiotrophin 1 (CT-1) inhibition of cardiac myocyte apoptosis via a mitogen-activated protein kinase-dependent pathway. Divergence from downstream CT-1 signals for myocardial cell hypertrophy. J Biol Chem 2001,272, 5783-5791.
    13 Adderley SR, Fizgerald DJ. Oxidative damage of cardiomyocytes is limited by extracellular regulated kina ses 1/2-mediated induction of cyclooxygenase-2. J Biol Chem 1999,274, 5038-5046.
    14 Yutaka O, Hironobu S. Localization and physiological roles of urocortin. Peptides 2004,25,1745-1749.
    15 Petraglia F, Florio P, Gallo R, Simoncini T, Saviozzi M, Di Blasio AM. Human placenta and fetal membranes expresshuman urocortin mRNA and peptide. J Clin Endocrinol Metab 2005, 81, 3807-3810.
    16 Petraglia F, Florio P, Benedetto C, Marozio L, Di Blasio AM, Ticconi C. Urocortin stimulates placental adrenocorticotropin and prostaglandin release and myometrial contractility in vitro. J Clin Endocrinol Metab 1999, 84, 1420-1423.
    17 Darszon A, Labarca P, Nishigaki T, Espinosa F. Ion channels in sperm physiology. Physiol Rev 2001, 79, 481-510.
    18 Lievano A, Santi CM, Serrano C J, Trevino CL, Bellve AR, Hernandez-Cruz A, Darszon A. T-type Ca~(2+) channels and alE expression in spermatogenic cells, and their possible relevance to the sperm acrosome reaction. FEBS Lett 2003, 388, 150-154.
    19 Amoult C, Cadullo RA, Lemos JR, Florman HM. Activation of mouse sperm T-type Ca~(2+) channels by adhesion to the egg zona pellucida. Proc Natl Acad Sci USA 1996, 93, 13004-13009.
    20 Amoult C, Villaz M, Florman HM. Pharmacological properties of the T-type Ca~(2+) current of mouse spermatogenic cells. Mol Pharmacol 2001, 53, 1104-1111.
    21 Espinosa F, Lopez-Gonzalez I, Serrano CJ, Gasque G, De La Vega-Beltran JL, Trevino CL, Darszon A. Anion channel blockers differentially affect T-type Ca~(2+) currents of mouse spermatogenic cells, alE currents expressed in Xenopus oocytes and the sperm acrosome reaction. Dev Genet 1999, 25, 103-114.
    22 Espinosa F, Lopez-Gonzalez I, Munoz-Garay C, Felix R, De La Vega-Beltran JL, Kopf GS, Visconti PE, Darszon A. Dual regulation of the T-type Ca~(2+) current by serum albumin and h-estradiol in mammalian spermatogenic cells. FEBS Lett 2000, 475, 251-256.
    23 Goodwin LO, Leeds NB, Hurley I, Mandel FS, Pergolizzi RG, Benoff S. Isolation and characterization of the primary structure of testis-specific L-type calcium channel: implications for contraception. Mol Hum Reprod 1997, 3, 255-268.
    24 Bai JP, Shi YL. Inhibition of T-type Ca~(2+) currents in mouse spermatogenic cells by gossypol, an antifertility compound. Eur J Pharmacol 2002b, 440, 1- 6.
    25 Guo DL, Zhou ZN, Zheng FD, Hu CJ. Dauricine inhibited L-type calcium current in single cardiomyocyte of guinea pig, Acta pharmacol Sin 1997, 18, 419-421.
    26 Visconti PE, Bailey JL, Moore GD, Pan D, Olds-Clarke P, Kopf GS. Capacitation of mouse spermatozoa: I. Correlation between the capacitation state and protein tyrosine phosphorylation. Development 2005,121,1129- 1137.
    27 Gonzalez-Martinez MT, Galindo BE, de De La Torre L, Zapata O, Rodriguez E, Florman HM, Darszon A. A sustained increase in intracellular Ca~(2+) is required for the acrosome reaction in sea urchin sperm, Dev Biol 2001, 236, 220-229.
    28 Tao J, Xu H, Yang C, Liu CN, Li S Effect of urocortin on L-type calcium currents in adult rat ventricular myocytes. Pharmac Res 2004, 50,471-476.
    29 Brar BK, Chen A, Perrin MH, Vale W. Specificity and regulation of extracellularly regulated kinase1/2 phosphorylation through corticotropin-releasing factor (CRF) receptors 1 and 2beta by the CRF/urocortin family of peptides, Endocrinology. 2004, 145, 1718-1729.
    1 Armstrong CM, Matteson DR. Two distinct populations of calcium channels in a clonal line of pituitary cells. Science 1985,227, 65-67.
    2 Arzt E, Holsboer F. CRF signaling: molecular specificity for drug targeting in the CNS. Trends Pharmacol Sci 2006,27, 531-538.
    3 Bale TL, Vale WW. CRF and CRF receptors: role in stress responsivity and other behaviors. Ann Rev Pharmacol Toxicol 2004,44, 525-527.
    4 Bean BP, McDonough SI. Two for T. Neuron 1998, 20, 825-838.
    5 Bourinet E, Alloui A, Monteil A, Barrere C, Couette B, Poirot O, Pages A, McRory J, Snutch TP, Eschalier A, Nargeot J. Silencing of the Cay3.2 T-type calcium channel gene in sensory neurons demonstrates its major role in nociception. EMBO J 2005, 24, 315-324.
    6 Brody DL, Patil PG, Mulle JG, Snutch TP, Yue DT. Bursts of action potential waveforms relieve G-protein inhibition of recombinant P/Q-type Ca~(2+) channels in HEK 293 cells. J Physiol 2003, 499, 637-644.
    7 Bruijnzeel AW, Gold MS. The role of corticotrophin-releasing factor peptides in cannabis, nicotine, and alcohol dependence. Brain Res Reviews 2005, 49, 505-528.
    8 Carbone E, Lux HD. A low voltage-activated, fully inactivating Ca channel in vertebrate sensory neurones. Nature 1984, 310, 501-502.
    9 Catterall WA. Structure and function of voltage-gated ion channels. Annu Rev Biochem 2001, 64,493-531.
    10 Chalmers DT, Lovenberg TW, De Souza EB. Localization of novel corticotropin-releasing factor receptor (CRF2) mRNA expression to specific subcortical nuclei in rat brain: comparison with CRFl receptor mRNA expression. J Neurosci 1995,15, 6340-6350.
    11 Chemin J, Monteil A, Perez-Reyes E, Nargeot J, Lory P. Direct inhibition of T-type calcium channels by the endogenous cannabinoid anandamide. The EMBO J 2001, 20, 7033-7040.
    12 Tao J, Wu Y, Chen J, Zhu H, Li S. Effects of urocortin on T-type calcium currents in mouse spermatogenic cells. Biochem Biophys Res Commun 2005, 329, 743-748.
    13 Cribbs LL, Lee JH, Yang J, Satin J, Zhang Y, Daud A, Barclay J, Williamson MP, Fox M, Rees M, Perez-Reyes E. Cloning and characterization of alphalH from human heart, a member of the T-type Ca~(2+) channel gene family. Circ Res 1998, 83, 103-109.
    14 Dautzenberg FM, Hauger RL. The CRF peptide family and their receptors: yet more partners discovered. Trends Pharmacol Sci 2002, 23, 71-77.
    15 Wolfe JT, Wang H, Howard J, Garrison JC, Barrett PQ. T-type calcium channel regulation by specific G-protein βγ subunits. Nature 2003,424, 209-213.
    16 De Waard M, Liu H, Walker D, Scott VE, Gurnett CA, Campbell KP. Direct binding of G-protein betagamma complex to voltage-dependent calcium channels. Nature 2001, 385, 446-450.
    17 DePuy SD, Yao J, Hu C, McIntire W, Bidaud I, Lory P, Rastinejad F, Gonzalez C, Garrison JC, Barrett PQ. The molecular basis for T-type Ca~(2+) channel inhibition by G protein beta2gamma2 subunits. Proc Natl Acad Sci USA 2006, 103, 14590-14595.
    18 Drolet P, Bilodeau L, Chorvatova A, Laflamme L, Gallo-Payet N, Payet MD. Inhibition of the T-type Ca~(2+) current by the dopamine Dl receptor in rat adrenal glomerulosa cells: requirement of the combined action of the G betagamma protein subunit and cyclic adenosine 3',5'-monophosphate. Mol Endocrinol 1997, 11,503-514.
    19 Ertel EA, Campbell KP, Harpold MM, Hofmann F, Mori Y, Perez-Reyes E, Schwartz A, Snutch TP, Tanabe T, Birnbaumer L, Tsien RW, Catterall WA. Nomenclature of voltage-gated calcium channels. Neuron 2000, 25, 533-535.
    20 Gravanis A, Margioris AN. The corticotrophin-releasing factor (CRF) family of neuropeptides in inflammation: potential therapeutic applications. Current Medicinal Chemistry 2005, 12, 1503-1512.
    21 Hildebrand, ME, Snutch, TP. Contributions of T-type calcium channels to the pathophysiology of pain signaling. Drug Discovery Today: Disease Mechanisms 2006, 3,335-341.
    22 Herrington J, Lingle CJ. Kinetic and pharmacological properties of low voltage-activated Ca~(2+) current in rat clonal (GH3) pituitary cells. J Neurophysiol 2002, 68, 213-232.
    23 Hockberger P, Toselli M, Swandulla D, Lux HD. A diacylglycerol analogue reduces neuronal calcium currents independently of protein kinase C activation. Nature 1999, 338, 340-342.
    24 Ikeda SR. Voltage-dependent modulation of N-type calcium channels by G-protein βγ subunits. Nature 2006, 380, 255-258.
    25 Jagannathan S, Punt EL, Gu Y, Amoult C, Sakkas D, Barratt CL, Publicover SJ. Identification and localization of T-type voltage-operated calcium channel subunits in human male germ cells. Expression of multiple isoforms. J Biol Chem 2002, 277, 8449-8456.
    26 Kim D, Park D, Choi S, Lee S, Sun M, Kim C, Shin HS. Thalamic control of visceral nociception mediated by T-type Ca~(2+) channels. Science 2003, 302, 117-119.
    27 Markovic D, Papadopoulou N, Teli T, Randeva H, Levine MA, Hillhouse EW, Grammatopoulos D. Differential responses of CRH receptor type 1 variants to PKC phosphorylation. J Pharmacol Exp Ther 2006, 319,1032-1042.
    28 Reul JM, Holsboer F. Corticotropin-releasing factor receptors 1 and 2 in anxiety and depression. Curr Opin Pharmacol 2002, 2, 23-33.
    29 Zamponi GW, Snutch TP. Modulation of voltage-dependent calcium channels by G proteins. Curr Opin Neurobiol 1998, 8, 351-356.
    30 Vassort G, Talavera K, Alvarez JL. Role of T-type Ca~(2+) channels in the heart. Cell Calcium 2006,40,205-220.
    1 Avidor B, Avidor T, Schwartz L, De Jongh KS, Atlas D. Cardiac L-type Ca~(2+) channel triggers transmitter release in PC12 cells. FEBS Lett 2004, 342, 209-213
    2 Brar BK, Jonassen AK, Egorina EM, Chen A, Negro A, Perrin MH. Urocortin-II and urocortin-III are cardioprotective against ischemia reperfusion injury: an essential endogenous cardioprotective role for corticotropin releasing factor receptor type 2 in the murine heart. Endocrinology 2004, 145,24-35.
    3 Chen A, Blount A, Vaughan J, Brar B, Vale W. Urocortin II gene is highly expressed in mouse skin and skeletal muscle tissues: localization, basal expression in corticotropin-releasing factor receptor (CRFR) 1- and CRFR2-null mice, and regulation by glucocorticoids. Endocrinology 2004, 145, 2445-2457.
    4 Day M, Wang Z, Ding J, An X, Ingham CA, Shering AF. Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease models. Nat Neurosci 2006, 9,251-259.
    5 Del Toro R, Levitsky KL, Lopez-Barneo J, Chiara MD. Induction of T-type calcium channel gene expression by chronic hypoxia. J Biol Chem 2003, 278, 22316-2224.
    6 Eckert R, Chad J. Inactivation of calcium channels. Prog Biophys Mol Biol 1984,44,69-125.
    7 Hagiwara S, Byerly L. Calcium channel. Annu Rev Neurosci 2001, 4, 69-125.
    8 Ikeda K, Tojo K, Sato S, Ebisawa T, Tokudome G, Hosoya T. Urocortin, a newly identified corticotropin-releasing factor-related mammalian peptide, stimulates atrial natriuretic peptide and brain natriuretic peptide secretions from neonatal rat cardiomyocytes. Biochem Biophys Res Commun 1998, 250, 298-304.
    9 Ikeda K, Tojo K, Otsubo C, Udagawa T, Hosoya T, Tajima N. Effects of urocortin II on neonatal rat cardiac myocytes and non-myocytes. Peptides 2005, 26, 2473-2481.
    10 Hsu SY, Hsueh AJ. Human stresscopin and stresscopin-related peptide are selective ligands for the type 2 corticotropin-releasing hormone receptor. Nat Med 2001,7,605-611.
    11 Kageyama K, Furukawa K, Miki I, Terui K, Motomura S, Suda T. Vasodilative effects of urocortin II via protein kinase A and a mitogen-activated protein kinase in rat thoracic aorta. J Cardiovasc Pharmacol 2003,42, 561-565.
    12 Kostyuk PG, Verkhratsky A. Calcium stores in neurons and glia. Neuroscience 2004, 63, 381-404.
    13 Kostyuk PG, Verkhratsky A. Calcium signaling in the nervous system. Chichester et al.: John Wiley & Sons. 1995.
    14 Lewis K, Li C, Perrin MH, Blount A, Kunitake K, Donaldson C. Identification of urocortin III, an additional member of the corticotropin-releasing factor (CRF) family with high affinity for the CRF2 receptor. Proc Natl Acad Sci 2001, 98, 7570-7575.
    15 Lipscombe D, Madison D V, Poenie M, Reuter H, Tsien R W, Tsien RY. Imaging of cytosolic Ca~(2+) transients arising from Ca~(2+) stores and Ca~(2+) channels in sympathetic neurons. Neuron 1988, 1,355-365.
    16 Liu L, Gonzalez PK, Barrett CF, Rittenhouse AR. The calcium channel ligand FPL 64176 enhances L-type but inhibits N-type neuronal calcium currents. Neuropharmacology 2003, 45, 281-292.
    17 Gage M J, Rane SG, Hockerman GH, Smith TJ. The virally encoded fungal toxin KP4 specifically blocks L-type voltage-gated calcium channels. Mol Pharmacol 2002, 61,936-944.
    18 Milani D, Malgaroli A, Guidolin D, Fasolato C, Skaper SD, Meldolesi J. Ca~(2+) channels and intracellular Ca~(2+) stores in neuronal and neuroendocrine cells. Cell Calcium 2000, 11,191-199.
    19 Perez-Reyes E. Molecular physiology of low-voltage-activated t-type calcium channels. Physiol Rev 2003, 83, 117-161.
    20 Pummer MR, Logothetis DE, Hess P. Elementary properties and pharmacological sensitivities of calcium channels in mammalian peripheral neurons. Neuron 2002, 2, 1453-1463.
    21 Reul JM, Holsboer F. Corticotropin-releasing factor receptors 1 and 2 in anxiety and depression. Curr Opin Pharmacol 2002, 2, 23-33.
    22 Stefani A, Spadoni F, Bemardi G. Gabapentin inhibits calcium currents in isolated rat brain neurons. Neuropharmacology 1998, 37, 83-91.
    23 Suda T, Kageyama K, Sakihara S, Nigawara T. Physiological roles of urocortins, human homologues of fish urotensin I, and their receptors. Peptides 2004, 25, 1689-1701.
    24 Tang ZZ, Liang MC, Lu S, Yu D, Yu CY, Yue DT, Soong TW. Transcript scanning reveals novel and extensive splice variations in human 1-type voltage- gated calcium channel, Cavl.2 alphal subunit. J Biol Chem 2004,279,44335-44343.
    1 Martinez V, Wang L, Rivier JE, Vale W, Tache Y. Differential actions of peripheral corticotropin-releasing factor (CRF), urocortin II, and urocortin III on gastric emptying and colonic transit in mice: role of CRF receptor subtypes 1 and 2. J Pharmacol Exp Ther 2002, 301(2), 611-617.
    2 Reyes TM, Lewis K, Perrin MH, Kunitake KS, Vaughan J, Arias CA, Hogenesch JB, Gulyas J, Rivier J, Vale WW, Sawchenko PE. Urocortin II: a member of the corticotropin-releasing factor (CRF) neuropeptide family that is selectively bound by type 2 CRF receptors. Proc Natl Acad Sci 2001, 98(5), 2843-2848.
    3 Takahashi K, Totsune K, Murakami O, Shibahara S: Urocortins as cardiovascular peptides. Peptides 2004, 25(10), 1723-1731.
    4 Brar BK, Jonassen AK, Egorina EM, Chen A, Negro A, Perrin MH, Mjos OD, Latchman DS, Lee KF, Vale W. Urocortin-II and urocortin-III are cardioprotective against ischemia reperfusion injury: an essential endogenous cardioprotective role for corticotropin releasing factor receptor type 2 in the murine heart. Endocrinology 2004, 145(1), 24-35.
    5 Chanalaris A, Lawrence KM, Stephanou A, Knight RD, Hsu SY, Hsueh A, Latchman DS. Protective effects of the urocortin homologues stresscopin (SCP) and stresscopin-related peptide (SRP) against hypoxia/reoxygenation injury in rat neonatal cardiomyocytes. J Mol Cell Cardiol 2003, 35, 1295-1305.
    6 Brar BK, Stephanou 1 A, Knight R, Latchman DS. Activation of Protein Kinase B/Akt by Urocortin is Essential for its Ability to Protect Cardiac Cells Against Hypoxia/Reoxygenation-induced Cell Death. J Mol Cell Cardiol 2002, 34, 483-492.
    7 Tao J, Xu H, Yang C, Liu CN, Li S. Effect of urocortin on L-type calcium currents in adult rat ventricular myocytes. Pharmacol Res 2004, 50, 471-476.
    8 Cohen ML, Bloomquist W, Li D, Iyengar S. Effect of acute and subchronic subcutaneous urocortin on blood pressure and food consumption in ob/ob mice. Gen Pharmacol 2000, 34, 371-377.
    9 Kageyama K, Furukawa K, Miki I, Terui K, Motomura S, Suda T. Vasodilative effects of urocortin II via protein kinase A and a mitogen-activated protein kinase in rat thoracic aorta. J Cardiovasc Pharmacol 2003, 42(4), 561-565.
    10 Nishijo N, Takamine S, Sugiyama F, Kimoto K, Taniguchi K, Horiguchi H, Ogata T, Murakami, K, Fukamizu A, Yagami K. Vascular remodeling in hypertensive transgenic mice. Exp Anim 2001,48(3), 203-208.
    11 Mandegar M, Remillard CV, Yuan JX. Ion channels in pulmonary arterial hypertension. Prog Cardiovasc Dis 2002,45, 81-114.
    12 Guedes DN, Silva DF, Barbosa-Filho JM, Medeiros IA. Calcium antagonism and the vasorelaxation of the rat aorta induced by rotundifolone. Braz J Med Biol Res 2004,37(12), 1881-1887.
    13 Zhang Y, Gao Y, Zuo J, Lee R, Janssen LJ. Alteration of arterial smooth muscle potassium channel composition and BKCa current modulation in hypertension. EurJPharm 2005, 514, 111-119.
    14 Pan SL, Guh JH, Chang YL, Kuo SC, Lee FY, Teng CM. YC-1 prevents sodium nitroprusside-mediated apoptosis in vascular smooth muscle cells. Cardiovas Res 2004,61(1), 152-158.
    15 Dautzenberg FM, Higelin J, Teichert U. Functional characterization of corticotropin-releasing factor type 1 receptor endogenously expressed in human embryonic kidney 293 cells. Eur J Pharmacol 2000, 390, 51-59.
    16 Liao P, Yu D, Lu S, Tang ZZ, Liang MC, Zeng SH, Lin WM, Soong TW. Smooth muscle-selective alternatively spliced exon generates functional variation in Ca_V1.2 calcium channels. J Biol Chem 2004, 279, 50329-50335.
    17 Izumi T, Yamaguchi M. Overexpression of regucalcin suppresses cell death and apoptosis in cloned rat hepatoma H4-II-E cells induced by lipopolysaccharide, PD 98059, dibucaine, or Bay K 8644. J Cell Biochem 2004, 93(3), 598-608.
    18 Ray SD, Kamendulis LM, Gurule MW, Yorkin RD, Corcoran GB. Ca~(2+) antagonists inhibit DNA fragmentation and toxic cell death induced by acetaminophen. FASEB J 1993, 7(5), 453-4563.
    19 Scarabelli T, Knight R. Urocortins: take them to heart. Curr Med Chem Cardiovasc Hematol Agents 2004, 2(4), 335-342.
    20 Chanalaris A, Lawrence KM, Townsend PA, Davidson S, Jamshidi Y, Stephanou A, Knight RD, Hsu SY, Hsueh AJ, Latchman DS. Hypertrophic effects of urocortin homologous peptides are mediated via activation of the Akt pathway. Biochem Biophys Res Commun 2005, 328(2), 442-448.
    21 Nemoto T, Mano-Otagiri A, Shibasaki T. Urocortin 2 induces tyrosine hydroxylase phosphorylation in PC12 cells. Biochem Biophys Res Commun 2005, 330(3), 821-31.
    22 Gibbons GH. Endothelial function as a determinant of vascular function and structure: a new therapeutic target. Am J cardiol 1997, 79, 3-8.
    23 Kunigal S, Kusch A, Tkachuk N, Tkachuk S, Jerke U, Haller H, Dumler I. Monocyte-expressed urokinase inhibits vascular smooth muscle cell growth by activating Statl. Blood 2003, 102(13), 4377-4383.
    24 Sadeghi MM, Krassilnikova S, Zhang J, Gharaei AA, Fassaei HR, Esmailzadeh L, Kooshkabadi A, Edwards S, Yalamanchili P, Harris TD, Sinusas AJ, Zaret BL, Bender JR. Detection of injury-induced vascular remodeling by targeting activated alphavbeta3 integrin in vivo. Circulation 2004, 110(1), 84-90.
    25 Catterall WA. Structure and function of voltage-Gated ion channels. Annu Rev Biochem 1995, 64, 493-531.
    26 Li SN, Blaschke M, Heubach JF, Wettwer E, Ravens U. Effects of azelastine on contractility,action potentials and L-type Ca~(2+) currents in guinea-pig cardiac preparations. Eur J Pharmacol 2001, 418, 7-14.
    27 Xu SZ, Zhang Y, Ren JY, Zhou ZN. Effects of berberine on L- and T-type calcium channels in guinea pig ventricular myocytes. Acta pharmacol Sin 1997, 18, 515-518.
    28 Guo DL, Zhou ZN, Zheng FD, Hu CJ. Dauricine inhibited L-type calcium current in single cardiomyocyte of guinea pig. Acta pharmacol Sin 1997, 18,419-421.
    29 Liu CN, Yang C, Liu XY, Li SN. In vivo protective effects of urocortin on ischemia/reperfusion injury in rat heart via free radical mechanisms. Can J Physiol Pharmacol 2005, 83(6), 459-465.
    30 Pereira LM, Bezerra DG, Mandarim-de-Lacerda CA. Aortic wall remodeling in rats with nitric oxide deficiency treated by enalapril or verapamil. Pathol Res Pract 2004, 200(3), 211-217.
    31 Tsatsanis C, Androulidaki A, Dermitzaki E, Charalampopoulos I, Spiess J, Gravanis A, Margioris AN. Urocortin 1 and Urocortin 2 induce macrophage apoptosis via CRFR2. FEBS Lett 2005, 579(20), 4259-4264.
    32 Rademaker MT, Charles CJ, Espiner EA, Frampton CM, Lainchbury JG, Richards AM, Yamauchi N, Otagiri A, Nemoto T, Sekino A, Oono H, Kato I, Yanaihara C, Shibasaki T. Endogenous urocortins reduce vascular tone and renin-aldosterone/endothelin activity in experimental heart failure. Eur Heart J 2005, 26(19), 2046-2054.
    33 Lawrence KM, Kabir A, Bellahcene M, Davidson S, Mesquita R, Cao X, McCormick J, Carroll CJ, Chanalaris A, Townsend PA, Hubank M, Stephanou A, Knight RA, Marber MS, Latchman DS. Cardioprotection mediated by urocortin is dependent upon PKCe activation. FASEB J 2005,19(7), 831-833.
    1 Zorrilla EP, Schulteis G, Ormsby A, Klaassen A, Ling N, McCarthy JR, Koob GF, De Souza EB. Urocortin shares the memory modulating effects of corticotropin-releasing factor (CRF): mediation by CRF 1 receptors. Brain Res 2002, 952, 200-210.
    2 Lawrence KM, Chanalaris A, Scarabelli T, Hubank M, Pasini E, Townsend PA, Comini L, Ferrari R, Tinker A, Stephanou A, Knigh RA, Latchman DS. K(ATP) channel gene expression is induced by urocortin and mediates its cardioprotective effect. Circulation 2002, 106, 1556-1562.
    3 Schulman D, Latchman DS, Yellon DM. Urocortin protects the heart from reperfusion injury via upregulation of p42/p44 MAPK signaling pathway. Am J Physiol Heart Circ Physiol 2002, 283, H1481-1488.
    4 Ikeda K, Tojo K, Oki Y, Nakao K. Urocortin has cell-proliferative effects on cardiac non-myocytes. Life Sci 2002, 71,1929-1938.
    5 Reis FM, Luisi S, Florio P, Degrassi A, Petraglia F. Corticotropin-releasing factor, urocortin and endothelin-1 stimulate activin A release from cultured human placental cells. Placenta 2002, 23, 522-525.
    6 Vaughan J, Donaldson C, Bittencourt J. Urocortin, a mammalian neuropeptide related to fish urotensin I and to corticotrophin-releasing factor. Nature 2001, 378, 287-292.
    7 Donaldson CJ, Sutton SW, Perrin MH. Cloning and characterization of human urocortin. Endocrinology 1996, 137, 2167-2170.
    8 Okosi A, Brar BK, Chan M, D'Souza, Smith E, Stephanou A, Latchman DS, Chowdrey HS, Knight RA. Expression and protective effects of urocortin in cardiac myocytes. Neuropeptides 2001, 32,167-171.
    9 Iino K, Sasano H, Oki Y, Andoh N, Shih RW, Kitamoto T, Takahashi K, Suzuki H, Tezuka F, Yoshimi T, Nagura H. Urocortin expression in the human central nervous system. Clin Endocrinol (Oxf) 1999, 50,107-114.
    10 Pasquale F, Wylie V, Felice P. Urocortins in human reproduction. Peptides 2004, 25,1751-1757.
    11 Tracy L, Bale F, Reed PH, Yan H, Anjali KN, Kirk LP, Wylie WV, Lee KF. Corticotropin-releasing factor receptor 2 is a tonic suppressor of vascularization, PNAS 2002, 28, 7734-7739.
    12 Yutaka 0, Hironobu S. Localization and physiological roles of urocortin. Peptides 2004,25,1745-1749.
    13 Latchman DS.Urocortin protects against ischemic injury via a MARK-dependent pathway. Trends Cardiovasc Med 2001,11,167-169.
    14 Liu CN, Yang C, Liu XY, Li SN. In vivo protective effects of urocortin on ischemia/reperfusion injury in rat heart via free radical mechanisms. Can J Physiol Pharmacol 2005, 83(6), 459-465.
    15 Brar BK, Chen A, Perrin MH, Vale W. Specificity and regulation of extracellularly regulated kinase1/2 phosphorylation through corticotropin- releasing factor (CRF) receptors 1 and 2beta by the CRF/urocortin family of peptides. Endocrinology 2004, 145, 1718-1729.
    16 Sheng Z, Knowlton K, Chen J, Hoshijima M, Brown H, Chien KR. Cardiotrophin 1 (CT-1) inhibition of cardiac myocyte apoptosis via a mitogen-activated protein kinase-dependent pathway. Divergence from downstream CT-1 signals for myocardial cell hypertrophy. J Biol Chem 2006,272, 5783-5791.
    17 Dautzenberg FM, Kilpatrick GJ, Hauger RL, Moreau J. Molecular biology of the CRH receptors-in the mood. Peptides 2001,22, 753-760.
    18 Rossant CJ, Pinnock RD, Hughes J, Hall MD, Mcnulty S. Corticotropin releasing factor type 1 and type 2 alpha receptors regulate phosphorylation of calcium/cyclic adenosine 3',5'-monophosphate response element-binding protein and activation of p42/p44 mitogen-activated protein kinase. Endocrinology 1999, 140,1525-1536.
    19 Parkes DG, Vaughan J, Rivier J, Vale W, May CN. Cardiac inotropic actions of urocortin in conscious sheep. Am J Physiol 2002, 272, H2115-2122.
    20 Cobb MH, Goldsmith EJ. How MAP kinases are regulated. J Biol Chem 2005, 270,14843-14846.
    21 Downward J. Mechanisms and consequences of activation of protein kinase B/Akt. Curr Opin Genet Dev 1998, 8, 49-54.
    22 Allen MP, Zeng C, Schneider K, Xiong X, Meintzer MK, Bellosta P, Basilico C, Varnum B, Heidenreich KA, Wierman ME. Growth arrest-specific gene 6 (Gas6)/adhesion related kinase (Ark) signaling promotes gonadotropin-releasing hormone neuronal survival via extracellular signal-regulated kinase (ERK) and Akt. Mol Endocrinol 1999,13,191-201.
    23 Schaeffer HJ, Weber MJ. Mitogen-activated protein kinases: specific messages from ubiquitous messengers, Mol Cell Biol 1999,19,2435-2444.
    24 Tao J, Xu H, Yang C, Liu CN, Li S. Effect of urocortin on L-type calcium currents in adult rat ventricular myocytes. Pharmacol Res 2004, 50,471-476.
    25 Scarabelli TM, Pasini E, Stephanou A, Comini L, Curello S, Raddino R, Ferrari R, Knight R, Latchman DS. Urocortin promotes hemodynamic and bioenergetic recovery and improves cell survival in the isolated rat heart exposed to ischemia/reperfusion, J Am Coll Cardiol 2002,40,155-161.
    26 Noma A. ATP-regulated K~+ channels in cardiac muscle, Nature 2003, 305 147-148.
    27 Hearse DJ. Activation of ATP-sensitive potassium channels:a novel pharmacological approach to myocardial protection? Cardiovas Res 2005, 30 1-17.
    28 Shigematsu S, Sato T, Abe T, Saikawa T, Sakata AT, Arita M. Pharmacological evidence for the persistent activation of ATP-sensitive K channels in early phase of reperfusion and its protective role against myocardial stunning. Circulation 1995,92,2266-2275.
    29 Tao J, Wu YQ, Chen J, Zhu H, Li S. Effects of Urocortin on T-type calcium currents in mouse spermatogenic cells. Biochem Bioph Res Comm 2005, 329(2), 743-748.
    30 Tao J, Chen J, Wu YQ, Li S. Urocortin reduces the viability of adult rat vascular smooth muscle cells via inhibiting L-type calcium channels. Peptides 2005, 26 2239-2245.
    31 Gulati R, Peluso JJ. Opposing actions of hepatocyte growth factor and basic fibroblast growth factor on cell contact, intracellular free calcium levels, and rat ovarian surface epithelial cell viability. Endocrinology 2005, 138(5), 1847-1856.
    32 Keiichi I, Katsuyoshi T. Urocortin, a Newly Identified Corticotropin-Releasing Factor-Related Mammalian Peptide, Stimulates Atrial Natriuretic Peptide and Brain Natriuretic Peptide Secretions from Neonatal Rat Cardiomyocytes. Biochem Biophys Res Commun 1998, 250, 298-304.
    33 Huang Y, Chan FL, Lau CW, Tsang SY, He GW, Chen ZY, Yao X. Urocortin-induced endothelium-dependent relaxation of rat coronary artery: role of nitric oxide and K+ channels. Br J Pharmacol 2002, 135(6), 1467-1476.
    34 Parkes DG, May CN. Urocortin: A novel player in cardiac control. News Physiol Sci 2000, 15,264-268.
    35 Schiling L, Kanzler C, Schmiedek P, Ehrenreich H. Characterization of the relaxant action of urocortin, a new peptide related to corticotropin-releasing factor in the rat isolated basilar artery, Br J Pharmacol 1998, 125, 1164-1171.
    36 Gross GJ, Fryer RM. Sarcolemmal versus mitochondrial ATP-sensitive K~+ channels and myocardial preconditioning. Circ Res 2001, 84, 973-979.
    37 Day YJ, Gao Z, Tan PC, Linden J. ATP-sensitive potassium channel and myocardial preconditioning. Acta Anaesth Sin 1999, 37, 121-131.
    38 Cohen MV, Bainnes CP, Downey JM. Ischemic preconditioning: from adenosine receptor of K_(ATP) channel. Ann Rev Physiol 2000, 62, 79-109.
    39 Kinoshita H, Azma T, Iranami H, Nakahata K, Kimoto Y, Dojo M, Yuge O, Hatano Y. Synthetic peroxisome proliferator-activated receptor-gamma agonists restore impaired vasorelaxation via ATP-sensitive K+ channels by high glucose. J Pharmacol Exp Ther 2006, 318, 312-318.
    40 Jovanovic A, Jovonovic C, Carrasco AD, Terzic A. Aquired resistance of a mammalian cell line to hypoxia-reoxygination through cotransfection of Kir6.2 and SUR1 clones. Lab Invest 1998, 78, 1101-1107.
    41 Matheme GP, Linden J, Byford AM, Gauthier NS, Headrick JP. Transgenic A adenosine receptor overexpression increases myocardial resistance to ischemia. PNAS 2001, 94, 6541-6546.
    42 Xu H, Wang Y, Chen J, Li S. Urocortin causes further increasement of cardiac sarcolemmal ATP-sensitive K~+ current induced by hypoxia involving adenosine and PKC signaling way. Life Sciences 2005 (In press).
    43 Jantzi MC, Brett SE, Jackson WF, Corteling R, Vigmond E J, Welsh DG. Inward rectifying potassium channels facilitate cell-to-cell communication in hamster retractor muscle feed arteries. Am J Physiol Heart Circ Physiol. 2006, 291, H1319-328.
    44 Kurachi Y. ATP-sensitive K~+ channels of the cardiovascular system. Nippon Yakurigaku Zasshi 1998, 112, 32-35.
    45 Nakaya H, Takeda Y, Tohse N, Kanno M. Effects of ATP-sensitive K+ channel blockers on the action potential shortening in hypoxic and ischaemic myocardium. Br J Pharmacol 2001, 103, 1019-1026.
    46 Quayle JM, Standen NB. KATP channels in vascular smooth muscle. Cardiovasc Res 2004, 28, 797-804.
    47 Wang H, Tang Y, Zhang YL. Hypoxic pulmonary hypertension (HPH) and iptakalim, a novel ATP-sensitive potassium channel opener targeting smaller arteries in hypertension. Cardiovasc Drug Rev. 2005, 23,293-316.
    48 Zunkler BJ. Human ether-a-go-go-related (HERG) gene and ATP-sensitive potassium channels as targets for adverse drug effects. Pharmacol Ther. 2006, 112, 12-37.
    49 Kawabata A, Kawao N, Hironaka Y, Ishiki T, Matsunami M, Sekiguchi F. Antiallodynic effect of etidronate, a bisphosphonate, in rats with adjuvant-induced arthritis: involvement of ATP-sensitive K+ channels. Neuropharmacology. 2006, 51,182-190.
    50 Tao J, Li S. Urocortin: a cardiac protective peptide? Biochem Bioph Res Comm 2005, 332, 923-926.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700