聚合物电光热光混合集成光开关研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着二零一二年宽带中国战略的部署,光通信在国内的发展将进入新阶段,整个光通信产业链都将飞速发展,光缆厂商、光模块供应商、系统集成商都将从中受益。二零一二年也将成为100G光通信在中国正式商用的元年。中国光通信市场规模巨大,目前国内光模块市场2.5G以下产品竞争激烈,10G,40G,100G光模块产品发展受限,究其原因主要是高速芯片成本居高不下。在这样的市场环境下,开展高速光开关器件的研究符合国家的战略部署,有着重要的现实意义。
     光开关是光通信网络的核心器件,目前大规模商用的光开关仍以无机材料为主,从材料本身的性质来讲,极化聚合物材料理论上的带宽可达100G以上,聚合物材料的其他性质又与无机材料有着明显差别。因此,本论文结合聚合物材料特点,从材料性质,器件结构,制备工艺与器件测试四个方面对低成本的高速聚合物光开关器件展开研究:
     (1)高性价比的光开关材料性质表征
     本论文从高速调制器性价比方面考虑选择聚合物材料分散红1掺杂聚甲基丙烯酸甲酯(Dispersed Red1/poly(methyl methacrylate),DR1/PMMA)与聚甲基丙烯酸甲酯(poly(methyl methacrylate),PMMA)作为器件工艺材料。
     首先,采用椭偏仪表征了材料在红外通信波段的折射率分布,实验结果显示合成的DR1/PMMA材料在1550nm波长下折射率为1.507。
     其次,为表征对材料的热学性质,论文完成了材料的TGA与DSC测试。TGA测试结果显示材料5%热分解温度为200℃以上,这表明材料具有一定的热稳定性。DSC结果显示材料的玻璃态转变温度为102.6℃,根据这一参数,可以设定材料的极化温度为110℃。
     (2)混合集成光开关结构设计
     首先,本论文分析了实现光开关的原理,针对聚合物材料热光系数大,积聚热量的能力比较好的性质,提出了带有热光偏置结构的马赫-曾德尔干涉仪型热光电光混合集成光开关。热光偏置结构使得器件可以采用电流驱动的方式来调整器件的工作点,保证在较小的电压水平上实现器件的偏置。
     其次,论文采用有效折射率法,分析了器件的波导结构。对采用不同衬底材料的波导的结构进行分析,采用二氧化硅作为衬底材料的情况下,波导的功率限制因子相对采用PMMA作为下包层的波导要提高3.18%。论文采用束传播法模拟了材料在不同驱动情况下的光场传输情况。
     (3)专用工艺仪器设备研制
     在器件制备工艺方面,论文完成过程中,实现了非线性聚合物极化系统,反射法测试系统。
     首先,独立完成了新型多功能程控非线性聚合物极化系统。
     论文中聚合物材料采用旋涂法成膜,通过蒸发,光刻,湿法刻蚀,反应离子刻蚀等工艺步骤制备了器件的波导结构与电极结构。但是非线性聚合物材料本身对外并不表现出极性,只有将材料的温度加热到玻璃态转变温度以上,并施加一定的电场的情况下,可以使材料中的生色团分子取向,该过程称为极化。市场上没有极化工艺设备在销售,所以本论文完成过程中为了实现材料中生色团分子的取向,设计实现了非线性聚合物极化系统(PM-II)。
     其次,完成了新型可程控反射法测试系统。
     为了表征聚合物材料在电场作用下折射率的改变情况,论文设计并实现了极化聚合物电光系数测量系统,该系统工作在1550nm波长下,可以表征聚合物材料的电光系数γ33。通过对无机材料GaAs的电光系数测试校准之后,可以表征材料的极化效果,测试结果表明DR1/PMMA材料在1550nm波长下的电光系数在9.3pm/V。
     (4)器件性能测试
     与无机材料相比聚合物材料较为柔软,采用微波探针测试很容易对器件造成不可恢复的物理损伤。为此,论文设计了新的测试治具,采用该测试治具可以使器件的电极受到保护,同时可为器件的端面提供保护,并可以完成器件的接触极化。
     大信号测试结果显示,器件的上升时间为12.5ns,下降时间为10.0ns。热光谱扫描测试结果显示器件在13mW的驱动功耗下最大可以实现21dB的消光比。
With the publication of national broadband strategy, the development of opticalcommunication in China enters a new era. Therefore, the whole industry chain ofoptical communication is being promoted from the fiber optic cable manufacturers,optical module suppliers to system integrators. And the year of2012will alsobecome the first year of commercial100G optical communication application. Thereare keen competitions in the domestic optical module market of2.5G products.Limited by the chip costs,10G,40G,100G optical module products are limited bythe expensive chip price. In such a circumstance, study on high speed optical switchis in line with the national strategic deployment and it has an important practicalsignificance.
     Optical switch is the core device of the optical communication network, and themajority of commercial optical switch still bases on inorganic materials. Thepolarized polymer material theoretical bandwidth is up to100G or more. There is asignificant difference between polymeric materials and inorganic materials. Fullusing of the properties of polymeric material may be complementing the deficienciesin the inorganic materials. Based on all the points above, low cost and high speedpolymer optical switching devices are studied in the following four aspects: materialproperties, device structure, processing and device characterization.(1) Characterization of high cost performance material properties
     Dispersed Red1(DR1) doped poly(methyl methacrylate)(PMMA) and PMMAare selected as the core and cladding materials respectively.
     First, the ellipsometry experimental result shows that the index of material is1.507(@1550nm).
     Second, the TGA test result indicates that the temperature with5%weight lossof DR1/PMMA is over200℃. This result shows that the DR1/PMMA has a goodthermal stability. The glass transition temperature of DR1/PMMA is102.6℃tested by DSC method. Based on these two results, the poling temperature is chosenas110℃.(2) Design of hybrid integrated optical switch
     First, theory of optical switches is demonstrated. Because of the polymer has abig thermo-optical coefficient and a good thermo collection ability, a thermo-andelectro-hybrid integrated optical switching device with Mach–Zehnder structure isproposed. And in this structure, there is a thermo-optical bias which is designed toadjust device working point. And it guarantees that this optical switch is a currentdrive device and its driving voltage can stay in a low level.
     Second, the waveguide properties are analyzed by the Effective Index Method(EIM). For different lower-cladding materials, the power confined factor iscomputed. The power confined factor of the waveguide with SiO2lower claddingis3.18%bigger than the one with PMMA lower cladding. Optical field propagationprogress under different biases is analyzed by the Beam Propagation Method.(3) Design and set-up of special fabrication instruments
     At the device fabrication aspect, non-linear polymer poling system and thereflection method electro-optical (EO) coefficient characterization system aredesigned and set up.
     Design a new type non-linear polymer poling system.
     The polymer film is fabricated by the method of spin-coat. After the process ofmetal evaporation, lithograph, wet etch, dry etch etc. the device containingwaveguide and electrode is obtained. The non-linear polymers do not have the EOcoefficient. There is a process called poling which is demonstrated by the followingstatements: rising the device temperature a little higher than the glass transitiontemperature of DR1/PMMA, applying a direct current electric field across the filmfor minutes, keeping this electric field, cooling the device. But there is not acommercial equipment to perform this process, so a PM-II is designed to polarize devices.
     Design and set up a new type programmable EO coefficient characterizationsystem.
     An EO coefficient test system is designed and set up to characterize the indexchanging ability of DR1/PMMA under the electric field. The experimental resultshows that the EO coefficient of DR1/PMMA is9.3pm/V.(4) Device performance characterization
     Comparing with the inorganic material device the polymeric one is softer. Themicrowave probe can induce permanent damage to device electrodes. For aboveconcern, a new test fixture is designed. This fixture can provide protection forelectrodes and ports of devices.
     The large signal test result shows that the rise time and the fall time of thedevice are12.5ns and10.0ns respectively. The thermo-optical spectrum test resultshows that the device extinction ratio is over21dB under the driving power of13mW.
引文
[1] BroadbandHome,2012. TR-232Bulk Data Collection[M].2012.
    [2] Zhu Y J, Huang X G, Mei X. A Surface Plasmon Polariton Electro-OpticSwitch Based on a Metal-Insulator-Metal Structure with a StripWaveguide and Two Side-Coupled Cavities[J]. Chinese Physics Letters,2012,29(6):64214-064214.
    [3] Jin L, Cao Z J, Meng J. Nanosecond response electro-optic switch basedon high cost-effective poled polymeric material[J]. Microwave andOptical Technology Letters,2012,54(6):1537-1541.
    [4] Mei X, Huang X G, Jin T. A Sub-wavelength Electro-optic Switch Basedon Plasmonic T-Shaped Waveguide[J]. Plasmonics,2011,6(4):613-618.
    [5] Jin L, Cao Z J, Wang X B, et al. Fabrication and Measurement ofDr19/PMMA-Based Electro-Optic Switch with Nanosecond ResponseTime[J]. Microwave and Optical Technology Letters,2011,53(11):2653-2657.
    [6] Van Campenhout J, Green W M, Vlasov Y A. Design of a digital,ultra-broadband electro-optic switch for reconfigurable opticalnetworks-on-chip[J]. Optics Express,2009,17(26):23793-23808.
    [7] Zhu N H, Zheng X S, Lin Y K. Accuracy of swept-frequency measurementof optical modulator frequency response[J]. Microwave and OpticalTechnology Letters,1991,4(9):348-350.
    [8][8] Zhang B H, Zhu N H, Han W, et al. Development of Swept FrequencyMethod for Measuring Frequency Response of Photodetectors Based onHarmonic Analysis[J]. IEEE Photonics Technology Letters,2009,21(7):459-461.
    [9] Oates J H, Shin R T, Oates D E, et al. A nonlinear transmission linemodel for superconducting stripline resonators[J]. AppliedSuperconductivity, IEEE Transactions on,1993,3(1):17-22.
    [10] Williams K J, Esman R D. Large-signal compression-currentmeasurements in high-power microwave pin photodiodes[J].Electronics Letters,1999,35(1):82-84.
    [11]祝宁华.光电子器件微波封装和测试.2011.:188-191.
    [12] Tamir T. Integrated Optics. Topics in Applied Physics[M].1985,(7).
    [13] Miller S E. Optical Fiber Communications[M].1979,:123-125
    [14] Gao L, Yan Y F, Sun X Q. Low power2x2thermo-optic polymerwaveguide switch [J]. Optical Engineering,2010,49(1):19801-19801.
    [15] Hunsperger R G. Integrated Optics: Theory and Technology[M].Springer.2009:17.
    [16] McWhorter A L. Electromagnetic theory of the semi-conductorjunction laser[J]. Solid-State Electronics,1963,6(5):417-423.
    [17] Mckenna J. The Excitation of Planar Dielectric Waveguide at p-nJunctions, I[J]. Bell Syst Tech J,1967:461491–1566.
    [18] Tien P K. Light Waves in Thin Films and Integrated Optics[J].Applied Optics,1971,10(11):2395-2413.
    [19] Marcuse D. Theory of dielectric optical waveguides[M].1992
    [20] Taylor H F, Yariv A. Guided wave optics[J]. Proceedings of theIEEE,1974,62(8):1044-1060.
    [21] Kogelnik H. Theory of dielectric waveguides. In: Tamir, T.(Ed.)Topics in Applied Physics[M],1985,(7).
    [22]马春生刘式墉.光波导模式理论[M].2006:4-5.
    [23] William Hayt J B. Engineering Electromagnetics[M]. McGraw-Hill,1981,:151,317.
    [24]马春生范爱英刘式墉.金属/缓冲层/GaAs/AlGaAs波导的光学特性[J].吉林大学学报(理学版),1984,(4):73-78
    [25]刘式墉马春生.金属包层对脊形波导光学特性的影响[J].电子学报,1989,(5):85-89
    [26]马春生刘式墉.光波导模式理论[M].2006:23.
    [27]马春生刘式墉.光波导模式理论[M].2006:41-44.
    [28]马春生刘式墉.光波导模式理论[M].2006:53-55.
    [29] Mergerian D, Malarkey E C, Pautienus R P. Guided Wave Optical RFSpectrum Analyzer[M]. Microwave Symposium Digest,1981IEEE MTT-SInternational:517-519.
    [30] Yao X S, Maleki L. Optoelectronic microwave oscillator[J]. J OptSoc Am B,1996,13(8):1725-1735.
    [31] Madsen C K, Wagener J, Strasser T A. Planar waveguide opticalspectrum analyzer using a UV-induced grating[J]. Selected Topics inQuantum Electronics, IEEE Journal of,1998,4(6):925-929.
    [32] Marcatili E A J. Dielectric Rectangular Waveguide and DirectionalCoupler for Integrated Optics[J]. Bell Syst Tech J,1969,482071-2102.
    [33] Ramaswamy V. Strip-Loaded Film Waveguide[J]. Bell Syst Tech J,1974,53(4):697-704.
    [34] Furuta H, Noda H, Ihaya A. Novel Optical Waveguide for IntegratedOptics[J]. Applied Optics,1974,13(2):322-326.
    [35] Ponmalar S, Sundaravadivelu S. Design of ultra fast2x2electro-optic polymer waveguide switch for protection in intelligentoptical networks[J]. Journal of Scientific&Industrial Research,2011,70(1):36-40.
    [36] Chang K. Handbook of Optical Components and Engineering[M].Wiley-Interscience,2003: pp.
    [37] Hammer J. Modulation and switching of light in dielectricwaveguides[M]. Integrated Optics. Springer Berlin/Heidelberg,1975(7):139-200.
    [38] Densmore A, Janz S, Ma R B. Compact and low power thermo-opticswitch using folded silicon waveguides[J]. Optics Express,2009,17(13):10457-10465.
    [39] Lee M, Katz H E, Erben C. Broadband Modulation of Light by Usingan Electro-Optic Polymer[J]. Science,2002,298(5597):1401-1403.
    [40] Zhou J, Deng X, Cao Z. Determination of dc Kerr coefficients ofpolymer films with prism-optical waveguide configuration[J].Applied Physics Letters,2006,88(2):021106-021103.
    [41] Hayden L M, Sauter G F, Ore F R. Second-order nonlinear opticalmeasurements in guest-host and side-chain polymers[J]. Journal ofApplied Physics,1990,68(2):456-465.
    [42] Singer K D, Kuzyk M G, Holland W R. Electro-optic phase modulationand optical second-harmonic generation in corona-poled polymerfilms[J]. Applied Physics Letters,1988,53(19):1800-1802.
    [43] Teng C C, Man H T. Simple reflection technique for measuring theelectro-optic coefficient of poled polymers[J]. Applied PhysicsLetters,1990,56(18):1734-1736.
    [44] Chuang S L. Physics of Optoelectronic Devices[M].Wiley-Interscience.1995
    [45] Derbyshire K. Issues in Advanced Lithography[J]. Solid StateTechnology.1997:133.
    [46] Y. Lii, Etching in ULSI Technology[M], ed. by C. Chang and S.Sze.New York: McGraw-Hill,1996:349

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700