聚乙二醇用于制备组织工程心脏瓣膜的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分聚乙二醇(PEG)制备猪组织工程去细胞瓣膜及其脱细胞效率的研究
     目的探讨PEG法在组织工程瓣膜准备中的应用价值,比较PEG不同处理时间后的去细胞效率和组织保留情况,确定适宜的PEG去细胞方案。方法猪主动脉瓣膜分为去细胞组和正常对照组。对照组取材后仅以磷酸盐缓冲液(PBS)浸泡;去细胞组用PEG和DNase I处理,按照PEG的处理时间又分为20分钟、35分钟、45分钟三组。处理后样本用苏木精—伊红染色,扫描电镜观察去细胞情况,DNA含量测定核酸去除,计算去细胞百分率;比较不同组的脱细胞效率;测定和比较不同组样本的组织厚度、组织含水量。SDS-PAGE电泳分析组织蛋白处理前后改变情况。结果组织切片观察:对照组瓣膜具有典型的三层结构,各层间均有细胞分布但以纤维层和海绵层为多;PEG处理组,瓣膜仍然具有类似对照组的三层结构,细胞外基质(ECM)结构保存完整,胶原纤维排列整齐,无明显断裂,仍呈波浪状平行排列,结构紧凑,组织无明显水肿。20分钟组与35分钟组可见细胞分布,45分钟组各层未见细胞。DNA含量测定:20分钟组、35分钟组和45分钟组去细胞百分率分别为28.17±9.58%、40.62±7.94%和95.32±3.61%。45分钟组与20分钟组和35分钟组有显著差异而后两组间无显著差异;对照组、20分钟组、35分钟组、45分钟组的组织厚度分别为:0.39±0.05mm、0.41±0.06mm、0.43±0.05mm、0.44±0.07mm;组织含水量分别为:88.37±4.27%、90.81±2.21%、91.47±2.63%、91.89±3.01%。各组组织厚度和组织含水量无显著差异。对照组和45min组蛋白提取物的浓度分别为0.46±0.07 mg/mL和0.15±0.04 mg/mL;SDS-PAGE电泳显示,在蛋白分子量25kDa~250kDa范围内,PEG组蛋白条带虽然很细微,但仍然可见。结论PEG处理45分钟法去除细胞完全,细胞外基质保存完整,与对照组比较组织厚度、组织含水量无显著差异;PEG处理能够减少蛋白数量,但对其成分改变不大。45分钟PEG处理可以有效制备猪去细胞瓣。
     第二部分聚乙二醇制备猪去细胞主动脉瓣膜平面双轴生物力学测定
     目的验证PEG法在组织工程瓣膜准备中的应用价值,观察猪主动脉瓣叶经PEG处理时间后的生物力学性质,并和天然猪主动脉瓣叶进行比较。方法猪主动脉瓣膜分为PEG组和正常对照组。瓣叶处理方案分别为:对照组,取材后仅以磷酸盐缓冲液(PBS)浸泡;PEG组,PEG浸泡振摇45分钟和DNase I处理。处理后各组部分样本用苏木精—伊红染色观察去细胞情况,DNA含量测定核酸去除,计算去细胞百分率;部分样本沿瓣叶径向和周向裁减测样,测定组织厚度后用AGS-J电子测试仪行拉伸实验获得最大应力、最大应变、弹性模量和应力—应变曲线。结果组织切片观察:对照组瓣膜具有典型的三层结构,各层间均有细胞分布但以纤维层和海绵层为多;PEG处理组,瓣膜具有三层结构,细胞外基质(ECM)结构保存完整,各层未见细胞。DNA含量测定:PEG组去细胞百分率为94.48±4.32%。正常组、PEG组的瓣叶组织厚度分别为:0.39±0.05mm、0.41±0.05mm,各组组织厚度无显著差异。力学检测,对照组、PEG组都表现出两轴向力学性能不同的各向异性特征,对照组和PEG组具有基本相同的应力—应变曲线。径向两组最大应力、最大应变、弹性模量分别为:2.831±1.036MPa、2.496±1.251MPa;0.387±0.127、0.573±0.143;17.671±0.957 MPa、16.552±1.038 MPa周向两组最大应力、最大应变、弹性模量分别为:5.103±1.078 MPa、4.897±0.989 MPa;0.207±0.059、0.219±0.214;36.854±1.566 MPa、35.741±1.207MPa。结论PEG处理45分钟法去除细胞完全,细胞外基质保存完整,脱细胞瓣叶应力—应变曲线和对照组基本相同,仍具有两轴各向异性特点;两组平面两轴向最大应力、弹性模量和周向最大应变无显著差异,径向最大应变增加。PEG制备去细胞瓣力学性能满足组织工程瓣膜要求。
     第三部分聚乙二醇(PEG)处理猪主动脉去细胞瓣膜支架的免疫反应性研究
     目的测定PEG处理后的猪主动脉瓣膜支架的免疫反应活性;并和未经过PEG处理的猪主动脉瓣膜支架进行比较。为PEG瓣膜支架的进一步运用寻找实验依据。方法采用PEG浸泡45min法处理猪主动脉瓣膜,制备去细胞瓣膜支架。选择BALB/C小鼠,采用颈部皮下包埋瓣膜。实验分为对照组和PEG组,对照组为新鲜瓣膜皮下包埋; PEG组为去细胞瓣膜皮下包埋。瓣叶组织统一剪裁为1×1cm2大小,于BALB/C小鼠颈部皮下包埋。各组分别于手术后5d、10d、20d各取小鼠六只处死后,取出皮下瓣膜和小鼠脾脏行HE染色观察组织变化情况;取全血离心后得到血清,行ELISA检测IL-2、IL-10定量分析,了解免疫活性;脾脏组织行RT-PCR检测了解IL-2、IL-10转录翻译活性并半定量分析,两组间比较。结果两组小鼠均无实验期间死亡。HE染色显示对照组免疫炎症反应较PEG组发生时间早、程度重,并且组织结构破坏较重。ELISA结果:两组比较,在不同时间点,对照组的IL-2水平均较PEG组显著增高(p<0.05);同一组内,IL-2水平成波浪样曲线,5d开始上升,在10d最高,20d较10d下降;而两组比较,在不同时间点,IL-10水平无显著差别(p>0.05);同一组内,IL-10水平呈逐渐上升的趋势。IL-2以及L-10的RT-PCR结果也呈现出类似ELISA结果的趋势。结论PEG处理后的瓣膜细胞以及细胞膜抗原成分去除完全,皮下植入后免疫炎症程度弱,时间短,组织结够破坏少,并且易于自体细胞长入。适于作为TEHV的理想支架,但其最终植入心脏瓣膜部位后的效果仍需要实验证实。
     第四部分聚乙二醇(PEG)处理猪主动脉去细胞瓣膜支架细胞黏附效率及不同预处理对黏附率影响的研究
     目的测定PEG处理后的猪主动脉瓣膜支架的细胞黏附效率;并比较其经过不同预处理后对细胞黏附率影响,为进一步完成瓣膜支架在细胞化寻找实验依据。方法选择昆明白小鼠,采用组织贴块法,原代培养主动脉成纤维细胞,选用5~8代细胞用于细胞黏附率测定。实验分为PEG组、PEG+明胶(gelatin)组、PEG+多聚赖氨酸(Poly-L-Lysine,PLL)组和PEG+胎牛血(FBS)清组。PEG组为经PEG和DNase I处理的猪主动脉瓣叶;PEG+gelatin组、PEG+PLL组和PEG+FBS组为PEG处理后瓣叶在测定细胞黏附率前,先由相应物质包被瓣叶行预处理。各组瓣叶组织大小统一为1×1cm2,置于24孔板内,每个样本按5×105数量种植细胞,种植1h后,取出玻片和瓣叶组织,培养基洗脱其上未黏附细胞。24孔板进行MTT检测未黏附细胞数量,与总细胞数相减得到黏附细胞数,计算黏附效率并比较。PEG组取出瓣叶组织放入培养瓶静态培养2周,HE染色观察细胞生长和分布情况。结果成功有效培养出小鼠主动脉成纤维细胞; PEG组、PEG+ gelatin组、PEG+ PLL组、PEG+ FBS组的细胞黏附率为:42.63%±5.19%,69.22%±6.63%,65.78%±4.45%,85.32%±3.61%。经过预处理后各组细胞黏附率均显著高于PEG组,其中以胎牛血清效果更加显著。静态培养两周后组织切片观察:瓣叶组织三层结构,细胞生长良好,各层均有细胞分布,表层细胞数量较深部多,可见有形成连续排列的细胞层。结论组织贴块法培养主动脉成纤维细胞方便有效。PEG处理瓣叶可以黏附细胞,处理瓣叶组织经预处理后可以获得更加理想的细胞黏附率。
Part One Primary Study on Decelluarization Rate of Poly Ethylene Glycol in preparing porcine Tssue Egineering Hart Vlves
     Objective: To study the feasibility of a new decellularization method in preparing porcine tissue engineering heart valves by poly ethylene glycol, determine the decelluarity efficiency and the preservation of the ECM by the method. Methods: The porcine aortic valves were harvested from slaughterhouse and divided into control group and PEG treated group. The specimens in control group were sink in phosphate buffer saline (PBS), while that in PEG group were decellularized with poly ethylene glycol and DNAse I. The PEG group was subdivided into 20min, 35min and 45min subgroup based on the time in PEG. Histochemical studies were performed on sequential valve sections dyed with hematoxylin and eosin. Specimens also were observed by scanning electron microscope (SEM). The content of DNA was detected by photometer. And the thickness and amount of water in specimens were measured in each group. The change in tissue protein was evaluated by SDS-PAGE electrophoresis. Results: In the light microscope, the control group has typical tri-layer structure as native valves. The cells were separated in all three layers and were predominant in spongiosa and fibrosa; the PEG group also has tri-layer structure and the extra cellular matrix (ECM) was well reserved. The collagen was compact and no apparent split. Cells could be seen in 20min and 35min subgroup, but no signs in 45min subgroup. The decellularity percentage could be calculated by DNA concentration in PEG subgroups, which were 28.17±9.58%、40.62±7.94%、95.32±3.61% respectively. The difference between 45min and 20min、35min was significant, which was not between 20min and 35min. the thickness of specimens in four groups were 0.39±0.05mm、0.41±0.06mm、0.43±0.05mm、0.44±0.07mm, and the amount of water in valves were 88.37±4.27%、90.81±2.21%、91.47±2.63%、91.89±3.01%, respectively. The difference has no significance. Extracted protein of nature and PEG treated porcine aortic valves were 0.46±0.07 mg/mL and 0.15±0.04 mg/mL. However, within the examined molecular weight range, protein bands were still detectable by SDS-PAGE within the decellularized porcine aortic valve. Conclusion: Sinking in PEG for 45min could remove celluar components effectively; the extra cellular matrix (ECM) was well reserved; the thickness and amount of water in valves had no significant change. The decellularization procedure removes considerable amounts of proteins within the porcine aortic valves. The method has value in preparing porcine decelluarization heart valves.
     Part Two Primary Study on plane Biaxial Mechanical Properties of the PEG Treated and Natural Porcine Aortic Valve Cusp
     Objective: To validate the reliability of the method of preparing porcine decellularization tissue engineering heart valves by poly ethylene glycol, determine and compare the biaxial mechanical properties of PEG treated and natural porcine aortic valve. Methods: The porcine aortic valves were divided into control group and PEG group. The specimens in control group were sink in phosphate buffer saline (PBS), while that in PEG group were decellularized with poly ethylene glycol and DNAse I. Histochemical studies were performed on sequential valve sections dyed with hematoxylin and eosin. The content of DNA was detected by photometer. Rectangle specimens were dissected from the central belly region of the leaflet in either radial or circumferential directions. After the thickness of the specimens was measured in each group, the specimens were mounted onto the AGS-J device and got tensile test. The stress-strain curve, max-stress, max-load, max-strain and Elastic modulus were got from the experimental data. Results: in the light microscope, the control group has typical tri-layer structure as native valves. The cells were separated in all three layers and were predominant in spongiosa and fibrosa; the PEG group also has tri-layer structure and the extra cellular matrix (ECM) was well reserved, no cellular signs could be seen. The decellularizaty percentage was 94.48±4.32%. The thickness of specimens in two groups was 0.39±0.05mm and 0.41±0.05mm. The two groups had similar stress-strain curve, and there was difference in mechanical properties between radial and circumferential directions. The max max-stress, max-strain and elastic modulus of the two groups were 2.831±1.036MPa、2.496±1.251MPa;0.387±0.127、0.573±0.143;17.671±0.957 MPa、16.552±1.038 MPa in radial direction and 5.103±1.078 MPa、4.897±0.989 MPa ; 0.207±0.059、0.219±0.214 ; 36.854±1.566 MPa、35.741±1.207MPa in circumferential direction, respectively. Conclusion: Sinking in PEG for 45min could remove celluar components effectively; the thickness of valves had no significant change. The two groups had character of mechanical anisotropy. There was no significant difference in max-stress and elastic modulus in radial or circumferential direction between the two groups. The PEG trated porcine arotic valve has biaxial mechanical properties and could be an alternative for tissue engineering heart valve scaffold.
     Part Three Evaluation on the immunogenic property of PEG treated porcine tissue engineering valves
     Objective: To compare and evaluate the immunogenic property of nature porcine aortic valve and PEG treated porcine decellularated tissue engineering heart valves. Methods: The nature porcine aortic valves were treated with PEG as the method we used previously. The nature valves and PEG treated valves were cut into 1×1cm2. The BALB/C mice were divided into two groups: control and PEG groups, which were then subcutaneous embedded with nature and PEG treated valves in nape, respectively. On 5d, 10d, 20d after valves were subcutaneous embedded, six mice in each group were executed and the valves and spleen were explanted and dyed with hematoxylin and eosin. The serum was got from the whole blood and then the content of IL-2, IL-10 in serum was measured by ELISA assay. The transcription activities of IL-2, IL-10 in mice spleen were self-quantity measured by RT-PCR. The result of them was compared between the two groups. Results: There were no deaths between the two groups in the time of experiment. The histology examination showed that the rejection happened in control group was earlier and severer than PEG group. And the tissue construction was destroyed badly in control group than that in PEG group. The result of ELISA assay showed that at each sample time point, the content of IL-2 in control group was higher than PEG group; and the curve of IL-2 was wave like, up from 5d, max at 10d, down but still high at 20d. There no significant difference between the two groups in the content of IL-10 at each time point. the curve of IL-10 was escalated. The result of RT-PCR of IL-2 and IL-10 got the same trend as that of ELISA. Conclusion: PEG treated porcine heart valves get rid of the immunogenicity thoroughly. The rejection happened after subcutaneous embedded is moderate and transitory. There have little tissue construction destroyed, and the fibroblast could adhere and live in easily. The decelluarationed valve is suit for TEHV scsffold.
     Part Four Evaluation on the cell adhesion efficiency of PEG treated porcine tissue engineering valves and the impact of surface modification
     Objective: To get in sight of the cell adhesion efficiency of PEG treated porcine decellularated tissue engineering heart valves, and evaluate the impact of surface modification on cell adhesion efficiency of PEG treated valves. Methods: The thoracic aorta of kunming mouse was separated carefully and cut into small tissue pieces. The explants were seeded onto culture flasks. Cell was observed through phase contrast microscope and fibroblasts from 5-8 generations are applied to cell adhesion experiment. All the valve specimens were cut into 1cm×1cm and divided into PEG group, PEG + gelatin group, PEG + Poly-L-Lysine (PLL) group, PEG + fetal bovine serum (FBS)group. The specimens in PEG group were PEG treated valves with no surface modification, while that in PEG + gelatin group, PEG + PLL group, PEG + FBS group were PEG treated valves pre-coated with gelatin, poly-l-lysine and fetal bovine serum before experiment, respectively. These specimens were put into 24 cell culture medium. 5×105 fibroblasts were added into every cell and culture for 1 h. After that the valves were took out and washed out carefully to get the fibroblasts that did not adhere to the valve could stay in the culture medium. The number of cells in culture medium was got by MTT assay, so the number of cells adhere on valve can be calculated. Some of the valves in PEG group were transferred into culture flasks and static culture for two weeks, and then the valves were checked by histology. Results: The fibroblast can be culture and harvest from the method of tissue pieces culture effectively. The rate of cell adhere to the valves in PEG group, PEG + gelatin group, PEG + PLL group and PEG + FBS group was 42.63%±5.19%,69.22%±6.63%,65.78%±4.45%,85.32%±3.61%, respectively. The valves in surface modification groups has significant higher cell adhere rate than that in PEG group. After two weeks static culture, the histology examination showed that the valve preserved tri-layer structure as native valves. The cells were separated in all three layer and the number of them in superficial was more than that in deeper. The continued cell line could be seen in the surface. Conclusion: PEG treated porcine heart valves have excellent in vitro biocompatibility; the valve scaffold can obviously improve cell adhere efficiency after surface modification.
引文
1. Billiar K. L, Sacks M. S. Biaxial mechanical properties of the natural and glutaraldehyde treated aortic valve cusp PartI: experimental results. J Biomech Eng. 2000, 122(1):23-30
    2. Schoen F, Levy R. Tissue heart valves: current challenges and future research perspectives. J Biomed Mater Res. 1999, 47:439-465
    3. Senthilnathan V, Treasure T, Grunkemeier G, et al, Heart valves: which is the best choice? Cardiovasc Surg. 1999, 7(4):393-397
    4. Sacks M. S, Enomoto Y, Graybill J. R, et al, In-vivo dynamic deformation of the mitral valve anterior lealet. Ann Thorac Surg. 2006, 82(4):1369-1377
    5. Hoerstrup S. P, Sodian R, Daebritz S, et al. Functional living trilealet heart valves grown in vitro. Circulation. 2000, 102(19 Suppl3): 44-49
    6. Stock U. A, Vacanti J. P, Mayer Jr. JE, et al, Tissue engineering of heart valves current aspects. Thorac Cardiovasc Surg. 2002, 50(3):184-193
    7. Dahm M, Lyman W D, Schwell A B, et al, Immunogenicity of glutaraldehyde-tanned bovine pericardium. J Thorac Cardiovasc Surg.1990, 99(6):1082-1090
    8. Valente M, Bortolotti U, Thiene G. Ultrastructural substrates of dystrophic calcification in porcine bioprosthetic valve failure. Am J Pathol.1985, 119(1):12-21
    9. Levy R. J, Schoen F. J, Flowers W. B, et al. Initiation of mineralization in bioprosthetic heart valves: studies of alkaline phosphatase activity and its inhibition by AlCl3 or FeCl3 preincubations. J Biomed Mater Res. 1991, 25(8):905-935
    10. Rossi M. A, Braile D. M, Teixeira M. D, et al, Lipid extraction attenuates the calcific degeneration of bovine pericardium used in cardiac valve bioprostheses. J Exp Pathol (Oxford).1990, 71(2):187-196
    11. Steinhoff G, Stock U, Karim N, et al, Tissue engineering of pulmonary heart valves on allogenic acellular matrix conduits: in vivo restoration of valve tissue. Circulation. 2000, 102(19 Suppl3): 50-55
    12. Wilson G. J, Courtman D. W, Klement P, et al, Acellular matrix: Biomaterials approaches for coronary artery bypass and heart valve replacement. Ann Thorac Surg. 1995, 60(2 Suppl): 353-358
    13. Courtman D. W, Pereira C. A, Omar S, et al, Biomechanical and ultrastructural comparison of cryopreservation and a novel cellular extraction of porcine aortic valve leaflets. J Biomed MaterRes.1995, 29(12):1507-1516
    14. Zeltinger J, Landeen L. K, Alexander H. G, et al, Development and characterization of tissue-engineered aortic valves. Tissue Eng. 2001, 7(1):9-22
    15. Booth C, Korossis S. A, Wilcox H. E, et al. Tissue engineering of cardiac valve prostheses I: development and histological characterization of an acellular porcine scaffold. J Heart Valve Dis. 2002, 11(4):457-462
    16. Korossis S. A, Booth C, Wilcox H. E, et al, Tissue engineering of cardiac valve prostheses II: biomechanical characterization of decellularized porcine aortic heart valves. J Heart Valve Dis 2002, 11(4):463-471
    17. Ahkong QF, Howell JI, Lucy JA, et al, Fusion of hen erythrocytes with yeast protoplasts induced by polyethylene glycol. Nature, 1975, 255:66–67
    18. Kao KN, Michayluk MR. A method for high-frequency inter generic fusion of plant protoplasts. Planta, 1974, 115:355–367
    19. Barry R. Lentz. PEG as a tool to gain insight into membrane fusion. J Eur Biophys, 2007, 36:315–326
    20.胡永祥,牛津梁,张文博,等。聚乙二醇修饰药物技术的研究进展。中国生化药物杂志, 2004, 25(6):369-373
    21. Du H, Chandaroy P, Hui S. Grafted poly (ethylene glycol) on lipid surfaces inhibits protein adsorption and cell adhesion. Biochim Biophys Acta, 1997, 1326: 236-248
    22. Green R, Davies M, Roberts C, et al. A surface plasmon resonance study of albumin adsorption to PEO-PPO-PEO triblock copolymers. J Biomed Mater Res, 1998, 42: 165-171
    23. Drumheller P, Hubbell J. Densely crosslinked polymer networks of poly (ethylene glycol) in trimethylolpropane triacrylate for cell adhesion-resistant surfaces. J Biomed Mater Res, 1995, 29: 207-215
    24. Yu C, Kohn J. Tyrosine-PEG-derived poly (ether carbonate)s as new biomaterials Part I: synthesis and evaluation. Biomaterials, 1999, 20: 253-264
    25. Lushchak V. Influence of poly ethylene glycol on lactate dehydrogenase. Biochem Mol Biol Int, 1998, 44: 425-431
    1. Rahimtoola, S. H. Choice of prosthetic heart valve for adult patients. J. Am. Coll. Cardiol. 2003, 41:893–904.
    2. Hammermeister, K., G. K. Sethi,W. G. Henderson, et al., Outcomes 15 years after valve replacement with a mechanical versus a bioprosthetic valve: final report of the Veterans Affairs randomized trial. J. Am. Coll. Cardiol. 2000, 36:1152–1158.
    3. Jamieson, W. R., O. von Lipinski, R. T. Miyagishima, et al., Performance of bioprostheses and mechanical prosthesesassessed by composites of valve-related complications to 15 years after mitral valve replacement. J. Thorac. Cardiovasc. Surg. 2005, 129:1301–1308.
    4. Schoen, F. J. Pathology of heart valve substitution with mechanical and tissue prostheses. In: Cardiovascular Pathology 3rd Ed., New York: Churchill Livingstone, 2001, 629–677.
    5. Erez, E., K. R. Kanter, E. Isom, et al., Mitral valve replacement in children. J. Heart Valve Dis. 2003, 12:25–29.
    6. Kanter, K. R., J. M. Budde, W. J. Parks, et al., One hundred pulmonary valve replacements in children after relief of right ventricular outflow tract obstruction. Ann. Thorac. Surg. 2002, 73:1801–1806.
    7.叶福林,徐志云,张宝仁,等.去细胞猪主动脉瓣叶的获取和内皮细胞的种植[J].中国修复重建外科杂志2003, 17(6): 493-495.
    8. Leth RG, Wilhelmi M, Walles T, et al. Acellularized porcine heart valve scaffolds for heart valve tissue engineering and the risk of cross-spices transmission of porcine endogenous retrovirus[J]. J Thorac Cardiovasc Surg. 2003, 126(3): 1000-1004.
    9. Simon A, Wilhelmi M, Steinhoff G, etal. Cardiac valve endothelial cells: relevance in the long term function of biologic valve prostheses. J Thorac Cardiovasc Surg, 1998, 116(4): 609-614.
    10. Hopkins, R. A. Tissue engineering of heart valves: decellularized valve scaffolds. Circulation 2005, 111:2712–2714,
    11. Hodde JP, Record RD, Tullius R S, et al. Retention ofendothelial cell adherence toporcine-derived extracellular matrixafter disinfection and sterilization [J]. Tissue Eng, 2002, 8 (2): 225-234.
    12.叶福林,徐志云,张宝仁,等.猪主动脉组织工程瓣膜制备的初步研究[J].第二军医大学报. 2003, 24(3): 242-244.
    13. Curtil A, Pegg D E, Wilson A. Freeze drying of cardiac valves in preparation for cellular repopulation. Cryobiology, 1997, 34(1): 13-22.
    14. Curtil A, Pegg DE, Wilson A. Repopulation of freeze-dried porcine valves with human fibroblasts and endothelial cells. J Heart Valve Dis. 1997, 6: 296-306
    15. Dohmen PM, Ozaki S, Nitsch R, et al. A tissue engineered heart valve implanted in a juvenile sheep model. Med Sci Monit. 2003, 9: 137-144.
    16. Grauss RW, Hazekamp M]G, Vliet SV, et al. Decellularization of rat aortic valve allografts reduces leaflet destruction and extracellular matrix remodeling. J Thorac Cardiovasc Surg. 2003, 126:2003-2010.
    17. Bader A, Schilling T, Teebken OE, et al. Tissue engineering of heart valves-human endothelial cell seeding of detergent acellularized porcine valves. Eur J Cardio-Thorac Surg. 1998, 14: 279-284.
    18. Bader A, Steinhoff G, Strobl K, et al. Engineering of human vascular aortic tissue based on a xenogeneic starter matrix.Transplantation. 2000, 70(1): 8-15.
    19. Layland KS, Vasilevski O, K?nig K, et al. Impact of decellularization of xenogeneic tissue on extracellular matrix integrity for tissue engineering of heart valve. J Struct Biol. 2003, 143: 201-208.
    20. Steinhoff G, Stock U, Karim N, et al. Tissue Engineering of Pulmonary Heart Valves on Allogenic Acellular Matrix Conduits: In Vivo Restoration of Valve Tissue. Circulation. 2000, 102: 50-55.
    21. Leyh RG, Wilhelmi M, Rebe P In vivo repopulation of xenogeneic and allogeneix acellular valve matrix conduits in the pulmonary circulation. Ann Thorac Surg. 2003, 75: 1457-1463.
    22. Leyh RG, Wilhelmi M, Walles T, et al. Acellularized porcine heart valve scafolds for heart valve tissue engineering and the risk of cross-species transmission of porcine endogenous retrovirus. J Thorac Cardiovasc Surg. 2003, 126: 1000-1004.
    23. Rieder E, Kasimir MT, Silberhumer G, et al. Decellularization protocols of porcine heart valves differ importantly in efficiency of cell removal and susceptibility of the matrix to recellularization with human vascular cells. J Thorac Cardiovasc Surg, 2004, 127(3): 399-405.
    24.蒋雄刚,徐鹏,韩啸,等.聚乙二醇去细胞化组织工程带瓣管道的物理特性. [J]华中科技大学学报(医学版).2006, 35(5):659-661.
    25. Barry R. Lentz. PEG as a tool to gain insight into membrane fusion. Eur Biophys J 2007, 36:315–326.
    26. Kim KM. Cells, rather than extracellular matrix, nucleate apatite in glutaraldehyde-treated vascular tissue. J Biomed Mater Res. 2002, 59: 639–645.
    27. Schoen FJ, Levy RJ, Nelson AC, et al. Onset and progression of experimental bioprosthetic heart valve calcification. Lab Invest. 1985, 52:523–532.
    28. Human P, Zilla P. Characterization of the immune response to valve bioprostheses and its role in primary tissue failure. Ann Thorac Surg. 2001, 71:S385–S388.
    29. O’Brien MF, Goldstein S, Walsh S, et al. The Synergraft: a new acellular (non-GA-fixed) tissue heart valve for autologous recellularization: first experimental studies before clinical implantation. Semin Thorac Cardiovasc Surg. 1999, 11(suppl 1):194–200.
    30. Stock UA, Nagashima M, Khalil PN, et al. Tissue-engineered valve conduits in the pulmonary circulation. J Thorac Cardiovasc Surg. 2000, 119:732–740.
    31. Hoerstrup SP, Sodian R, Daebritz S, et al. Functional living trileaflet heart valves grown in vitro.Circulation. 2000, 102(suppl): III44–49.
    32. Cebotari S, Mertsching H, Kallenbach K, et al. Construction of autologous human heart valves based on an acellular allograft matrix. Circulation. 2002, 106(suppl I): I63–68.
    33. Elkins RC, Dawson PE, Goldstein S, et al. Decellularized human valve allografts. Ann Thorac Surg. 2001, 71(suppl):S428–432.
    34. Dohmen PM, Lembcke A, Hotz H, et al. Ross operation with a tissue engineered heart valve. Ann Thorac Surg. 2002, 74: 1438–1442.
    35. Hawkins JA, Hilman ND, Lambert L, et al. Immunogenicity of decellularized cryopreserved allografts in pediatric cardiac surgery: comparison with standard cryopreserved allografts. J Thorac Cardiovasc Surg. 2003, 126:247–253.
    36. Sievers HH, Stierle U, Schmidtke C, et al. Decellularized pulmonary homograft (SynerGraft) for reconstruction of the right ventricular outflow tract: first clinical experience. Z Kardiol. 2003, 92:53–59.
    37. Elkins RC, Lane MM, Capps SB, et al. Humoral immune response to allograft valve tissue pretreated with an antigen reduction process. Semin Thorac Cardiovasc Surg. 2001, 13(suppl 1):82– 86.
    38. Simon P, Kasimir MT, Seebacher G, et al. Early failure of the tissue engineered porcine heart valve SynergraftTM in pediatric patients. Eur J Cardiothorac Surg. 2003, 23:1002–1006.
    39. Fernandez Botran R, Gorantla V, Sun X, et al. Targeting of glycosaminoglycan cytokine interaction as a novel therapeutic approach in allotransplantation. Transplantation. 2002, 74: 623–629.
    40. Siminoesco DT, Lovekamp JJ, Vyavahare NR. Glycosaminoglycan degrading enzymes in porcine aortic heart valves: implications for bioprosthetic heart valve degeneration. J Heart Valve Dis. 2003, 12:217–225.
    41. Wilhelmi MH, Rebe P, Leyh R, et al. Role of inflammation and ischemia after implantation of xenogeneic pulmonary valve conduits: histological evaluation after 6 to 12 months in sheep. Int J Artif Organs. 2003, 26:411– 420.
    42. Caterina MJ, Devreotes PN. Molecular insights into eukaryotic chemotaxis. FASEB J. 1991, 5:3078–3085.
    1. Thubrikar M., The aortic valve. Boca Raton, FL: CRC Press. 1990, p 221
    2.叶晓峰,组织工程心脏瓣膜的构建.硕士学位论文,华中科技大学,2005
    3. Mendelson K. A. S. Heart valve tissue engineering: concepts, approaches, progress, and challenges. Ann Biomed Eng. 2006, 34(12):1799-1819
    4. Schoen F. J. New frontiers in the pathology and therapy of heart valve disease: 2006 Society for Cardiovascular Pathology, Distinguished Achievement Award Lecture, UnitedStates-Canadian Academy of Pathology, Atlanta, GA, February12, 2006. Cardiovasc Pathol. 2006, 15(5):271-279
    5. Vesely I. Heart valve tissue engineering. Circ Res. 2005, 97:743-755
    6. Sacks,M. S., Yoganathan,Ajit P. Heart valve function:a biomechanical perspective. Phil. Trans. R. Soc. B. 2007, 362:1369-1391
    7. Sacks, M. S., Smith, D. B., Hiester, E. D. The aortic valve micro structure: effects of transvalvular pressure .J Biomed Mater Res. 1998, 41(1):131-141
    8. Schoen FJ. Aortic valve structure-function correlations: role of elastic fibers no longer a stretch of the imagination. J Heart Valve Dis. 1997, 6(1): 1-6.
    9. Driessen, N. J., Boerboom, R. A., Huyghe, J. M., et al. Computational analyses of mechanically induced collagen fiber remodeling in the aortic heart valve. J Biomech Eng. 2003, 125(4): 549-557
    10. Sacks, M. S, Smith, D. B., Hiester, E. D. A small angle light scattering device for planar connective tissue micro-structural analysis. Ann Biomed Eng. 1997, 25(4): 678-689
    11. Yacoub, M. H., Kilner, P. J., Birks, E. J., et al.. The aortic outflow and root: a tale of dynamismand crosstalk. Ann Thorac Surg. 1999, 68:S37-43
    12. Billiar, K. L., M. S. Sacks. Biaxial mechanical properties of the natural and glutaraldehyde treated aortic valve cusp Part I Experimental results. J. Biomech. Eng. 2000, 122(1):23-30,
    13. Sauren, A. A. J. H. The mechanical behavior of the aortic valve. Ph Dt hesis, Eindhoven University of Technology, Eindhoven, 1981.
    14. Layland SK, Vasilevski O, Opitz F, et al. Impact of decellularization of xenogeneic tissue on extracellular matrix integrity for tissue engineering of heart valves. J. Struct. Biol. 2003, 143: 201-208.
    15. Wells SM, Sacks MS. Effects of fixation pressure on the biaxial mechanical behavior of porcine bioprosthetic heart valves with long-term cyclic loading. Biomaterials. 2002, 23: 2389-23
    1. Paul Simon, Marie-theres Kasimir, Erwin Rieder, et al, Tissue engineering of heart valves Immunologic and inflammatory challenges of the allograft scaffold. Progress in Pediatric Cardilogy, 2006, 21:161-165.
    2. Fann JI, Miller DC, Moore KA, et al. Twenty-year clinical experience with porcine bioprosthesis. Ann Thorac Surg 1996, 62(5):1301– 11.
    3. Vongpatanasin W, Hillis D, Lange RA. Prosthetic heart valves. N Engl J Med 1996, 335(6):407–16.
    4. Robbins RC, Bowman Jr FO, Malm JR. Cardiac valve replacement in children: a twenty year series. Ann Thorac Surg 1988, 45:56– 61.
    5. Williams DB, Danielson GK, McGoon DC. Porcine heterograft valve replacement in children. J Thorac Cardiovasc 1982, 85:446–50.
    6. Solymar L, Rao PS, Mardini MK, et al, Prosthetic valves in children and adolescents. Am Heart J 1991, 121:557– 68.
    7. Turrentine MW, Ruzmetov M, Vijay P, et al, Biological versus mechanical aortic valve replacement in children. Ann Thorac Surg 2001, 71(suppl 5):S356– 60.
    8. Jamieson WR, Rosado LJ, Munro AI, et al, Carpentier– Edwards standard porcine bioprosthesis: primary tissue failure (structural valve degeneration) by age groups. Ann Thorac Surg 1988, 46(2):155– 62.
    9. Oei FB, Welters MJ, Knoop CJ, et al, Circulating donor-specific cytotoxic T lymphocytes with high avidity for donor human leukocyte antigens in pediatric and adult cardiac allograft valved conduit recipients. Eur J Cardiothorac Surg 2000, 18:466–472.
    10. Welters MJ, Oei FB, Vaessen LM, et al, Increased numbers of circulating donor-specific T helper lymphocytes after human heart valve transplantation. Clin Exp Immunol 2001, 124:353–358.
    11. Hawkins JA, Breinholt JP, Lambert LM, et al, Class I and class II anti-HLA antibodies after implantation of cryopreserved allograft material in pediatric patients. J Thorac Cardiovasc Surg 2000, 119:324–330.
    12. Meyer SR, Campbell PM, Rutledge JM, et al, Use of an allograft patch in repair of hypoplastic left heart syndrome may complicate future transplantation. Eur J Cardiothorac Surg 2005, 27:554–560.
    13. Green MK, Walsh MD, Dare A, et al, Histologic and immunohistochemical responses after aortic valve allografts in the rat. Ann Thorac Surg 1998, 66 (Suppl.):S216–S220.
    14. Legare JF, Lee TD, Creaser K, Ross DB. T lymphocytes mediate leaflet destruction and allograft aortic valve failure in rats. Ann Thorac Surg 2000, 70:1238–1245.
    15. Flameng WJ, Ozaki S, Yperman J, et al, Calcification characteristics of porcine stented valves in a juvenile sheep model. Ann Thorac Surg 2001, 71:S401–405
    16. Grabenwoger M, Sider J, Fitzal F, et al. Impact of glutaraldehyde on calcification of pericardial bioprosthetic heart valve material. Ann Thorac Surg 1996, 62:772– 7.
    17. Schoen FJ, Levy RJ. Bioprosthetic heart valve failure: pathology and pathogenesis. Cardiol Clin 1984, 2(4):717– 39.
    18. Schoen FJ, Levy RJ. Heart valve anti-mineralization. Eur J Cardiothorac Surg 1992, 6(Suppl I):S91–4.
    19. Hoekstra F, Knoop C, Aghai Z, et al, Stimulation of immune-competent cells in vitro by human cardiac valve-derived endothelial cells. Ann Thorac Surg 1995, 60 (Suppl.):S131–S133.
    20. Batten P, McCormack AM, Rose ML, Yacoub MH. Valve interstitial cells induce donor-specific T-cell anergy. J Thorac Cardiovasc Surg 2001, 122:129–135.
    21. Taylo r CJ , Tang KG, Sm ith S I. HLA-specific antibodies in highly sensitized patients can cause a positive crossmatch againsts pig lymphocytes. J Transplantation, 1998, 65 (12):1634-1641.
    22. Czech KA , Ryan JW , Sagen J. The influence of xenotransplant immunogenicity and innuno-suppression on host MHC expression in the rat. CNS Exp Neurol, 1997, 17 (1): 66-68.
    23. Kasimir MT, Rieder E, Seebacher G, et al, Presence and elimination of the Xenoantigen Gal (a1, 3) Gal in tissue engineered heart valves. Tissue Eng 2005, 11:1274–9.
    24. Konakci KZ, Bohle B, Blumer R, et al. Alpha-Gal on bioprostheses: xenograft immune response in cardiac surgery. Eur J Clin Invest 2005; 35(1):17– 23.
    25. Levy RJ, Schoen FJ, Levy JT, et al, Biologic determinants of dystrophic calcification and osteocalcin deposition in glutaraldehyde-preserved porcine aortic valve leaflets implanted subcutaneously in rats. Am J Pathol 1998, 113:143–155
    26. Bader A, Schilling T, Teebken OE, et al, Tissue engineering of heart valves: human endothelial cell seeding in detergent acellularized porcine valves. Eur J Cardiovasc Surg 1998, 14:279–284
    27. Hilbert SL, Yanagida R, Souza J, et al. Prototype anionic detergent technique used to decellularize allograft valve conduits evaluated in the right ventricular outflow tract in sheep. J Heart Valve Dis 2004, 13:831–840.
    28. Steinhoff G, Stock U, Karim N, et al. Tissue Eng of pulmonary heart valves on allogenic acellular matrix conduits. Circulation 2000, 102: SIII50–55.
    29. Kasimir MT, Rieder E, Seebacher G, et al. Comparison of different decellularization procedures of porcine heart valves. Int J Artif Organs 2003, 26(5):421–427.
    30. Rieder E, Kasimir MT, Silberhumer G, et al. Decellularization protocols of porcine heart valves differ importantly in efficiency of cell removal and susceptibility of the matrix to recellularization with human vascular cells. J Thorac Cardiovasc Surg 2004, 172:399–405.
    31. Schenke-Layland K, Vasilevski O, Opitz F, et al, Impact of decellularization of xenogeneic tissue on extracellular matrix integrity for tissue engineering of heart valves. J Struct Biol 2003, 143:201–208.
    32. Mosmann TR, Cherwinski H, Bond MW, et al, Two types of murine helper T cell clone I: Definition according to profiles of lymphokine activeties and secreted proteins. J Immunol, 1986, 136(7):2348-2357.
    33. Tu S, Hu Y, Lu F. effect of sinomenine on IL-8, IL-6, IL-2 produced by peripheral blood mononuclear cells. J Tongji Med Univ, 1999, 19(14):257-259.
    34. Qin L, Chavin KD, Ding Y, et al, Retrovirus-mediated transfer of viral IL-10 gene prolongs murine cardiac allograft survival. J Immunol, 1996, 156(6):2316-2323.
    35. Wagner DD, Burger P. Platelet in inflammation and thrombosis. Arterioscler Thromb Vasc Biol 2003, 23:2131– 2137.
    1. Linda G, Griffith, Gail Naughton,. Tissue Engineering Current Challenges and Expanding Opportunities. Science, 2002, 295(8):1009-1014
    2. Kim SH, Hoshiba T, Akaike T. Effect of carbohydrates attached to polystyrene on hepatocyte morphology on sugar-derivatized polysturene matrices. J Biomed Mater Res A, 2003,67(4):1351-1359
    3. Ikada Y. Surface modification of polymers for medical applications. Biomaterials. 1994, 15: 725.
    4. Bloom L, Ingham KC, Hynes RO. Fibronectin regulates assembly of actin filaments and focalcontacts in cultured cells via the heparinbiding site in repeat III13. Mol Biol Cell, 1999, 10(5):1521-1536
    5. Stanford CM, Solursh M, Keller JC. Significant role of adhesion properties of primary osteoblast-like cells in early adhesion events for chondroitin sulfate and dermatan sulfate surface molecules. J Biomed Mater Res, 1999, 47(3):345-352
    6. Folkman J, Moscona A. Role of cell shape in growth control. Nature, 1978, 273:345-349
    7. Robert P, Robert Langer, William L. Principles of tissue engineering. 1th edition. Georgetown, Texas, U.S.A., R. G. Lands company,1997
    8. Amaral IF, Lamghari M, Sousa SR, et al. Rat bone marrow stromal cell osteogenic differentiation and fibronectin adsorption on chitosan membranes: The effect of the degree of acetylation. J Biomed Mater Res A, 2005,75(2):387-397
    9. Lippi G, Salvagno GL, Montagnana M, et al. Short-term venous stasis influences routine coagulation testing. Blood Coagul Fibrinolysis, 2005, 16(6):453-458
    10. Kuo S M , Tsai S W , Huang L H et al . Plasma-modified nylon meshes as supports for cell culturing. Art Cell Blood Subs Immo Biotech , 1997 , 25 , 551
    11. 7. Shelton RM, Rasmussen AC, Davies JE. Protein adsorption at the interface between charged polymer substrata and migrating osteoblasts. Biomaterial, 1988, 24-29
    12.葛泉波,何淑兰,毛津淑,等.生物材料与细胞相互作用及表面修饰.化学通报,2005,1:43-48
    13. Dunn GA, Brown AF. Alignment of fibroblasts on grooved surfaces described by a simple geometric transformation. Journal of Cell Science, 1991, 164:11-26
    14. Meyle J, Gultig K, Nisch W. Variation in contact guidance by human cells on microstructured surface. J Biomedical Materials Research, 1995, 29:81-88
    15. Hynes RO. Integrins : Verastility , modulation and signaling in cell adhesion. Cell. 1992, 69: 11-25.
    16. Ansemme K. Osteoblast adhesion on biomaterial. Biomaterials. 2000, 21(7): 667-681.
    17. Ertel SI , Ratner BD , Horbett TA. Radio-frequency plasma deposition of oxygen-containing films on polystyrene and poly (ethylene terephthalate) substrates improves endothelial cell growth. Journal of Biomedical Materials Research , 1990 , 24 (12) : 1637-1659
    18. Sagnella SM, Kligman F, Anderson EH, et al. Human microvascular endothelial cell growth and migration on biomimetic surfactant polymers. Biomaterials. 2004, 25(7-8): 1249-59.
    19. Masters KS, Shah DN, Walker G, et al. Designing scaffolds for valvular interstitial cells: cell adhesion and function on naturally derived materials. J Biomed Mater Res. 2004, 71 (1): 172-80.
    20. Cronin EM, Thurmond FA, Bassel-Duby R, et al. Protein-coated poly(L-lactic acid) fibers providea substrate for differentiation of human skeletal muscle cells. J Biomed Mater Res. 2004, 69 (3): 373-81.
    21. Aper T , Teebken OE , Steinhoff G,et al . Use of a fibrin preparation in the engineering of a vascular graft model. Eur J Vasc Endovasc Surg. 2004, 28:296-302.
    22.王身国,杨健,蔡晴,等.组织工程用生物材料及细胞支架研究进展.中华整形外科杂志2000, 16(6): 328-330.
    23. Layland SK, Vasilevski O, Opitz F, et al. Impact of decellularization of xenogeneic tissue on extracellular matrix integrity for tissue engineering of heart valves. J. Struct. Biol. 2003, 143: 201-208.
    24. Ganor Y, Besser M, Ben-Zakay N, et al. Human T cell express a functional ionotropic glutamate receptor GluR3, and Glutamate by itself triggers integrin-mediated adhesion to laminin and fibronectin and chemotactic migration. J Immunology. 2003, 170: 4362-4372.
    25.刘彦春,王炜,曹谊林,等.利用组织工程技术再生软骨组织的实验研究.中华显微外科杂志, 1999, 22 :122-124.
    1. Rahimtoola, S. H. Choice of prosthetic heart valve for adult patients. J. Am. Coll. Cardiol. 2003, 41:893–904.
    2. Hammermeister,K., G. K. Sethi,W. G. Henderson, et al., Outcomes 15 years after valve replacement with a mechanical versus a bioprosthetic valve: final report of the Veterans Affairs randomized trial. J. Am. Coll. Cardiol. 2000, 36:1152–1158.
    3. Jamieson, W. R., O. von Lipinski, R. T. Miyagishima, et al., Performance of bioprostheses and mechanical prosthesesassessed by composites of valve-related complications to 15 years after mitral valve replacement. J. Thorac. Cardiovasc. Surg. 2005, 129:1301–1308.
    4. Schoen, F. J. Pathology of heart valve substitution with mechanical and tissue prostheses. In: Cardiovascular Pathology 3rd Ed., New York: Churchill Livingstone, 2001, 629–677.
    5. Erez, E., K. R. Kanter, E. Isom, et al., Mitral valve replacement in children. J. Heart Valve Dis. 2003, 12:25–29.
    6. Kanter, K. R., J. M. Budde, W. J. Parks, et al., One hundred pulmonary valve replacements in children after relief of right ventricular outflow tract obstruction. Ann. Thorac. Surg. 2002, 73:1801–1806.
    7. Rabkin-Aikawa, E., M. Aikawa, M. Farber, et al., Clinical pulmonary autograft valves: pathologic evidence of adaptive remodeling in the aortic site. J. Thorac. Cardiovasc. Surg. 2004, 128:552–561.
    8. Jonas, R. A. The Ross procedure is not the procedure of choice for the teenager requiring aortic valve replacement. Semin. Thorac. Cardiovasc. Surg. Pediatr. Card Surg. Annu. 2005, 176–180.
    9. Rabkin-Aikawa, E., M. Farber, M. Aikawa, et al., Dynamic and reversible changes of interstitial cell phenotype during remodeling of cardiac valves. J. Heart Valve Dis. 2004, 13:841–847
    10. Schoen, F. J. Aortic valve structure-function correlations: role of elastic fibers no longer a stretch of the imagination. J. Heart Valve Dis. 1997, 6:1–6.
    11. Schoen, F. J., W. D. Edwards. Valvular heart disease: General principles and stenosis. In: Cardiovascular Pathology 3rd Ed., New York: Churchill Livingstone, 2001, 402–405.
    12. Marron, K., M. H. Yacoub, J. M. Polak, et al., Innervation of human atrioventricular and arterial valves. Circulation 1996, 94:368–375.
    13. Schoen, F. J. Future directions in tissue heart valves: Impact of recent insights from biology and pathology. J. Heart Valve Dis. 1999, 8:350–358.
    14. Merryman, W. D., H. D. Lukoff, R. A. Hopkins, et al., Aortic valve interstitial cell phenotype and biosynthesis: synergistic effects of cyclic tension and TGF-β1. Proceedings of BIO2006. ASME Summer Bioengineering Conference, 2006.
    15. Merryman, W. D., I. Youn, H. D. Lukoff, P. M. et al., Correlation between heart valve interstitial cell stiffness and transvalvular pressure: implications for collagen biosynthesis. Am. J. Physiol. Heart Circ. Physiol. 2006, 290:H224–231.
    16. Aikawa, E., P. Whittaker, M. Farber, et al., Human semilunar cardiac valve remodeling by activated cells from fetus to adult: Implications for postnatal adaptation, valve pathology and tissue engineering. Circulation 2006, 113:1344–1352.
    17. Taylor, P. M., S. P. Allen, and M. H. Yacoub. Phenotypic and functional characterization of interstitial cells from human heart valves, pericardium and skin. J. Heart Valve Dis. 2000, 9:150–158.
    18. Taylor, P. M., P. Batten, N. J. Brand, et al., The cardiac valve interstitial cell. Int. J. Biochem. Cell.Biol. 2003, 35:113–118.
    19. Davies, P. F., A. G. Passerini, and C. A. Simmons. Aortic valve: turning over a new leaf (let) in endothelial phenotypic heterogeneity. Arterioscler Thromb. Vasc. Biol. 2004, 24:1331–1333.
    20. Simmons, C. A., G. R. Grant, E. Manduchi, et al.,Spatial heterogeneity of endothelial phenotypes correlates with side-specific vulnerability to calcification in normal porcine aortic valves. Circ. Res. 2005, 96:792–799.
    21. Butcher, J. T., and R. M. Nerem. Porcine aortic valve interstitial cells in three-dimensional culture: comparison of phenotype with aortic smooth muscle cells. J. Heart Valve Dis. 2004, 13:478– 485.
    22. Butcher, J. T., A. M. Penrod, A. J. Garcia, et al., Unique morphology and focal adhesion development of valvular endothelial cells in static and fluid flow environments. Arterioscler.Thromb. Vasc. Biol. 2004,24:1429–1434.
    23. Della Rocca, F., S. Sartore, D. Guidolin, et al., Cell composition of the human pulmonary valve: A comparative study with the aortic valve—The VESALIO project. Ann. Thorac. Surg. 2000, 70:1594– 1600.
    24. Schurch,W., T. A. Seemayer, and G. Gabbiani. The myofibroblast: a quarter century after its discovery. Am. J. Surg. Pathol. 1998, 22:141–147.
    25. Mulholland, D. L., and A. I. Gotlieb. Cell biology of valvular interstitial cells. Can. J. Cardiol. 1996, 12:231–236.
    26. Walker,G.A., K.S.Masters, D.N.Shah, et al., Valvular myofibroblast activation by transforming growth factor-beta: implications for pathological extracellular matrix remodeling in heart valve disease. Circ. Res. 2004, 95:253– 260.
    27. Armstrong, E. J., and J. Bischoff. Heart valve development: Endothelial cell signaling and differentiation. Circ. Res. 2004, 95:459– 470.
    28. Beis, D., T. Bartman, S. W. Jin, I. C. et al., Genetic and cellular analyses of zebrafish atrioventricular cushion and valve development. Development 2005, 132:4193–4204.
    29. Garg, V., A. N. Muth, J. F. Ransom, M. K. Schluterman, R. Barnes, I.N.King, P. D. Grossfeld, andD. Srivastava. Mutations in NOTCH1 cause aortic valve disease. Nature 2005, 437:270–274.
    30. Lee, Y. M., J. J. Cope, G. E. Ackermann, K. Goishi, E. J. Armstrong, B. H. Paw, and J. Bischoff. Vascular endothelial growth factor receptor signaling is required for cardiac valve formation in zebrafish. Dev. Dyn. 2006, 235:29–37.
    31. Rabkin, E., M. Aikawa, J. R. Stone, Y. Fukumoto, P. Libby, and F. J. Schoen. Activated interstitial myofibroblasts express catabolic enzymes and mediate matrix remodeling in myxomatous heart valves. Circulation 2001, 104:2525–2532.
    32. Rabkin, E., S. P. Hoerstrup, M. Aikawa, J. E. Mayer, and F. J. Schoen. Evolution of cell phenotype and extracellular matrix in tissue-engineered heart valves during in vitro maturation and in vivo remodeling. J. Heart Valve Dis. 2002, 11:308–314.
    33. Karageorgiou, V. and D. Kaplan. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 2005, 26:5474–5491.
    34. Liu, X., and P. X. Ma. Polymeric scaffolds for bone tissue engineering. Ann. Biomed. Eng. 2004, 32:477–486.
    35. Muschler, G. F., C. Nakamoto, and L. G. Griffith. Engineering principles of clinical cell-based tissue engineering. J. Bone Joint Surg. Am. 2004, 86:1541–1558.
    36. Grayson, A. C., G. Voskerician, A. Lynn, J. M. Anderson, M. J. Cima, and R. Langer. Differential degradation rates in vivo and in vitro of biocompatible poly(lactic acid) and poly(glycolic acid) homo- and co-polymers for a polymeric drug-delivery microchip. J. Biomater. Sci. Polym. Ed.extracellular matrix bioscaffold for treatment of acquired urinary incontinence in dogs. J. Am. Vet. Med. Assoc. 2005, 226:1095–1097.
    52. Robinson, K. A., J. Li, M. Mathison, A. Redkar, J. Cui, N. A. Chronos, R. G.Matheny, and S. F. Badylak. Extracellular matrix scaffold for cardiac repair. Circulation 2005, 112:I135–I143.
    53. Jockenhoevel, S., G. Zund, S. P. Hoerstrup, K. Chalabi, J. S. Sachweh, L. Demircan, B. J. Messmer, and M. Turina. Fibrin gel—advantages of a new scaffold in cardiovascular tissue engineering. Eur. J. Cardiothorac. Surg. 2001, 19:424–430.
    54. Mol, A., M. I. van Lieshout, C. G. Dam-de Veen, S. Neuenschwander, S. P. Hoerstrup, F. P. Baaijens, and C. V. Bouten. Fibrin as a cell carrier in cardiovascular tissue engineering applications. Biomaterials 2005, 26:3113–3121.
    55. Ye, Q., G. Zund, P. Benedikt, S. Jockenhoevel, S. P. Hoerstrup, S. Sakyama, J. A. Hubbell, and M. Turina. Fibrin gel as a three dimensional matrix in cardiovascular tissue engineering. Eur. J. Cardiothorac. Surg. 2000, 17:587–591.
    56. Jockenhoevel, S., G. Zund, S. P. Hoerstrup, K. Chalabi, J. S. Sachweh, L. Demircan, B. J. Messmer, and M. Turina. Fibrin gel—advantages of a new scaffold in cardiovascular tissue engineering. Eur. J. Cardiothorac. Surg. 2001, 19:424–430.
    57. Tamariz, E., and F. Grinnell. Modulation of fibroblast morphology and adhesion during collagenmatrix remodeling. Mol. Biol. Cell 2002, 13:3915–3929.
    58. Sutherland, F. W. H., T. E. Perry, Y. Yu, M. C. Sherwood, E. Rabkin, Y. Masuda, G. A. Garcia, D. L. McLellan, G. C. Engelmayr, M. S. Sacks, F. J. Schoen, and J. E. Mayer. From stem cells to viable autologous semilunar heart valves. Circulation 2005, 111:2783–2791.
    59. Urbich,C., and S.Dimmeler. Endothelial progenitor cells: characterization and role in vascular biology. Circ. Res. 2004, 95:343–353.
    60. Perry, T. E., S. Kaushal, F. W. Sutherland, K. J. Guleserian, J. Bischoff, M. Sacks, and J. E. Mayer. Bone marrow as a cell source for tissue engineering heart valves. Ann. Thorac. Surg. 2003, 75:761–767.
    61. Okita, K., Ichisaka, T., Yamanaka, S. Generation of germline competent induced pluripotent stem cells. Nature 2007, 448: 313–317
    62. Takahashi, K., Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126: 663-676
    63. Wernig, M., Meissner, A., Foreman, R. et al, In vitro reprogramming of fibroblasts into a pluripotent ES cell-like state. Nature 2007, 448:318-324
    64. Carrier, R., Papadaki, M., Langer, R. et al, Perfusion improves tissue architecture of engineered cardiac muscle. Tissue Eng. 2002, 8: 175-188
    65. Carrier, R., Papadaki, M., Rupnick, M. et al, Cardiac tissue engineering: cell seeding, cultivationparameters, and tissue construct characterization. Biotechnol Bioeng 1999, 64: 580-589
    66. Papadaki, M., Bursac, N., Langer, R. et al, Tissue engineering of functional cardiac muscle: molecular, structural, and electrophysiological studies. Am J Physiol Heart Circ Physiol 2001, 280: H168-178
    67. Mol, A., N. J. Driessen, M. C. Rutten, S. P. Hoerstrup, C. V. Bouten, and F. P. Baaijens. Tissue engineering of human heart valve leaflets: a novel bioreactor for a strain-based conditioning approach. Ann. Biomed. Eng. 2005, 33:1778–1788.
    68. Shinoka, T., C. K. Breuer, R. E. Tanel, G. Zund, T. Miura, P. X. Ma,R. Langer, J. P.Vacanti, and J. E.Mayer. Tissue engineering heart valves: valve leaflet replacement study in a lamb model.Ann. Thorac. Surg. 1995, 60:S513–516.
    69. 153 Shinoka, T., P. X. Ma, D. Shum-Tim, C. K. Breuer, R. A. Cusick, G. Zund, R. Langer, J. P. Vacanti, and J. E.Mayer. Tissue-engineered heart valves. Circulation 1996, 94:II164–68.
    70. Hoerstrup, S. P., R. Sodian, S. Daebritz, J. Wang, E. A. Bacha, D. P. Martin, A. M. Moran, K. J. Guleserian, J. S. Sperling, S. Kaushal, J. P. Vacanti, F. J. Schoen, and J. E. Mayer. Functional living trileaflet heart valves grown in vitro. Circulation 2000, 102: SIII-44–49.
    71. Steinhoff, G., U. Stock, N. Karim, H. Mertsching, A. Timke, R. Meliss, K. Pethig, A. Haverich, and A. Bader. Tissue engineering of pulmonary heart valves on allogenic acellular matrix conduits in vivo restoration of valve tissue. Circulation 2000, 102: III-50–55.
    72. Kumar, V., N. Fausto, andA.Abbas. Robbins and Cotran Pathologic Basis of Disease, 7th Ed. Philadelphia: W. B. Saunders, 2004.
    73. Shi, Q., S. Rafii, M. H. Wu, E. S. Wijelath, C. Yu, A. Ishida, Y. Fujita, S. Kothari, R. Mohle, L. R. Sauvage, M. A. Moore, R. F. Storb, andW. P. Hammond. Evidence for circulating bone marrow-derived endothelial cells. Blood 1998, 92:362–367.
    74. Werner,N., S.Kosiol, T. Schiegl, P.Ahlers, K.Walenta, A. Link, M. Bohm, and G. Nickenig. Circulating endothelial progenitor cells and cardiovascular outcomes. N. Engl. J. Med. 2005, 353:999-1007.
    75. Ota, T., Y. Sawa, S. Iwai, T. Kitajima, Y. Ueda, C. Coppin, H. Matsuda, and Y. Okita. Fibronectin-hepatocyte growth factor enhances reendothelialization in tissue-engineered heart valve. Ann. Thorac. Surg. 2005, 80:1794–1801.
    76. Matheny, R. G., M. L. Hutchison, P. E. Dryden, M. D. Hiles, and C. J. Shaar. Porcine small intestine submucosa as a pulmonary valve leaflet substitute. J. Heart Valve Dis. 2000, 9:769–774.
    77. Iwai, S., Y. Sawa, H. Ichikawa, S. Taketani, E. Uchimura, G. Chen, M. Hara, J. Miyake, and H. Matsuda. Biodegradable polymer with collagen microsponge serves as a new bioengineered cardiovascular prosthesis. J. Thorac. Cardiovasc. Surg. 2004, 128:472–479
    78. Simon, P., M. T. Kasimir, G. Seebacher, G. Weigel, R. Ullrich, U. Salzer-Muhar, E. Rieder, and E.Wolner. Early failure of the tissue engineered porcine heart valve SYNERGRAFT in pediatric patients. Eur. J. Cardiothorac. Surg. 2003, 23:1002–1006.
    79. Schoen, F. J., S. H. Goodenough, M. I. Ionescu, and N. S. Braunwald. Implications of late morphology of Braunwald- Cutter mitral heart valve prostheses. J. Thorac. Cardiovasc. Surg. 1984, 88:208–216

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700