高压下含氮高能量密度材料的设计与合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
探索新型含氮高能量高密度材料是凝聚态物理学的长期研究热点。本文以设计和合成新型含氮高能量高密度材料为目标,突出高压合成的特色,利用结构搜索和巨动力学理论模拟技术,结合高压拉曼、红外、同步辐射X-光实验,系统开展了三元Si-C-N体系的高压结构设计和高温高压实验合成新型聚合氮的研究工作。获得了如下创新性结果:
     1.理论预言在高压条件下(大于20或29万大气压),常压下链状成键的SiC2N4和Si2CN4可以转变为三维网状成键的高致密相,这些高致密相具有了优异的硬度性质(维氏硬度大于50GPa),是潜在的超硬材料。
     2.在室温和50万大气压条件下,利用氮气与氢气的混合物,高压实验合成了一种新型的高能量高密度聚合氮,该聚合氮在卸压条件下只能保留到10万大气压,在更低的压力下转变为肼(N2H4)和氨(NH3)的混合物,卸压到1-2万大气压,肼分解为氮气和氢气。巨动力学模拟从理论上支持了高压实验合成结果,发现聚合氮可能是由多个N2H4,N4H6,N6H8聚合分子构成。
     3.随着温度的升高,高压实验合成聚合氮所需压力逐渐减小,在292C条件下,只需要18.9万大气压就可以合成聚合氮。根据合成压力和温度的关系,推测在大约427C温度下,在常压下就可以合成出高能量高密度的聚合氮。本工作提出了一种具有潜在应用前景的聚合氮的合成方法。
High-pressure may change existing state of materials effectively and makematerials show exotic behaviors that wouldn’t appear at ambient pressure, thus, itopened up a new dimension for the research of condensed matter physics. At highpressures, distances between the atoms in materials are expected to decreasesignificantly and electron orbits of adjacent atoms would overlap. These mightinduce the change of electronic properties and even so structural phase transitions.
     Finding the global minimum of the free-energy surface for crystal at highpressure is of great importance in both study of high-pressure phase transitionand design of new materials. The newly developed “Universal StructurePredictor: Evolutionary Xtallography”(USPEX) is global optimization methodsfor general crystal structure prediction, which is very efficient in finding theglobal minimum valley of the free-energy surface and large sets of competitivelocal minimums. Superhard materials are of great interest due to their widerange of industrial applications, from scratch-resistant coatings to polishing andcutting tools, etc. Now, the commonly used superhard material is still diamond.However, its stability at high temperature limits its application. Over the pastdecades, extensive theoretical and experimental efforts have been devoted tofinding new materials that are harder and thermally more stable than diamond.Scientists mainly focused on the exploration of covalent compounds formed bylight elements, namely, boron, carbon, nitrogen, and oxygen, since these elements have the ability to form short and strong three dimensional covalentbonds, which is a necessary condition for superhard materials. Since Cohen et al.designed-C_3N_4(P63/m) as a new low-compressibility material and estimatedits bulk modulus and hardness to be exceeding that of diamond, manyexperiments were performed to synthesize this material. However, growth ofcrystalline-C_3N_4with a large enough size has not been achieved so far. Instead,several hypothetical structures with C substituted for Si in polymorphs Si3N4areproposed for potential superhard materials, since the incorporation of C intoSi3N4is expected to considerably enhance the hardness. In1997, two crystallinesolids in the ternary Si-C-N systems: SiC_2N_4and Si_2CN_4, synthesized at ambientpressure and high temperature, and their ambient pressure structures have beendetermined by X-ray powder diffraction to be cubic (Pn3m) and orthorhombic(Aba2), respectively. Linear Si-N=C=N-Si fragments are revealed in the Pn3mstructure of SiC_2N_4and Aba2structure of Si2CN4. Our hardness calculations ofPn3m type SiC_2N_4(16.9GPa) and Aba2-type Si2CN4(28.2GPa) suggest thatthe ambient-pressure structures are not superhard materials. Ab initioevolutionary methodology for crystal structure prediction is performed toexplore the high-pressure structures of two ternary compounds, SiC_2N_4andSi_2CN_4. For SiC_2N_4, we found intriguing high-pressure polymorphs withmonoclinic C2/m and orthorhombic Cmmm symmetries containing tetrahedralCN_4and octahedral SiN6units, respectively. For Si2CN4, two high-pressuremonoclinic C2/m and P21/m structures both consisting of octahedral SiN6unitswere discovered. Thermodynamic study demonstrated that it is energeticallydesirable to synthesize the Cmmm structured SiC_2N_4and P21/m structuredSi2CN4at above29and19GPa, respectively. We have ruled out the earlierproposed high-pressure monoclinic structures for the two ternary compoundsborrowed from known structural information. The newly predicted high-pressurephases of the two ternary compounds contain three-dimensional stacking of CN4tetrahedrons and SiN6octahedrons, small bond volumes comparable to those ofdiamond, and c-BN, and the strong covalent bonds between Si/C and N, whichare altogether responsible for the predicted superior mechanical properties, e.g.,very large bulk and shear modulus. Hardness calculations suggest that Cmmm structured SiC_2N_4and P21/m (C2/m) structured Si2CN4possess superhardness of58.7GPa and51.7GPa (51.6GPa), respectively, and the ductility of them ismuch improved in comparison with the diamond. The current theoreticalprediction will inevitably stimulate future experimental synthesis and hasillustrated the major role played by high pressure in design of superhardmaterials.
     igh energy density material (HEDM) is widely used in space industry, weaponand so on. Nearly all the HEDM used now is based on the carbon framework.The traditional HEDM composing of C, H, O, N, include TNT, HMX, RDX,TATB, CL-20and so on. Unfortunately, the production process of mostenergetic compounds containing nitro is accompanied by serious environmentalpollution. On the other hand, with developing industry, these HEDM can’tsatisfy the demand of application. Therefore, exploring new HEDM has alwaysbeen the focus of the condensed matter physics.
     Nitrogen can be considered as an inert material because the N≡N triplebond is one of the most stable chemical bonds known. However, nitrogen atomsconnected with single bonds into a polymeric network, if metastable, will form ahigh-energy density material (HEDM). There is a large difference in averageenergy between the nitrogen single bond (0.83eV/atom) and triple bond (4.94eV/atom). Therefore, a very large energy should be released at thetransformation from polymerized nitrogen to diatomic molecular nitrogen.Nitrogen may form a high-energy density material with energy content higherthan that of any known nonnuclear material. Therefore, search for thenonmolecular single-bonded (polymeric) form of solid nitrogen under pressurehas attracted much attention. The formation of such singly bonded nitrogeninvolves the dissociation of the extremely strong triple N≡N bond into weakersingle N-N bonds upon ultrahigh compression and high temperature. Until2004,Eremets et al. made a breakthrough contribution by successfully synthesizingthe cubic gauche structure at high pressure (110GPa) and high temperature(2000K). Eremets et al. observed that cubic gauche nitrogen is at leastmetastable at room temperature and under42GPa, or at140K and25GPa. However, the potential application depends first on whether or not the materialis metastable under the usual conditions. So, it is significant to stabilize singlebonded nitrogen to ambient conditions. As follows from calculations of Mattson,amorphous nitrogen passivated by hydrogen should be more stable than itsunpassivated form. Zhang et al. suggest that hydrogen can be used to “heal”unsaturated nitrogen bonds at the surface and other defects and stabilizepolymeric nitrogen after recovering to atmospheric pressure. Nitrogen andhydrogen do not chemically react at ambient conditions but at temperatures of300-550°C with the aid of a catalyst and pressures of200atm they formammonia in the Haber-Bosch process–a basis for production of fertilizers.
     In the present work, optical spectroscopy techniques, including Raman,Infrared, X-ray diffraction measurement and theoretical simulation have beenperformed to study N_2:H_2mixtures at high pressure and high temperature. Anew route for nitrogen and hydrogen reaction was found. At room temperatureand high pressures of38GPa, mixture of nitrogen and hydrogen moleculars startto dissociate and transform into N-H compound. This N-H compound is apolymer consisting of chains of nitrogen atoms connected each other with singlebonds and the rest bonds terminated with hydrogen atoms. The reaction wascompleted at about50GPa. The polymer is stable at releasing pressure, andbelow10GPa it decomposes to hydrazine and ammonia. At about1-2GPabefore opening the cell, hydrazine decomposes to nitrogen and hydrogen.Theoretical simulations at room temperature further certify that nitrogen andhydrogen molecular transformed into polymeric nitrogen amorphous at highpressure, and four kinds of structure units are included in polymer: N2H4, N4H6,N_4H_3and N6H8unit. In the N_2H_4, N_4H_6and N6H8unit, N atoms polymerizedtogether with single bond and the rest bonds are saturated with H atom. N_4H_3unit is a special unit, which can be seen as a hydrogen azide bonded with a NH_2unit. With the temperature increase from285K to565K, the transformedpressure greatly reduced from62GPa to18.9GPa. Extrapolation shows that at700K, the pressure of the synthesis should approach to ambient pressure. More extended polymeric structure was obtained at high temperature according toinfrared spectra and high temperature theoretical simulation.
     Our finding likely opens a way of synthesis of this new energetic hydrogen-rich material in a practical scale. Our results might have an implication to theinterior of the Earth as well as gas planets where N-H compounds can form.
引文
[1]呼文贤.超硬材料的研究与发展:我国超硬材料生产技术的新突破[J].硬质合金13:42(1996).
    [2] Li K., Wang X., Zhang F.Xue D. Electronegativity identification of novelsuperhard materials[J]. Phys. Rev. Lett.100,(23):235504(2008).
    [3] Simunek A. How to estimate hardness of crystals on a pocket calculator[J].Phys. Rev. B75,(17):172108(2007).
    [4] Gao F. M. Theoretical model of intrinsic hardness[J]. Phys. Rev. B73,(13):132104(2006).
    [5] He J. L., Wu E. D., Wang H. T., Liu R. P.Tian Y. J. Ionicities of Boron-BoronBonds in B12Icosahedra[J]. Phys. Rev. Lett.94,(1):015504(2005).
    [6] Gao F. M., He J. L., Wu E. D., Liu S. M., Yu D. L., Li D. C., Zhang S. Y.TianY. J. Hardness of Covalent Crystals[J]. Phys. Rev. Lett.91,(1):015502(2003).
    [7]万隆,陈石林刘晓磐.超硬材料与工具[M].化学工业出版社(2006).
    [8] Bundy F. P. Kasper J. S. Hexagonal diamond-a new form of carbon[J]. J.Chem. Phys.46,(9):3437(1967).
    [9] Wentorf R. H. Cubic form of boron nitride[J]. The Journal of chemicalphysics26,(4):956(1957).
    [10] Miller E. D., Nesting D. C.Badding J. V. Quenchable Transparent Phase ofCarbon[J]. Chem. Mater.9,(1):18(1997).
    [11] Titantah J. T. Lamoen D. Energy-loss near-edge structure chagnes with bondlength in carbon systems[J]. Phys. Rev. B72,(19):193104(2005).
    [12] Tsai H. M., Jan J. C., Chiou J. W., Pong W. F., Tsai M. H., Chang Y. K.,Chen Y. Y., Yang Y. W., Wu L. J., Wu C. T., Chen K. H.Chen L. C.Electronic and bonding structures of amorphous Si-C-N thin films by x-ray absorption spectroscopy[J]. App. Phys. Lett.79,(15):2393(2001).
    [13] Ray S. C., Tsai H. M., Bao C. W., Chiou J. W., Jan J. C., Kumar K. P. K.,Pong W. F., Tsai M. H., Chattopadhyay S.Chen L. C. Electronic andbonding structures of BCN thin films investigated by x-ray absorption andphotoemission spectroscopy[J]. J. Appl. Phys.96,(1):208(2004).
    [14] Tateyama Y., Ogitsu T., Kusakabe K., Tsuneyuki S.Itoh s. Proposedsynthesis path for heterodiamond BC2N[J]. Phys. Rev. B55,(16): R10161(1997).
    [15] Chattopadhyay S., Chen L. C., Chien S. C., Lin S. T.. K. H. C. Bondingcharacterization, density measurement, and thermal diffusivity studies ofamorphous silicon carbon nitride and boron carbon nitride thin films[J]. JAppl. Phys.92,(9):5150(2002).
    [16] Liu A. Cohen M. L. Prediction of New Low Compressibility Solids[J].Science245:841(1989).
    [17] Liu A. Y. Cohen M. L. Structural properties and electronic structure of low-compressibility materials:-Si3N4and hypothetical-C3N4[J]. Phys. Rev.B41,(15):10727(1990).
    [18] Wang C.-Z., Wang E.-G.Dai Q. Y. First principles calculations of structuralproperties of β-Si3-nCnN4(n=0,1,2,3)[J]. J. Appl. Phys.83,(4):1975(1997).
    [19] Lowther J. E., amkreutz M., Frauenheim T., Kroke E.Riedel R. Potentialultrahard nitride materials containing silicon, carbon and nitrogen[J]. Phys.Rev. B68,(3):033201(2003).
    [20] Zhang L. J., Wang Y. C., Cui T., Ma Y. M.Zou G. T. First-principles studyof the pressure-induced rutile–CaCl2phase transition in MgF2[J]. SolidState Commun.145,(5):283(2008).
    [21] Du H. J., Li D. C., He J. L., Yu D. L., Xu B., Liu Z. Y., Wang H. T.Tian Y. J.Hardness of-and-Si3nCnN4(n=0,1,2,3) crystals[J]. Diamond Relat.Mater.18,(1):72(2009).
    [22] Badzian A. Stability of Silicon Carbonitride Phases[J]. J. Am. Ceram. Soc.85,(1):16(2002).
    [23] Lowther J. E. Structural stability of some possible phases of SiC2N4[J]. Phys.Rev. B60,(17):11943(1999).
    [24] Eremets M. I., Gavriliuk A. G., Trojan I. A., Dzivenko D. A.Boehler R.Single-bonded cubic form of nitrogen[J]. Nat. Mater.3:558(2004).
    [25] Ciezak J. A., Jenkins T. A.Hemley R. J. Opticaland RamanMicrospectroscopy of Nitrogen and Hydrogen Mixture at HighPressures[C] CP1195. Shock Compression of Condensed Matter-2009(2009).
    [26] Kim M. Yoo C.-S. Highly repulsive interaction in novel inclusion D2-N2compound at high pressure: Raman and x-ray evidence[J]. J. Chem. Phys.134,(4):044519(2011).
    [27]谢希德陆栋.固体能带理论[M].复旦大学出版社(1998).
    [28]李正中.固体理论[M].北京高等教育出版社(2003).
    [29] Perdew J. P. Wang Y. Accurate and simmple analytic representation of theelectron-gas correlation energy [J]. Phys. Rev. B45,(23):13244(1992).
    [30] Perdew J. P. Wang Y. Pair-distribution function and its coupling-constantaverage for the spin-polarized eletron gas [J]. Phys. Rev. B46,(20)(1992).
    [31] Perdew J. P., Burke K.Ernzerhof M. Generalized Gradient ApproximationMade Simple[J]. Phys. Rev. Lett.77,(18):3865(1996).
    [32] Kresse G. Joubert D. From ultrasoft pesudopotentials to the projectoraugmented-wave method[J]. Phys. Rev. B59,(3):1758(1999).
    [33] Bl chl P. E. Projector augmented-wave method[J]. Phys. Rev. B50,(24):17953(1994).
    [34] Baroni S., Giannozzi P.Testa A. Green's-function approach to linearresponse in solids [J]. Phys. Rev. B58:1861(1987).
    [35] Giannozzi P., Baroni S.al. N. B. e. QUANTUM ESPRESSO: a modular andopen-source software project for quantum simulations of materials [J].Journal of Physics: Condensed Matter21,(39):395502(2009).
    [36] Monkhorst H. J. Pack J. D. special points for Brillouin-zone integrations [J].Phys. Rev. B13,(12):5188(1976).
    [37] Degtyareva O., Canales M. M.al. I. e. Crystal structure of SiH4at highpressure [J]. Phys. Rev. B76,(6):064123(2007).
    [38] Ribeiro F. J. Cohen M. L. Theoretical prediction of the high-pressure phaseGe-Cmca [J]. Phys. Rev. B62,(17):11388(2000).
    [39] Parise J. B. High Pressure Studies[J]. Reviews in Mineralogy andGeochemistry63:205(2006).
    [40] Stoffler D. Minerals in the Deep Earth: A Message from the Asteroid Belt [J].Science278:1576(1997).
    [41] Williams Q. Hemley R. J. Hydrogen In The Deep Earth[J]. Annual Reviewof Earth and Planetary Sciences29:365(29).
    [42] Bridgman P. W. The Physics of High Pressure, G. Bell and sons, ltd.(1931).
    [43]谢鸿森.《地球深部物质科学导论》科学出版社1997.
    [44] Lawson A. W. Tang T. Y. A Diamond Bomb for Obtaining Powder Picturesat High Pressures[J] Rev. Sci. Instrum.21,(9):815(1950).
    [45] Jamieson J. c., Lawson A. W.Nachtrieb N. D. New Device for Obtaining X‐Ray Diffraction Patterns from Substances Exposed to High Pressure[J]Rev. Sci. Instrum.30,(11):1016(1959).
    [46] Weir C. E., Lippincott E. R., Valkburg A. V.Bunting E. N. Infrared studiesin the1-to15-micron region to30,000atmospheres[J]. J. Res. Natl. Bur.Stand., Sec. A63A,(1):55(1959).
    [47] Valkburg A. V. Conference Internationale Sur-ies-Hautes Pressions[C], Le-Creusot, Saone-et-Loire, France.(1965).
    [48] Mao H. K. Bell P. M. High-Pressure Physics: Sustained Static Generation of1.36to1.72Megabars[J]. Science200:1145(1978).
    [49] Forman R. A., Piermarini G. J., Barnet J. D.Block S. Pressure MeasurementMade by the Utilization of Ruby Sharp-Line Luminescence[J]. Science176:284(1972).
    [50] Barnet J. D., Block S.Piermarini G. J. An Optical Fluorescence System forQuantitative Pressure Measurement in the Diamond‐Anvil Cell[J]. Rev.Sci. Instrum.44,(1):1(1973).
    [51] Piermarini G. J., Block S.Barnet J. S. Hydrostatic limits in liquids and solidsto100kbar[J]. J. Appl. Phys.44,(12):5377(1973).
    [52] Liebenberg D. H. A new hydrostatic medium for diamond anvil cells to300kbar pressure[J]. Phys. Lett. A73,(1):74(1979).
    [53] Mao H. K., Bell P. M.Hemley R. J. Ultrahigh pressures: Optical observationsand Raman measurements of hydrogen and deuterium to1.47Mbar[J].Phys. Rev. Lett.55,(1):99(1985).
    [54] Piermarini G. J. Weir C. E. A Diamond Cell for X-ray Diffraction Studies atHigh Pressures[J]. J. Res. Natl. Bur. Stand., Sec. A66A,(4):325(1962).
    [55] Weir C. E., Block S.Piermarini G. J. Single-crystal x-ray diffraction at highpressures[J]. J. Res. Natl. Bur. Stand., Sec. C69C,(4):275(1965).
    [56] Merrill L. Bassett W. A. Miniature diamond anvil pressure cell for singlecrystal x‐ray diffraction studies[J]. Rev. Sci. Instrum.45,(2):290(1974).
    [57] Buras B., Staun J., Olsen S., Gerward L., Will G.Hinze E. X-ray energy-dispersive diffractometry using synchroton radiation[J]. J. Appl.Crystallogr.10:431(1977).
    [58] Skelton E. F., Spain I., Yu S. C., Liu C. Y.E. R. Carpenter J. Variabletemperature pressure cell for polycrystalline x‐ray studies down to2K—application to Bi[J] Rev. Sci. Instrum.48,(7):879(1977).
    [59] Fujii Y., Shimomura O., Takemura K., Hoshino S.Minomura S. Theapplication of a position-sensitive detector to high-pressure X-raydiffraction using a diamond-anvil cell[J]. J. Appl. Crystallogr.13:284(1980).
    [60] Brasch J. W., Melveger A. J.Lippincott E. R. Laser excited Raman spectra ofsamples under very high pressures[J]. Chem. Phys. Lett.2,(2):99(1968).
    [61] Whitfield C. H., Brody E. M.Bassett W. A. Elastic moduli of NaCl byBrillouin scattering at high pressure in a diamond anvil cell[J]. Rev. Sci.Instrum.47,(8):942(1976).
    [62] Welber B. Optical microspectroscopic system for use with a diamond anvilhigh pressure cell to200kilobar[J] Rev. Sci. Instrum.47,(2):183(1976).
    [63] Welber B. Micro-optic system for reflectance measurements at pressures to70kilobar[J] Rev. Sci. Instrum.48,(4):395(1977).
    [64] Blacha A., Cardona M., Christensen N. E., Ves S.Oyerhof H. Spin-orbitsplitting of the copper halides and its volume dependence[J]. Solid StateCommun.43,(4):183(1982).
    [65] Yu P. Y. Welber B. High pressure photoluminescence and resonant Ramanstudy of GaAs[J]. Solid State Commun.25,(4):209(1978).
    [66] Bassett W. A. Takahashi T. Silver iodide polymorphs[J]. Am. Mineral.50:1576(1965).
    [67] Liu L. G. Bassett W. A. The melting of iron up to200kbar[J]. J. Geophys.Res.80,(26):3777(1975).
    [68] Ming L. Bassett W. A. Laser heating in the diamond anvil press up to2000°C sustained and3000°C pulsed at pressures up to260kilobars[J]Rev. Sci. Instrum.45,(9):1115(1974).
    [69] Webb A. W., Gubser D. U.Towle L. C. Cryostat for generating pressures to100kilobar and temperatures to0.03K[J] Rev. Sci. Instrum.47,(1):59(1976).
    [70] Shaw R. W. Nicol M. Simple low‐temperature press for diamond-anvilhigh pressure cells[J]. Rev. Sci. Instrum.52,(7):1103(1981).
    [71] Forman R. A., Piermarini G. J., Barnett J. D.Block S. Pressure MeasurementMade by the Utilization of Ruby Sharp-Line Luminescence[J]. Science176:284(1972).
    [72] Liu Z., Hu J., Yang H., Mao H.Hemley R. High-pressure synchrotron X-raydiffraction and infrared microspectroscopy: applications to dense hydrousphases [J]. Journal of Physics: Condensed Matter14:10641(2002).
    [73] Varga T., Wilkinson A. P., Lind C., Bassett W. A.Zha C. S. High pressuresynchrotron x-ray powder diffraction study of Sc2Mo3O12andAl2W3O12[J]. Journal of Physics: Condensed Matter17:4271(2005).
    [74] Mo S. D., Quyang L. Z., Ching W. Y., Tanaka I., Koyama Y.Riedel R.Interesting Physical Properties of the New Spinel Phase of Si3N4andC3N4[J]. Phys. Rev. Lett.83,(24):5046(1999).
    [75] Grumbach M. P., Sankey O. F.McMillan P. F. Properties of B2O: Anunsymmetrical analog of carbon[J]. Phys. Rev. B52,(22):15807(1995).
    [76] Teter D. M. Hemley R. J. Low-Compressibility Carbon Nitrides[J]. Science271:53(1996).
    [77] Kaner R. B., Gilman J. J.Tolbert S. H. Designing Superhard Materials[J].Science308:1268(2005).
    [78] Brazhkin V. V., Lyapin A. G.Hemley R. J. Harder than diamond: Dreamsand reality[J]. Philos. Mag. A82,(2):231(2002).
    [79] Zhang X. Y., Chen Z. W., Du H. J., Yang C., Ma M. Z., He J. L., Tian Y.J.Liu R. P. Hydrostatic limits in liquids and solids to100kbar[J]. J. Appl.Phys.103,(12):083533(2008).
    [80] Riedel R., Greiner A., Miche G., Dressler W., Fuess H., Bill J.Aldinger F.The First Crystalline Solids in the Ternary Si-C-N System[J]. Angew.Chem., Int. Ed. Engl.36,(6):603(1997).
    [81] Du H.-J., Guo L. C., Li D. C., Yu D. L.He J. L. First-Principles Calculationsof Phase Transition and Stability of Si2CN4under High Pressure[J]. Chin.Phys. Lett.26,(1):016403(2009).
    [82] Oganov A. R. Glass C. W. Crystal structure prediction using ab initioevolutionary techniques: Principles and applications[J]. J. Chem. Phys.124,(24):244704(2006).
    [83] Oganov A. R., Glass C. W.Ono S. High-pressure phases of CaCO3: Crystalstructure prediction and experiment[J]. Earth Planet. Sci. Lett.241,(1):95(2006).
    [84] Glass C. W., Oganov A. R.Hansen N. USPEX-Evolutionary crystal structureprediction[J]. Comput. Phys. Commun.175,(11):713(2006).
    [85] Kresse G. Furthmüler J. Efficient iterative schemes for ab initio total-energycalculation using a plane-wave basis set[J]. Phys. Rev. B54,(16):11169(1996).
    [86] Monkhorst H. J. Pack J. D. Special points for Brillouin-zone integrations[J].Phys. Rev. B13,(12):5188(1976).
    [87] Hill R. The Elastic Behaviour of a Crystalline Aggregate[J]. Proc. Phys. Soc.London65,(5):349(1952).
    [88] Segall M. D., Lindan P. J. D., Probert M. J., Pickard C. J., Hasnip P. J., ClarkS. J.Payne M. C. First-principles simulation: ideas, illustrations and theCASTEP code[J]. J. Phys.: Condens. Matter14,(11):2717(2002).
    [89] Zhou X. F., Sun J., Fan Y. X., Chen J., Wang H. T., Gao X. J., He J. L.TianY. J. Most likely phase of superhard BC2N by ab initio calculations[J].Phys. Rev. B76,(10):100101(2007).
    [90] Yanagisawa H., Tanaka T., Ishida Y., Rokuta E., Otani S.Oshima C. Phonondispersion curves of stable and metastable BC3honeycomb epitaxialsheets and their chemical bonding: Experiment and theory[J]. Phys. Rev.B73,(4):045412(2006).
    [91] Solozhenko V. L., Kurakevych O. O., Andrault D., Godec Y. L.Mezouar M.Ultimate Metastable Solubility of Boron in Diamond: Synthesis ofSuperhard Diamondlike BC5. Phys. Rev. Lett.102,(1):015506(2009).
    [92] He H. L., Sekine T., Kobayashi T., Hirosaki H.Suzuki I. Shock-inducedphase transition of β-Si3N4to c-Si3N4[J]. Phys. Rev. B62,(17):11412(2000).
    [93] Teter D. M. Computational alchemy: the search for new superhardmaterials[J]. MRS Bull.23,(1):22(1998).
    [94] Calandra M. Mauri F. High-Tc Superconductivity in Superhard DiamondlikeBC5[J]. Phys. Rev. Lett.101,(1):016401(2008).
    [95] Young D. A., Zha C.-S., Boehler R., Yen J., Nicol M., Zinn A. S., SchiferlD., Kinkead S., Hanson R. C.Pinnick D. A. Diatomic melting curves tovery high pressure[J]. Phys. Rev. B35,(10):5353(1987).
    [96] Gregoryanz E. High P-T transformations of nitrogen to170GPa[J]. J. Chem.Phys.126,(18):184505(2007).
    [97] Cromer D. T., Mills R. L., Schiferl D.Schwalbe L. A. The structure of N2at49kbar and299K. Acta Crystallogr. B37:8(1981).
    [98] Mills R. L., Olinger B.Cromer D. T. Structures and Phase Diagrams of N2and CO to13GPa by X-ray Diffraction[J] J. Chem. Phys.84,(5):2837(1986).
    [99] Schiferl D., Buchsbaum S.Mills R. L. Phase Transitions in NitrogenObserved by Raman Spectroscopy From0.4to27.4GPa at15K[J]. J.Phys. Chem.89,(11):2324(1985).
    [100] Lesar R., Ekberg S., Jones L., Schwalbe L.Schiferl D. Raman Spectroscopyof Solid Nitrogen up to374Kbar[J]. Solid State Commun.32,(2):131(1979).
    [101] Scheerboom M. Schouten J. Anomalous Behavior of the VibrationalSpectrum of the High-Pressure Phase of Nitrogen[J]. Phys. Rev. Lett.71,(14):2252(1993).
    [102] Eremets M. I., Gavriliuk A. G., Serebryanaya N. R., Trojan I. A., DzivenkoD. A., Boehler R., Mao H. K.Hemley R. J. Structural transformation ofmolecular nitrogen to a single-bonded atomic state at high pressures[J]. J.Chem. Phys.121,(22):11296(2004).
    [103] Reichlin R., Schiferl D., Martin S., Vanderborgh C.Mills R. L. OpticalStudies of Nitrogen to130GPa[J]. Phys. Rev. Lett.55,(14):1464(1985).
    [104] Gregoryanz E., Goncharov A. F., Sanloup C., Somayazulu M., Mao H.K.Hemley R. J. High P-T Transformations of Nitrogen to170GPa[J]. J.Chem. Phys.126,(18):184505(2007).
    [105] Bini R., Ulivi L., Kreutz J.Jodl H. J. High Pressure Phases of SolidNitrogen by Raman and Infrared Spectroscopy[J]. J. Chem. Phys.112,(19):8522(2000).
    [106] McMahan A. K. LeSar R. Pressure Dissociation of Solid Nitrogen under1Mbar[J]. Phys. Rev. Lett.54,(17):1929(1985).
    [107] Martin R. M. Needs R. Theoretical study of the molecular-to-nonmoleculartransformation of nitrogen at high pressures[J]. Phys. Rev. B34,(8):5082(1986).
    [108] Alemany M. M. G. Martins J. L. Theoretical study of the molecular-to-nonmolecular transformation of nitrogen at high pressures[J]. Phys. Rev.B68,(2):024110(2003).
    [109] Yakub L. N. Crystalline and amorphous polymeric solid nitrogen[J]. LowTemp. Phys.29,(9):780(2003).
    [110] Mitas L. Martin R. M. Quantum Monte Carlo of nitrogen: Atom, dimer,atomic, and molecular solids[J]. Phys. Rev. Lett.72,(15):2438(1994).
    [111] Mailhiot C., Yang L. H.McMahan A. K. Polymeric nitrogen[J]. Phys. Rev.B46,(22):14419(1992).
    [112] Martin R. M. Needs R. J. Theoretical study of the molecular-to-nonmolecular transformation of nitrogen at high pressures[J]. Phys. Rev.B34,(8):5082(1986).
    [113] Lewis S. P. Cohen M. L. High-pressure atomic phases of solid nitrogen[J].Phys. Rev. B46,(17):11117(1992).
    [114] Mattson W. D., Sanchez-Portal D., Chiesa S.Martin R. M. Prediction ofNew Phases of Nitrogen at High Pressure from First-PrinciplesSimulations[J]. Phys. Rev. Lett.93,(12):125501(2004).
    [115] Zahariev F., Hu A., Hooper J., Zhang F.Woo T. Layered single-bondednonmolecular phase of nitrogen from first-principles simulation[J]. Phys.Rev. B72,(21):214108(2005).
    [116] Yao Y., Tse J. S.Tanaka K. Metastable high-pressure single-bonded phasesof nitrogen predicted via genetic algorithm[J]. Phys. Rev. B77,(5):052103(2008).
    [117] Barbee T. W. Metastability of atomic phases of nitrogen[J]. Phys. Rev. B48,(13):9327(1993).
    [118] Mattson W. D. The Complex Behavior of Nitrogen Under Pressure:AbInitio Simulation of the Properties of Structure and Shock Waves Thesis,Univillinosis at Urbana-Champaign, Urbana-Champaign.(2003).
    [119] Zhang T., Zhang S., Chen Q.Peng L. M. Metastability of single-bondedcubic-gauche structure of N under ambient pressure[J]. Phys. Rev. B73,(9):094105(2006).
    [120] Scheerboom M. I. M. Schouten J. A. Orientational behavior of solidnitrogen at high pressures investigated by vibrational Ramanspectroscopy[J]. J. Chem. Phys.105,(7):2553(1996).
    [121] Tassini L., Gorelli F.Ulivi L. High temperature structures and orientationaldisorder in compressed solid nitrogen[J]. J. Chem. Phys.122,(7):074701(2005).
    [122] Hanfland M., Lorenzen M., Reul C. W.Zontone F. Structures of MolecularNitrogen at High Pressures[J]. Rev. High Pressure Sci. Technol.7:787(1997).
    [123] Schneider H., Hafner W., Wokaun A.Olijnyk H. Room temperature Ramanscattering studies of external and internal modes of solid nitrogen atpressures8    [124] Olijnyk H. Jephcoat A. P. Vibrational Dynamics of Isotopically DiluteNitrogen to104GPa[J]. Phys. Rev. Lett.83,(2):332(1999).
    [125] Wigner E. Huntington H. B. On the possibility of a metallic modification ofhydrogen[J]. J. Chem. Phys.3,(12):764(1935).
    [126] Abrikosov A. A. Evidence from x-ray diffraction of orientational orderingin phase III of solid hydrogen at pressures up to183GPa[J]. Astron. Zh.31,(6):112(1954).
    [127] Brovman E. G., Kagan Y.Kholas A. Sov. Phys. JETP35:783(1972).
    [128] Ross M. A theoretical analysis of the shock compression experiments of theliquid hydrogen isotopes and a prediction of their metallic transition[J]. J.Chem. Phys.60,(9):3634(1974).
    [129] Ashcroft N. W. Metallic Hydrogen: A High-TemperatureSuperconductor?[J]. Phys. Rev. Lett.21,(26):1748(1968).
    [130] Oliva J. Ashcroft N. W. Two-component Fermi-liquid theory: Equilibriumproperties of liquid metallic hydrogen[J]. Phys. Rev. B23,(12):6399(1981).
    [131] Brovman E. G., Kagan Y.Kholas A. Sov. Phys. JETP34:528(1971).
    [132] Narayana C., Luo H., Orloff J.Ruoff A. L. Solid hydrogen at342GPa: noevidence for an alkali metal[J]. Nature393:46(1998).
    [133] Eremets M. I. Troyan I. A. Conductive dense hydrogen[J]. Nat. Mater.10:927(2011).
    [134] Mao H. K. Hemley R. J. Ultrahigh pressure transitions in solid hydrogen[J].Rev. Mod. Phys.66,(2):671(1994).
    [135] Hazen R. M., Mao H. K., Finger L. W.Hemley R. J. Single-crystal x-raydiffraction of n-H2at high pressure[J]. Phys. Rev. B36,(7):3944(1987).
    [136] Hemley R. J. Mao H. K. Phase Transition in Solid Molecular Hydrogen atUltrahigh Pressures[J]. Phys. Rev. Lett.61,(7):857(1988).
    [137] Lorenzana H. E., Silvera I. F.Goettel K. A. ibid63:2080(1989).
    [138] Hanfland M., Hemley R. J.Mao H. K. Novel infrared vibron absorption insolid hydrogen at megabar pressures[J]. Phys. Rev. Lett.70,(24):3760(1993).
    [139] Mazin I. I., Hemley R. J., Goncharov A. F., Hanfland M.Mao H. K.Quantum and Classical Orientational Ordering in Solid Hydrogen[J]. Phys.Rev. Lett.78,(6):1066(1997).
    [140] Loubeyre P., Letoullec R., Hausermann D., Hanfland M., Hemley R. J.,Mao H. K.Finger L. W. X-ray diffraction and equation of state ofhydrogen at megabar pressures[J]. Nature383:702(1996).
    [141] Akahama Y., Nishimura M., Kawamura H., Hirao N., Ohishi Y.TakemuraK. Evidence from x-ray diffraction of orientational ordering in phase IIIof solid hydrogen at pressures up to183GPa. Phys. Rev. B82:060101(2010).
    [142] Hemley R. J. Mao H. K. Critical Behavior in the Hydrogen Insulator-MetalTransition[J]. Science249:391(1990).
    [143] Hemley R. J., Mao H. K.Shu J. F. Low-Frequency Vibrational Dynamicsand Structure of Hydrogen at Megabar Pressures[J]. Phys. Rev. Lett.65,(21):2670(1990).
    [144] Durig J. R., Bush S. F.Mercer E. E. Vibrational Spectrum of Hydrazine-d4and a Raman Study of Hydrogen Bonding in Hydrazine[J] J. Chem. Phys.44,(11):4238(1966).
    [145] Zheng W. J. Kaiser R. I. An infrared spectroscopy study of the phasetransition in solid ammonia[J]. Chem. Phys. Lett.440,(4-6):229(2007).
    [146] Gauthier M., Pruzan P., Chervin J. C.Besson J. M. Raman scattering studyof ammonia up to75GPa: Evidence for bond symmetrization at60GPa[J]. Phys. Rev. B37,(4):2102(1988).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700