Eu~(2+,3+)掺杂ABPO_4(A=Li,Na,K,B=Mg,Ca,Sr,Ba)的发光性能及结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀土掺杂的荧光粉在显示器、荧光灯等领域得到了广泛的应用。磷酸盐由于具有良好的物理、化学稳定性和热稳定性,可以用作发光材料的基质,在PDP、FED、LED等领域显示出极好的应用价值。Eu~(2+)是研究最为集中的稀土离子之一,其吸收与发射光谱通常是比较宽的带状谱,主要来自于基态与电子组态4f65d1的最低激发态之间的跃迁。激发与发射波长主要依赖于基质晶体,因此,基质的选取对稀土离子的发光有重要的影响。Eu~(3+)不但是最主要的红发光激活离子,而且还是重要的结构探针离子,微小的晶体学结构变化在其选择激发和发射光谱上会得到不同的~5D_0→~7F_0跃迁,对应不同的发光光谱和衰减变化。利用这一特点,可以研究稀土离子所处的晶体学环境,提供基质中不同发光中心的格位对称性,进一步分析微观结构与发光性质的关系。
     本论文选择了正磷酸盐ABPO_4(A=Li, Na, K, B=Mg, Ca, Sr, Ba)系列为基质材料,该体系具有丰富的结构类型,且结构中含有PO_4四面刚性网络结构,易实现稀土离子的还原和在刚性网络结构中的稳定。稀土离子选择了Eu~(2+)、Eu~(3+),采用高温固相法制备了Eu~(2+,3+)掺杂ABPO_4(A=Li, Na, K, B=Mg, Ca, Sr, Ba)系列的荧光粉,详细研究了其结构组成、发光性能、热稳定性、微观晶体学结构,讨论了该系列荧光粉作为新型发光材料在显示照明等领域的应用前景,特别是在UV、近UV白发光LEDs方面的潜在应用。
     第二章,利用XRD对LiMgPO_4: Eu~(2+)的物相结构进行了表征,分析结果表明该样品具有纯相的橄榄石结构,空间群是Pnma。利用荧光光谱仪测试了Eu~(2+)掺杂LiMgPO_4的发射光谱及衰减曲线,低温下观察到了360nm处的发射峰,来自4f7(6P7/2)→4f~7(~8S_(7/2))辐射跃迁与零声子谱线的重叠。研究了温度对发光强度及衰减时间的影响。利用脉冲染料激光器测试了Eu~(3+)离子在LiMgPO_4中的位置选择激发与发射光谱,位置选择激发光谱由579.0nm (M)处的主峰与579.9nm (M')处的弱峰组成,表明Eu~(3+)离子占据一个固有的晶体学位置Eu~(3+)(M)与一个无序的位置Eu~(3+)(M');讨论了稀土离子掺杂LiMgPO_4的电荷补偿机制,本研究工作对于稀土离子掺杂这种磷酸盐基质的发光研究具有重要的意义。
     第三章,采用传统的高温固态反应合成了荧光粉KMgPO_4:Eu~(2+),利用荧光光谱仪测试了样品的光致激发与发射光谱,激发光谱是从230-400nm的宽带谱,近紫外光激发下,发射光谱为主发射峰在470nm的光谱带,该光谱来自于室温下Eu~(2+)离子4f~65d~1→4f7的辐射跃迁。研究了温度对发光与衰减时间的影响,发现基质晶格中有两个不同的Eu~(2+)位置,它们呈现了不同的发光与衰减。根据其发光性质与晶体结构讨论了Eu~(2+)离子在晶格中占据两个不同的K+位置。报道了从10K到室温发光衰减反常增大的现象。
     第四章,深入研究了荧光粉NaMgPO_4:Eu~(2+)的发光性能,激发光谱是从220到430nm的宽带谱,来自于4f~65d~1→4f~7(~8S_(7/2))的辐射跃迁。低温下观察到了4f7(6P7/2)→4f~7(~8S_(7/2))跃迁的发射谱线,峰值为360nm。报道了Eu~(2+)离子掺杂NaMgPO_4的发光量子效率、结晶学位置及微观结构,讨论了Eu~(2+)在NaMgPO_4晶格中的多位置结构,结果表明Eu~(2+)处于无序的结构环境。测试了发光与温度之间的依赖关系曲线(18-300K),计算了发光猝灭温度与热激活能。讨论了该荧光粉的发光热稳定性与晶体结构的关系。
     第五章,采用高温固态反应合成了绿色荧光粉LiBaPO_4:Eu~(2+),测试了激发与发射光谱、发光强度与温度的关系及发光衰减曲线(12-450K),计算了热猝灭温度与激活能。结果表明随着温度的升高发射光有反常的蓝移现象,热猝灭温度较低。观察到该荧光粉有余晖现象。
     通过Eu~(3+)结构探针离子的位置选择激发和发射光谱,研究了Eu掺杂LiBaPO_4的微观结构与晶体学环境,表明晶格中Eu有三种发光位置即Eu(2)(578.0nm),Eu(1)(578.7nm)和Eu(3)(580.3nm)。讨论了荧光粉的发光机制,测试了发光量子效率并与文献报道的结果进行了比较,表明LiBaPO_4:Eu~(2+)不适合应用于W-LEDs。
     第六章,利用XRD测试了NaBaPO_4:Eu~(2+)荧光粉的物相结构,分析结果表明所制得的样品为纯相NaBaPO_4晶体,与钾芒硝同构,空间群为P3|-m1。测试了NaBaPO_4:Eu~(2+)的激发光谱与发射光谱。研究了温度依赖发光强度和衰减时间,计算了斯托克斯位移、发光量子效率(QE)、热猝灭激活能(ΔE),结果表明T0.5为550K,热稳定性较好,而QE较低只有38.5%,并且发现随着温度的升高发射带出现了反常的蓝移现象。
     测试了Eu~(3+)结构探针离子的位置选择激发和发射光谱,与7F0→~5D_0跃迁对应的激发光谱由峰值为579.6nm Eu(I)和578.9nm Eu(II)的谱线组成,表明Eu~(3+)在基质晶格中占据两种不同的晶体学位置。测试了两种Eu~(3+)位置的衰减时间,研究了发光特征与晶体结构位置的关系。最后讨论了Eu~(3+)掺杂NaBaPO_4的电荷补偿机制,对于稀土离子掺杂这类磷酸盐的发光研究具有重要的借鉴意义。
     第七章,研究了Eu~(2+)掺杂具有β-K2SO_4结构的正磷酸盐NaSrPO_4和KBaPO_4的发光性质及热稳定性,结果表明,KBaPO_4:Eu~(2+)的发射光谱只有一个发射峰,中心波长为420nm;而NaSrPO_4:Eu~(2+)的发射光谱是非对称光谱。测试了其物相结构、衰减曲线、发光量子效率(QE)。根据发光强度与温度的关系及衰减曲线(10-435K),计算了NaSrPO_4:Eu~(2+)和KBaPO_4:Eu~(2+)热猝灭的激活能,分别为0.053eV与0.121eV。为了确定稀土掺杂KBaPO_4和NaSrPO_4的结构分布,研究了Eu~(3+)离子的位置选择激发与发射光谱,表明稀土掺杂KBaPO_4中只有一个高度有序的结构位置,而NaSrPO_4中,稀土离子处于高度无序的结构环境,这种不同的结构环境决定了它们不同的发光性质。
     第八章,详细研究了LiCaPO_4:Eu~(2+)荧光粉的激发光谱、掺杂浓度与发光强度的关系、温度与发光衰减的关系,结果表明,该荧光粉能够被280-420nm的紫外光有效地激发,与近UV LEDs芯片相匹配,在365nm紫外光激发下,发射出中心波长为470nm的蓝色光谱。研究了温度与浓度分别对发光强度的影响。计算了不同温度下的发光衰减时间与色度坐标,发现该荧光粉具有极好的热稳定性与色稳定性,表明LiCaPO_4:Eu~(2+)在W-LEDs应用中是一种潜在的蓝色荧光粉。
     第九章,通过传统的高温固相法合成了绿色荧光粉KCaPO_4:Eu~(2+),利用X RD测试了荧光粉的物相结构。测试了光致激发与发射光谱,分析了发光强度对温度的依赖关系,随着温度的升高,发射光谱显示了反常的蓝移现象。计算和讨论了色度坐标、发光猝灭温度和热激活能,利用Eu~(3+)结构探针离子的位置选择激发和发射光谱研究了KCaPO_4基质中阳离子Ca2+的微观结构特征,讨论了Eu~(2+)在KCaPO_4中的多位置结构,这有助于进一步研究稀土离子掺磷酸盐系列的发光性质。
     本论文创新点是:系统研究了Eu~(2+,3+)掺杂正磷酸盐ABPO_4(A=Li, Na, K, B=Mg,Ca, Sr, Ba)的物相结构、发光性能及其发光衰减特征;首次利用Eu~(3+)离子的激光位置选择激发和发射光谱技术分别研究了体系的微观结构特点,以及稀土离子在基质中的占位问题;研究了不同格位的发光性能及衰减时间,从更高理论深度探讨了稀土离子(尤其是多格位掺杂)的微观晶体学结构与其发光性能的关系,揭示了结构特征对其发光性能有重要的影响。对于稀土掺杂磷酸盐的进一步开发应用具有重要的参考和借鉴价值。
Rare-earth (RE) doped materials have been widely applied in display, fluorescentlamp, WLED and many other fields. The phosphates with ABPO_4formula (A and B aremono-and divalent cations, respectively) are a large family of mono-phosphates withthe different structure types. These compounds have been considered to be efficientluminescent hosts due to its excellent physical, chemical and thermal stability and haverepresented excellent application value in PDP, FED and LED areas.
     The absorption and emission spectra of Eu~(2+)usually comprise broad bands due totransitions between the4f7ground state and the crystal field components of the4f~65d~1excited state configuration. The wavelengths of excitation and emission bands stronglydepend on the host crystal. So the choice of the hosts greatly affects the opticalproperties of Eu~(2+)ions.
     As one of the most important activator ions, Eu~(3+)is widely applied in redluminescent materials. The luminescence of Eu~(3+)being the well-known probe ion ishighly affected by the surrounding environments in a lattice. The luminescence from~5D_0→~7F_0transitions of Eu~(3+)ions can present different emission spectra and decayprofiles when their crystallographic surroundings have even small changes. Thesurrounding environment of Eu~(3+)ions doped in a host can be elucidated by applying thesite-selective excitation and emission spectra technique. And this also can provide thesymmetry of different luminescence centers in the matrix and then give relation betweenthe microscopic structure and luminescence properties.
     In this work, the phosphates with ABPO_4(A=Li, Na, K, B=Mg, Ca, Sr, Ba) with various structure types were selected to be the host material and can promote rare earthions reduction and stability in host lattice due to their PO_4tetrahedra rigid networkstructure. Eu~(2+),3+-doped ABPO_4(A=Li, Na, K, B=Mg, Ca, Sr, Ba) were prepared byhigh temperature solid-state reaction. Their crystal structures, luminescence properties,thermal stability and microscopic crystal structure were investigated. Their potentialapplications as a new phosphor were discussed in display, fluorescent lamp, in particular,in WLED field.
     In the chapter two, the formation of LiMgPO_4: Eu~(2+)was confirmed by X-raypowder diffraction measurement to be single LiMgPO_4phase. It belongs to the orderedolivine-type structure with the space group Pnma. The photoluminescence excitationand emission spectra and decay curves were measured. At low temperature it is foundthat the emission line of the4f7(6P7/2)→4f~7(~8S_(7/2)) transition is overlapped with thezero-phonon line at nearly the same position of360nm. The influences of temperatureon the luminescence spectra and decay times were investigated. The site-selectiveexcitation and emission spectra have been investigated in the~5D_0→~7F_0region by using apulsed, tunable and narrowband dye laser. The excitation spectra consist of the strongestline at579.0nm (M) and a weak broad peak at579.9nm (M'. The results clearlyindicate that the Eu~(3+)ions occupy one intrinsic crystallographic site Eu~(3+)(M) and otherdisturbed sites Eu~(3+)(M') in LiMgPO_4. The charge compensation mechanisms of Eu~(3+)doping in LiMgPO_4were discussed. This is helpful for the luminescence investigationof RE ions doped in this kind of phosphate host.
     In the chapter three, Eu~(2+)-doped KMgPO_4was prepared by high-temperaturesolid-state reaction. Photoluminescence excitation spectrum measurements show thatthe phosphor can be efficiently excited by near UV light from230to400nm andpresents a dominant luminescence band centered at470nm due to the4f~65d~1→4f7transition of Eu~(2+)ions at room temperature. The influence of temperature on theluminescence and decay times were investigated. There are two distinct Eu~(2+)sites inKMgPO_4lattices, which present different luminescence and lifetimes. The assignmentsof the Eu~(2+)sites were discussed on the base of the luminescence properties and the structure of KMgPO_4crystal. The unusual increase of the decay time of the4f65demission in KMgPO_4from10K to room temperature was reported.
     In the chapter four, the luminescence of NaMgPO_4:Eu~(2+)was given an insightinvestigation. The phosphor can be excited by UV-visible light from220to430nm torealize emission from4f~65d~1→4f~7(~8S_(7/2)) transition in the blue range. The4f7(6P7/2)→4f~7(~8S_(7/2)) transition in the4f7electronic configuration of Eu~(2+)at360nm was observedat low temperature. The luminescence absolute quantum efficiency, the crystallographicsites and the microstructure of Eu~(2+)ions doped in NaMgPO_4lattices were reported. Themultiple sites structure of Eu~(2+)ions in NaMgPO_4lattices was discussed. Theluminescence quenching temperatures and the thermal activation energy forNaMgPO_4:Eu~(2+)were obtained from the temperature dependent (18–300K)luminescence decay curves. Eu~(2+)ions have the “disordered environment” in NaMgPO_4lattices. The relation between the luminescence thermal stabilities and the crystalstructures were discussed.
     In the chapter five, Eu~(2+)-activated LiBaPO_4phosphor was synthesized byconventional solid-state reaction. The photoluminescence excitation and emissionspectra, the temperature dependent luminescence intensities (12-450K) and decaycurves of the phosphor were investigated. With the increasing of temperatures, theemission bands of LiBaPO_4:Eu~(2+)show the abnormal blue-shift and the decreasing ofemission intensity. The natures of the Eu~(2+)emission in LiBaPO_4, e.g., the luminescencequenching temperature, and the activation energy for thermal quenching (ΔE), werereported. The afterglow fluorescence was detected in LiBaPO_4:Eu~(2+)phosphor. Thesite-selective excitation in the~5D_0→~7F_0region for Eu~(3+)ions, emission spectra and decaycurves have been investigated using a pulsed, tunable and narrowband dye laser todetect the micro-structure and crystallographic surrounding of Eu~(3+),2+at Ba2+sites inLiBaPO_4. The multiple sites structure of Eu~(2+)and Eu~(3+)ions in LiBaPO_4lattices wassuggested. The lower quenching temperature, afterglow and luminescence mechanismwere discussed. The Photoluminescence quantum efficiencies of LiBaPO_4:Eu~(2+)weremeasured and compared with the reported phosphors. Different from the published data on LiBaPO_4:Eu~(2+), this investigation indicate that LiBaPO_4:Eu~(2+)is not a good phosphorcandidate applied in white light emitting diode.
     In the chapter six, the phase formation of NaBaPO_4:Eu~(2+)was confirmed by X-raypowder diffraction measurements. No impurity lines were observed and the structurewith the space group P3m1is isotypic with that of glaserite. The photoluminescenceexcitation and emission spectra, and the luminescence quantum efficiency of Eu~(2+)ionswere investigated. The dependence of luminescence intensities on temperatures, and thetemperature-dependent decay times of Eu~(2+)doped NaBaPO_4were measured anddiscussed. The natures of the Eu~(2+)emission in NaBaPO_4, e.g., the Stokes shifts, theluminescence quenching temperature (T0.5), the activation energy for thermal quenching(ΔE) were reported. The phosphor shows an excellent thermal stability on temperaturequenching effects. With the increasing of temperature, the emission bands show theabnormal blue-shift.
     The laser site-selective excitation and emission spectra have been investigated inthe~5D_0→~7F_0region by using a pulsed, tunable and narrowband dye laser. The excitationspectra corresponding to the~7F_0→~5D_0transition consist of two transitions at579.6nmEu(I) and578.9nm Eu(II), indicating the Eu~(3+)ions occupy two crystallographic sites ofBa2+ions. The decay lifetimes of the two Eu~(3+)sites were measured. Twocrystallographic sites for Eu~(3+)ions doped in NaBaPO_4lattice were assigned from theluminescence characteristic and structure features. Meanwhile, the charge compensationmechanism of Eu~(3+)doping in NaBaPO_4was discussed
     In the chapter seven, two Eu~(2+,3+)-doped mono-phosphate hosts NaSrPO_4andKBaPO_4with β-K2SO_4structure have been selected to investigate the luminescenceproperties and thermal stabilities. KBaPO_4:Eu~(2+)shows one emission band peaking at420nm, however, the emission spectra of NaSrPO_4:Eu~(2+)have an asymmetric spectrum.The phase formation, the decay curves and the luminescence absolute quantumefficiencies were measured. The luminescence quenching temperatures and the thermalactivation energy for NaSrPO_4:Eu~(2+)and KBaPO_4:Eu~(2+)were obtained from thetemperature dependent (10-435K) luminescence intensities and decay curves. KBaPO_4:Eu~(2+)presents only one emission center, however, Eu~(2+)ions have the“disordered environment” in NaSrPO_4lattices. This was analogically analyzed by thesite-selective emission spectra and the excitation spectra of the~7F_0→~5D_0transitions ofEu~(3+)ions in the hosts using a pulsed, tunable and narrowband dye laser. In KBaPO_4, theEu~(3+)ions could be distributed in the host with a high “ordered state” in only one site inthe lattices. However, the multiple sites structure of Eu~(3+)ions with highly disordereddistributions in NaSrPO_4lattices was suggested. The relation between the luminescencethermal stabilities and the crystal structures were discussed.
     In the chapter eight, the photoluminescence excitation and emission spectra wereinvestigated. The results showed that LiCaPO_4:Eu~(2+)can be efficiently excited by theincident lights of280-420nm, which well match with the emissions of near-UV LEDs.The phosphor showed bright blue luminescence. The temperature and concentrationdependence of luminescence intensities were investigated. The phosphor has anexcellent thermal stability on temperature quenching effects. The luminescence decayand the color coordinates were discussed in order to further investigate its potentialapplications for white light-emitting diode phosphors pumped by near-UV chip.
     In the chapter nine, a green-emitting phosphor, Eu~(2+)-activated KCaPO_4, wassynthesized by conventional solid-state reaction. The phase formation was confirmed byX-ray powder diffraction measurements. The photoluminescence excitation andemission spectra, the temperature dependent luminescence intensities (293-438K) anddecay curves of the phosphor were measured. With the increasing of temperature, theemission bands show the abnormal blue-shift with broadening bandwidth. The naturesof the Eu~(2+)emission in KCaPO_4, e.g., the chromaticity coordinates, the luminescencequenching temperature, activation energy for thermal quenching (ΔE), were reported.The excitation spectra have been investigated in the~5D_0→~7F_0region for Eu~(3+)ions inKCaPO_4by using a pulsed, tunable and narrowband dye laser to detect the cation site ofCa2+in KCaPO_4. The multiple sites structure of Eu~(2+)ions in KMgPO_4lattices weresuggested and discussed.
     The novelties of this dissertation are as follows: the structure characteristics, photoluminescence properties and decay curves of Eu~(2+,3+)-doped ABPO_4(A=Li, Na, K,B=Mg, Ca, Sr, Ba) were systematically studied. The features about microstructure ofABPO_4and crystallographic site-occupations of Eu ions were firstly investigated by thesite-selective excitation and emission spectra. The luminescence performances ofdifferent crystallographic sites have been investigated. The relation between themicroscopic structure and luminescence properties of Eu ions was insight discussed intheory to obtain the influence of the structure characteristic on luminescence features. Ina word, this provided a helpful reference for further development and application of rareearth doped ABPO_4phosphor.
引文
[1]焦海燕.白光发光二极管(WLED)用几种典型稀土硅酸盐荧光粉的制备及其NUV发光性质的研究[D],兰州大学(博士学位论文),2010.
    [2]徐叙路,苏勉曾.发光学与发光材料[M],化学工业出版社,2004.
    [3]涂招莲,王国定.大功率白光LED封装技术对器件寿命的影响[J].半导体技术,2010,2:181-185.
    [4]唐国庆.从室内照明发展趋势论LED技术提升的关键[J].半导体技术,2009,34,3:201-204.
    [5] J. N. Holonyak, S. F. Bevacqua. Coherent (visible) light emission from Ga(As1-xPx)junctions [J]. Appl. Phys. Lett.,1962, l:82-83.
    [6] J. Nishizawa, K. Itoh, Y. Okuno, et al. LPE-AlGaAs and red LED (candela class)[J]. Appl. Phys.,1985,57:2210-2214.
    [7] C. Kuo, R. Fletcher, T. Osentowaki, et al. Hight performance AlGaInP visiblelight-emitting diodes [J]. Appl. Phys. Lett.,1990,57:2937-3939.
    [8] H. Sugawara, M. Ishikawa, and G. Hatakoshi. High-eficiency InGaAlP/GaAsvisible light-emitting diodes [J]. Appl. Phys. Lett.,1991,58:1010-1012.
    [9] M. Deopura, C. K. Ullal, B. Temelkuran, et al. Dielectric omnidirectional visiblereflector [J]. Optics Letters,2001,26:1197-1199.
    [10]S. Nakamura, T. Mukai, and M. Senoh. Candela-class high-brightnessInGaN/A1GaN double-heterostructure blue-light emitting diodes [J]. Appl. Phys.Lett.,1994,64(13):1687-1689.
    [11]S. Nakamura, M. Senoh, N. Iwasa, et al. High-brightness InGaN blue, green andyellow light-emitting diodes [J]. Jpn. J. Appl. Phys.,1995,34: L797-L799.
    [12]Nakamura S., Senoh M., Mukai T. High-Power InGaN/GaN double heterostructureviolet light emiting diodes [J]. Applied Physics Letters,1993,62:2390-2392.
    [13]Nakamura S. GaN growth using GaN buffer layer [J]. Japanese Journal of AppliedPhysics,1991,30: L1705-L1707.
    [14]Usui A., Sunakawa H., Sakai A, et al. Thick GaN epitaxial groth with lowdislocation density by hydride vapor Phase epitaxy [J]. Japanese Journal ofAPPlied Physics,1997,36: L899-L902.
    [15]Cao J., Pavlidis D., Park Y., et al. Imporved quality GaN by Growth on compliantsilieon-on-insulator substrates using metalorganic chemical vapor deposition [J].Japanese Journal of Applied Physics,1998,83:3829-3834.
    [16]孔丽.白光LED用荧光粉的合成与光谱性能研究[D],吉林大学(博士学位论文,2008.
    [17]皇家菲利浦电子有限公司.包括发光二极管和荧光发光二极管的混合白光源.荷兰: CN1355936,2002-06-26.
    [18]Chen, Hsing. White light LED. TW: US2002093287,2002-07-18.
    [19]A. A. Setlur, W J. Heward, Y Gao, A. M. Srivastava, et al. Crystal chemistry andluminescence of Ce3+-doped Lu2CaMg2(Si,Ge)3O12and its use in LED basedlighting [J]. Chem. Mater.,2006,18:3314-3322.
    [20]N. Hirosaki, R. J. Xie, K. Kimoto, et al. Characterization and properties ofgreen-emitting β-SiAlON:Eu2+powder phosphors for white light-emitting diodes[J]. Appl. Phys. Lett.,2005,86:211905(1)-211905(3).
    [21]S. Neeraj, N. Kijima, A. K. Cheetham. Novel red phosphors for solid-state lighting:the system NaM(WO4)2-X(MoO4)x:Eu3+(M=Gd, Y, Bi)[J]. Chem. Phys. Lett.,2004,387:2-6.
    [22]R. Mueller-Mach, G. Mueller, M. R. Krames, et al. Highly efficient all-nitridephosphor-converted white light emitting diode [J]. Phys. Stat. So1.,2005,202(9):1727-1732.
    [23]W. J. Park, M. K. Jung, S. M. Kang, et al. Synthesis and photoluminescencecharacterization of Ca3Si2O7:Eu2+as a potential green-emitting white LEDphosphor [J]. Journal of Physics and Chemistry of Solid,2008,69:1505-1508.
    [24]K. M. Lee, K. W. Cheah, B. L. An, et al. Emission characteristics ofinorganic/organic hybrid white-light phosphor [J]. Appl. Phys. A,2005,80:337-339.
    [25]R. M. Clegg, X. F. Wang, and B. Herman. Chemical Analysis Series [M]. JohnWiley and Sons, New York,1996:137-196.
    [26]林群哲. Synthesis and Investigation of Phosphate Phosphors for Light EmittingDiodes [D],国立台湾大学(硕士学位论文),2007.
    [27]Ropp, R. C. Luminescence and the Solid State-2nd ed.. Elsevier: Amsterdam,2004.
    [28]葛杏心,孙艳辉,刘聪,符远翔.稀土蓝色光致发光材料研究进展[J].稀土,2009,30:80-85.
    [29]G rller-Walrand, C. Binnemans, K. Gscheidner, K. j., Eyring, L., Eds. InHandbook on the Physics and Chemistry of rare earths [M]. Elsevier: Amsterdam,1996,23:121-283.
    [30]L. Yu, D. Li, M. Yue, J. Yao and S. Lu. Dependence of morphology andphotoluminescent properties of GdPO4: Eu3+nanostructures on synthesiscondition [J]. Chemical Physics,2006,326(2-3):478-482.
    [31]U. Rambabu and S. Buddhudu. Optical properties of LnPO4:Eu3+(Ln=Y, La andGd) powder phosphors [J]. Opt. Mater.,2001,17(3):401-408.
    [32]Auzel F., Dexpert-Ghys J., Gautier C. Minimum ion-ion distance, cross relaxationand excitonic behavior in Ln3+ion stoichiometric materials [J]. J. Lumin.,1982,27:1-12.
    [33]Michael J. Lochhead. Luminescence spectroscopy of europium (Ⅲ)–doped silicagels and silicate glasses [M]. the Graduate School of the University ofWisconsin-Madison in America (Doctoral Dissertation),1995.
    [34]Sugar J. and Spector N. J., Spectrum and energy levels of doubly ionized europium(Eu III)[J]. J. opt. Sot. Am.1974,64:1484-1490.
    [35]J. Rubio O. Doubly-valent rare-earth ions in halide crystals [J]. J. Phys. Chem.Solids,1991,52(1):101-174.
    [36]Hoffman M. V. Alkaline Earth Aluminum Fluoride Compounds with Eu2+Activation [J]. J. electrochem. Soc.1971,118(6):933-937.
    [37]Blasse G., in Luminescence of Inorganic Solids (Edited by B. DiBartolo). p.457,Plenum Press, New York (1978).
    [38]Kitai, A. H. Visible luminescence-Solid state materials&applications [M].Chapman&Hall: London,1992.
    [39]Deluca, J. A. An introduction to luminescence in inorganic solids [J]. J. Chem. Edu.1980,57(8):541-545.
    [40]Blasse, G. Fluorescence of Niobium-Activated Antimonates and an EmpiricalCriterion for the Occurrence of Luminescence [J].J. Chem. Phys.1965,48(7):3108-3114.
    [41]Lakowicz, J. R. Principle of Fluorescence Spectroscopy-2nded.[J]. KluwerAcademic/Plenum Pub.: New York,1999.
    [42]Jüstel, T. Phosphor global summit, March13,2006, PGS, San Diego, CA.
    [43]Sullivan, S. C., Woo, W. K., Steckel. Tuning the performance of hybridorganic/inorganic quantum dot light-emitting devices [J]. J. S., Bawendi, M.,Bulovi V. Organic Electronics,2003,4(2-3):123-130.
    [44]Y Uchida, T. Taguchi. Theoretical and experimental luminous characteristics ofwhite LEDs composed of multiphosphors and near-UV LED for lighting [J]. Proc.SPIE,2003,4996:166-173.
    [45]W. J. Ding, J. Wang, M. Zhang, Q. H. Zhang, Q. Su. Luminescence properties ofnew Ca10(Si2O7)3Cl2:Eu2+phosphor [J]. Chem. Phys. Lett.,2007,435(4-6):301-305.
    [46]W. J. Ding, J. Wang, M. Zhang, Q. H. Zhang and Q. Su. A novel orange phosphorof Eu2+-activated calcium chlorosilicate for white light-emitting diodes [J]. J. SolidState Chem.,2006,179(11):3582-3585.
    [47]R. J. Yu, J. Wang, M. Zhang, J. H.Zhang, H. B. Yuan and Q. Su. A newblue-emitting phosphor of Ce3+-activated CaLaGa3S6O for white-light-emittingdiodes [J]. Chem. Phys. Lett.,2008,453:197-201.
    [48]P. Yang, G. Q. Yao, J. H. Lin, Energy transfer and photoluminescence ofBaMgAll0O17co-doped with Eu2+and Mn2+[J]. Optical Materials,2004,26,3:327-331.
    [49]蒋大鹏,赵成久,等.用荧光粉转换方法制备纯绿色LED [J].发光学报,2002,23,3:311-313.
    [50]张中太,张俊英.无机光致发光材料及应用[M].化学工业出版社,2005:166.
    [51]Y C. Kang, J. R. Sohn, H. S. Yoon, et al. Improved photoluminescence ofSr5(PO4)3C1:Eu2+phosphor particles prepared by flame spray pyrolysis [J]. JElectrochem Soc.,2003,150,2: H38-H42.
    [52]J. K. Park, K. J. Choi, C. H. Kim, et al. Luminescence characteristics ofSr3MgSi2O8:Eu blue phosphor for light-emitting diodes [J]. ElectrochemSolid-State Lett,2004,7(10): H42-H43.
    [53]N. Lakshminarasimhan, U. V Varadaraju. White-light generation inSr2SiO4:Eu2+,Ce3+under near-UV excitation [J]. J Elecrochem Soc,2005,152(9):H152-H156.
    [54]J. Liu, J. Y. Sun, C. S. Shi, A new luminescent material: Li2CaSiO4:Eu2+[J]. MaterLett,2006,60(23):2830-2833.
    [55]S. Saha, P S. Chowdhury, A. Patra. Luminescence of Ce3+in Y2SiO5nanocrystals:role of crystal structure and crystal size [J]. J Phys Chem B,2005,109:2699-2702.
    [56]杨志平,王少丽,杨广伟,等. Ca2B5O9Cl:Eu2+蓝色荧光粉的发光特性[J].硅酸盐学报,2008,36(2):180-181.
    [57]杨云霞,陈仙玲,袁双龙,等.白光LED灯用蓝光荧光粉的发光性能和结构[J].硅酸盐学报,2006,34(6):671-674.
    [58]Q. H. Zeng, H. Tanno, K. Egoshi, et al. Ba5SiO4C16:Eu2+an intense blue emissionphosphor under vacuum ultraviolet and near-ultraviolet excitation, Appl Phys Lett,2006,88:051906(1)-051906(3).
    [59]杨志平,刘玉峰,李雪清.用于白光LED的高亮度蓝白色荧光Ca2SiO3C12:Eu2+的发光性质[J].发光学报,2006,27(4):629-632.
    [60]Panlai Li, Zhijun Wang, Zhiping Yang, Luminescent characteristics of LiSrBO3:M(M=Eu3+, Sm3+, Tb3+, Ce3+, Dy3+) phosphor for white light-emitting diode:Materials Research Bulletin,2009,44:2068-2071.
    [61]Z. C. Wu, J. X. Shi, J. Wang, et al. A novel blue-emitting phosphor LiSrPO4:Eu2+for white LEDs [J]. J Solid State Chem,2006,179:2356-2360.
    [62]Wanjun Tang and Yingli Zheng. Synthesis and luminescence properties of a novelblue emitting phosphor NaMgPO4:Eu2+[J]. Luminescence2010,25:364-366.
    [63]Nuan Xie, Yanlin Huang, and Hyo Jin Seo, A blue-emitting phosphor ofBa2MgP4O13:Eu2+for white light UV light-emitting diodes, Journal of CeramicProcessing Research [J].11,3,2010:358-361.
    [64]M. Zhang, J. Wang, Q. Y Zhang, et al. Optical properties of Ba2SiO4:Eu2+phosphorfor green light emitting diode (LED)[J]. Mater Res Bulletin,2007,42:33-39.
    [65]H. L. Liu, D. W He, F. Shen, Luminescence properties of green-emitting phosphor(Sr1-xBax)2SiO4:Eu2+for white LEDs [J]. J Rare Earths,2006,24:121-124.
    [66]H. S. Kang, Y C. Kang, K. Y Jung, et al. Eu-doped barium strontium silicatephosphor particles prepared from spray solution containing NH4C1by spraypyrolysis [J]. Mater Sci Eng B,2005,121:81-85.
    [67]H. S. Kang, S. K. Hong, Y C. Kang, et al. The enhancement of photoluminescencecharacteristics of Eu-doped barium strontium silicate phosphor particles byco-doping materials [J]. J Alloys Compd,2005,402:246-250.
    [68]J. S. Kim, Y H. Park, S. M. Kim, et al. Temperature-dependent emission spectra ofM2SiO4:Eu2+(M=Ca, Sr, Ba) phosphors for green and greenish white LEDs [J].Solid State Communications,2005,133:445-448.
    [69]H. L. Liu, D. W He, F. Shen, Luminescence properties of green-emitting phosphor(Sr1-xBax)2SiO4:Eu2+for white LEDs [J]. J Rare Earths,2006,24:121-124.
    [70]H. S. Kang, Y C. Kang, K. Y Jung, et al. Eu-doped barium strontium silicatephosphor particles prepared from spray solution containing NH4Cl by spraypyrolysis [J]. Mater Sci Eng B,2005,121:81-85.
    [71]H. S. Kang, S. K. Hong, Y C. Kang, et al. The enhancement of photoluminescencecharacteristics of Eu-doped barium strontium silicate phosphor particles byco-doping materials [J]. J Alloys Compd,2005,402:246-250.
    [72]J. S. Kim, Y H. Park, S. M. Kim, et al. Temperature-dependent emission spectra ofM2SiO4:Eu2+(M=Ca, Sr, Ba) phosphors for green and greenish white LEDs [J].Solid State Communications,2005,133:445-448.
    [73]杨志平,王少丽,杨广伟,等.绿色荧光粉NaCaPO4:Tb3+的制备与发光特性[J].发光学报,2008,29,1:81-83.
    [74]Jiuhui Gan, Yanlin Huang, Liang Shi, et al. Luminescence properties ofEu2+-activated Sr5(PO4)2(SiO4) for green-emitting phosphor [J]. Materials Letters,2009,63:2160-2162.
    [75]P. Yang, J. H. Lin, G. Q. Yao, et al. Luminescence and preparation of LEDphosphor Ca8Mg(SiO4)4C12:Eu2+[J]. J Rare Earth,2005,23(5):633-635.
    [76]Z. C. Wu, J. X. Shi, J. Wang, et al. Synthesis and luminescent properties ofSrAl2O4:Eu2+green-emitting phosphor for white LEDs [J]. Mater Lett,2006,60:3499-3501.
    [77]K. Y Jung, H. W. Lee, H. Jung, Luminescent properties of (Sr, Zn)A12O4:Eu2+, B3+particles as a potential green phosphor for UV LEDs [J]. Chem Mater,2006,18:2249-2255.
    [78]Chuanxiang Qin, Yanlin Huang, Liang Shi. Thermal stability of luminescenceofNaCaPO4:Eu2+phosphor for white-light-emitting diodes [J]. J. Phys. D: Appl.Phys.,2009,42:185105-185109.
    [79]Bo Yue, Juan Gu, Guangfu Yin, et al. Preparation and properties of thegreen-emitting phosphors NaCa0.98-xMgxPO4: Eu0.022+[J]. Current Applied Physics,2010,10:1216-1220.
    [80]Yanlin Huang, Kiwan Jang, Ho Sueb Lee. Photoluminescence properties of (Ce3+,Tb3+) doped BaZn2(PO4)2powder phosphor [J]. Physics Procedia,2009,2:207-210.
    [81]J.E. Van Haecke, P.F. Smet, D. Poelman. Luminescent characterization ofCaAl2S4:Eu powder [J]. Journal of Luminescence2007,126:508–514.
    [82]R. K. Datta. Luminescent Behavior of Bismuth in Rare-Earth Oxides [J]. JEletcrochem Soc,1967,114:1137-1142.
    [83]S. Z. Toma, D. T. Palumbo. Broad emission and excitation bands in Y2O3andYVO4[J]. J Eletcrochem Soc,1970,117(2):236-241.
    [84]L. S. Chi, R. S. Liu, B. J. Lee. Synthesis of Y2O3:Eu3+, Bi3+red phosphor byhomogeneous coprecipitation and their photoluminescence behaviors [J]. JEletcrochem Soc,2005,150(8): J93-J98.
    [85]W. J. Park, S. G. Yoon, D. H. Yoon. Photoluminescence properties of Y2O3co-doped with Eu and Bi compounds as red-emitting phosphor for white LED [J].J Electroceram,2006,17:41-44.
    [86]Y. S. Hu, W. D. Zhuang, H. Q. Ye, et al. A novel red phosphor for white lightemitting diodes [J]. J Alloys Compd,2005,390:226-229.
    [87]Ashok Kumar and Jitendra Kumar, Perspective on europium activated fine-grainedmetal molybdate phosphors for solid state illumination [J]. J. Mater. Chem.,2011,21:3788-3795.
    [88]Lin Xu, Xiaoyan Yang, Zheng Zhai, et.al. EDTA-mediated hydrothermal synthesisof NaEu(MoO4)2microrugbies with tunable size and enhanced luminescenceproperties [J]. CrystEngComm,2011,13:4921-4929.
    [89]Z. L. Wang, H. B. Liang, M. L. Gong, et al. A potential red-emitting phosphor forLED solid-state lighring [J]. Electrochem Solid-state Lett,2005,8(4): H33-H35.
    [90]X. X. Zhao, X. J. Wang, B. J. Chen, et al. Luminescent properties of Eu3+dopedα-Gd2(MoO4)3:Eu3+phosphor for white light emitting diodes [J]. Opt Mater,2007,29(12):1680-1684.
    [91]Nuan Xie, Yanlin Huang, Xuebin Qiao, et al. A red-emitting phosphor of fullyconcentrated Eu3+-based molybdenum borate Eu2MoB2O9[J]. Materials Letters,2010,64:1000-1002.
    [92]X. Zhang, X. Qiao and H. J. Seo. Photoluminescence properties of Eu3+-dopedGd2MoB2O9phosphors for LED-based solid-state-lighting [J]. Appl. Phys. B,2011,103:257-261.
    [93]S. Neeraj, N. Kijima, A. K. Cheetham. Novel red phosphors for solid-state lighting:the system NaM(WO4)2-x(MoO4)x:Eu3+(M=Gd, Y, Bi)[J]. Chem Phys Lett,2004,387:2-6.
    [94]Y H. Wang, Y K. Sun, J. C. Zhang, et al. New red Y0.85Bi0.1Eu0.05V1-yMyO4(M=Nb,P) phosphor for light-emitting [J]. Physica B: Condensed Matter,2008,403(12):2071-2075.
    [95]G. Gundiah, Y Shimomura, N. Kijima, et al. Novel red phosphor based on vanadategarnets for solid state lighting application [J]. Chemical Physics Letters,2008,45(4-6):279-283.
    [96]Z. P. Yang, S. L. Wang, G. W. Yang, et al. Luminescent Properties of Sr2SiO4:Sm3+Red Phosphor, Journal ofThe Chinese Ceramic Society [J].2007,35(12):1587-1589.
    [97]K. S. Sohn, D. H. Park, S. H. Cho, et al. Computational evolutionary optimizationof red phosphor for use in tricolor white LEDs [J]. Chem Mater,2006,18(7):1768-1772.
    [98]Donglei Wei, Yanlin Huang. Preparation and luminescence of Eu3+-activatedCa9ZnLi(PO4)7phosphor by a solid reaction-sintering [J]. Journal of theElectrochemical Society,2009,156: H885-H889.
    [99]Yanlin Huang, Wanxue Zhao, Yonggang Cao, et al. Photoluminescence ofEu3+-doped triple phosphate Ca8MgR(PO4)7(R=La, Gd, Y)[J]. Journal of SolidState Chemistry,2008,181:2161-2164.
    [100] Chuanxiang Qin, Yanlin Huang, Guoqiang Chen, et al. Luminescenceproperties of a red phosphor europium tungsten oxide Eu2WO6, Materials Letters,2009,63:1162-1164.
    [101] Z. L. Wang, H. B. Liang, L. Y Zhou, et al. Luminescence of(Li0.333Na0.334K0.333)Eu(MoO4)2and its application in near UV InGaN-based lightemitting diode [J]. Chem Phys Lett,2005,412:313-316.
    [102] H. C. Chuang, F. W Ming, S. L. Chi, et al. Structural, spectroscopic andphotoluminescence studies of LiEu(WO4)2-x(MoO4)xas a near-UV convertiblephosphor [J]. Journal of Solid State Chemistry,2007,180(2):619-627.
    [103]李建宇.稀土发光材料及其应用[M].北京,化工工业出版社,2003,第一版,14.
    [104] Weihua Di, Xiaojun Wang, Peifeng Zhu, Baojiu Chen. Energy transfer andheat-treatment effect of photoluminescence in Eu3+-doped TbPO4nanowires [J].J. Solid State Chem.,2007,180(2):467-473.
    [105] P Vergeer, T J H Vlugt, M H F Kox, M I denHertog, J P J M vanderEerden, AMeijerink. Quantum cutting by cooperative energy transfer in YbxY1-xPO4:Tb3+[J], Phys. Rev. B,2005,7(1):014119-1-11.
    [106] L. Elammari, M. El Koumiri, I. Zschokke-Gr nacher, et al. Elaboration and nonlinear properties of ortho-phosphate solid solutions AIBII1-xMIIxPO4(AI=monovalent cation, BII&MII=divalent cations)[J]. Ferroelecbics,1994,158:19-24.
    [107] Chun Che Lin, Zhi Ren Xiao, Guang-Yu Guo, Ting-Shan Chan, and Ru-Shi Liu.Versatile phosphate phosphors ABPO4in white light-emitting diodes: collocatedcharacteristic analysis and theoretical calculations [J]. J. AM. Chem. Soc.,2010,132:3020-3028.
    [108] C. Qin, Y. Huang, L. Shi, G. Chen, X. Qiao, and H. J. Seo. Thermal stability ofluminescence of NaCaPO4:Eu2+phosphor for white-light-emitting diodes [J]. J.Phys. D: Appl. Phys.,2009,42:185-105.
    [109] Bhaskar Kumar Grandhe, Vengala Rao Bandi, Kiwan Jang, et al. Reduction ofEu3+to Eu2+in NaCaPO4:Eu phosphors prepared in a non-reducing atmosphere[J]. Journal of Alloys and Compounds,2011,509:7937-7942.
    [110] Zhanchao Wu, Jie Liu, Menglian Gong and Qiang Su. Optimization andtemperature-dependent luminescence of LiBaPO4:Eu2+phosphor for Near-UVlight-emitting diodes [J]. Journal of the Electrochemical Society,2009,156(3):H153-H156.
    [111] Zhanchao Wu, Jie Liu, Qingjie Guo and Menglian Gong. A novelblue-green-emitting phosphor LiBaPO4:Eu2+for white light-emitting diodes [J].Chemistry Letters,2008,37(2):190-191.
    [112] S.H.M. Poort, W. Janssen, G. Blasse. Optical properties of Eu2+-activatedorthosilicates and orthophosphates [J]. Journal of Alloys and Compounds,1997,260:93-97.
    [113] Tang Wanjun and Chen Donghua. Photoluminescent properties of ABaPO4:Eu(A=Na, K) phosphors prepared by the combustion-assisted synthesis method [J].J. Am. Ceram. Soc.,2009,92(3):1059-1061.
    [114] Won Bin Im, Hyoung Sun Yoo, Sivakumar Vaidyanathan, et al. A novelblue-emitting silica-coated KBaPO4:Eu2+phosphor under vacuum ultraviolet andultraviolet excitation [J]. Materials Chemistry and Physics,2009,115:161-164.
    [115] S V Upadeo and S V Moharil. Redox reactions and thermoluminescence in someeuropium-doped phosphates [J]. J. Phys.: Condens. Matter,1995,7:951-963.
    [116] Yu-Sheng Tang and Shu-Fen Hu. Thermally stable luminescence ofKSrPO4:Eu2+phosphor for white light UV light-emitting diodes, AppliedPhysics Letters,2007,90:108-151.
    [117] M. S. Waite. Luminescence of Alkali-Alkaline earth-phosphates activated withEu2+[J]. J. Electrochem. Soc.: solid state science and technology,1974,121(8):1122-1123.
    [118] Xu Li, Li Guan, Xiaoning Li, Jianwei Wen, ZhipingYang. Luminescentproperties of NaBaPO4:Eu3+red-emitting phosphor for white light-emittingdiodes [J]. Powder Technology2010,200(1-2):12-15.
    [119] Z.C. Wu, J.X. Shi, J. Wang, M.L. Gong, Q.Su. A novel blue-emitting phosphorLiSrPO4:Eu2+for white LEDs [J]. Journal of Solid State Chemistry,2006,179:2356-2360.
    [120] Z.C. Wu, J.X. Shi, M.L. Gong, J. Wang, Q. Su. Nanosized LiSrPO4:Eu2+phosphor with blue-emission synthesized by the sol–gel method, MaterialsChemistry and Physics [J].2007,103:415-418.
    [121] Dong Kyun Yim, Hee Jo Song, In-Sun Cho, Ju Seong Kim, Kug Sun Hong. Anovel blue-emitting NaSrPO4:Eu2+phosphor for near UV based whitelight-emitting-diodes [J]. Materials Letters,2011,65:1666-1668.
    [122] Vengala Rao Bandi, Junho Jeong, Hyun-Jun Shin, et al. Thermally stableblue-emitting NaSrPO4:Eu2+phosphor for near UV white LEDs [J]. OpticsCommunications,2011,284:4504-4507.
    [123] Chuiming Wan, Jianxin Meng, Fengjin Zhang, Xiaoling Deng.Chuangtao Yang.An efficient blue-emitting phosphor LiCaPO4: Eu2+for white LEDs [J]. SolidState Communications,2010,150:1493-1495.
    [124] S.D. More, S.P. Wankhede, Munish Kumar, G. Chourasiya, S.V. Moharil.Synthesis and dosimetric characterization of LiCaPO4:Eu phosphor [J].Radiation Measurements,2011,46:196-198.
    [125] Dong Kyun Yim, In-Sun Cho, Chan Woo Lee, et al. Preparation andphotoluminescence properties of γ-KCaPO4:Eu2+phosphors for near UV-basedwhite LEDs [J]. Optical Materials,2011,33:1036-1040.
    [126] G. Blasse, B.C. Grabmaier. Luminescent Materials [M]. Springer, Berlin,1994.
    [127] C. G rller-Walrand, K. Binnemans. In: K.A. Gschneidner, Jr. and L. Eyring,Editors. Handbook on the physics and chemistry of rare earths [M]. Vol.23.Rationalization of crystal field parameterization, North-Holland, Amsterdam(1996), p.121, Ch.155.
    [1] T. Mashiko, K. Uheda, H. Yoshida, K. Ogasawara, and H. Yamamoto, Mechanism ofLuminescence Enhancement in Ca4YO(BO3)3:Eu3+by Gd Substitution underVacuum Ultraviolet Light Excitation[J]. J. Electro-chem. Soc.,2008,155:335-339.
    [2] H. Watanabe, H. Wada, K. Seki, M. Itou, and N. Kijima, Synthetic Method andLuminescence Properties of SrxCa1xAlSiN3:Eu2+Mixed Nitride Phosphors [J]. J.Electrochem. Soc.,2008,155(3):31-36.
    [3]C.G rller-Walrand and K. Binnemans, Rationalization of crystal field parametrization[M], inHandbook on the Physics and Chemistry of Rare Earths, K. A. Gschneidner,Jr. and L. Eyring, Editors, North-Holland, Amsterdam1996,23:121.
    [4] M. Ben Amara, M. Vlasse, G. Le Flem, and P. Hagenmuller, Structure of thelow-temperature variety of calcium sodium orthophosphate, NaCaPO4[J]. ActaCrys.,1983,39:1483-1485.
    [5] Y. S. Tang, S. F. Hu, C. C. Lin, N. C. Bagkar, and R. S. Liu, Thermally stableluminescence of KSrPO4:Eu2+phosphor for white light UV light-emitting diodes [J].Appl. Phys. Lett.,2007,90(15):151108-151110.
    [6] C. Qin, Y. Huang, L. Shi, G. Chen, X. Qiao, and H. J. Seo, Thermal stability ofluminescence of NaCaPO4:Eu2+phosphor for white-light-emitting diodes[J]. J. Phys.D: Appl. Phys.,2009,42(18):185105-185109.
    [7] W. B. Im, H. S. Yoo, S. Vaidyanathan, K. H. Kwon, H. J. Park, Y. I. Kim, and D. Y.Jeon, A novel blue-emitting silica-coated KBaPO4:Eu2+phosphor under vacuumultraviolet and ultraviolet excitation[J]. Mater. Chem. Phys.,2009,115(1):161-164.
    [8] Z. Wu, J. Liu, M. Gong, and Q. Su, Optimization and Temperature-DependentLuminescence of LiBaPO4:Eu2+Phosphor for Near-UV Light-Emitting Diodes [J]. J.Electrochem. Soc.,2009,156(3):153-156.
    [9] Z. C. Wu, J. X. Shi, J. Wang, M. L. Gong, and Q. Su, A novel blue-emittingphosphor LiSrPO4:Eu2+for white LEDs[J]. J. Solid State Chem.,2006,179(8):2356-2360.
    [10] T. Wanjun and C. Donghua, Photoluminescent Properties of ABaPO4: Eu (A=Na,K) Phosphors Prepared by the Combustion-Assisted Synthesis Method [J]. J. Am.Ceram. Soc.,2009,92(5):1059-1061.
    [11] A. Goňi, T. J. Bonagamba, M. A. Silva, H. Panepucci, T. Rojo, and G. E. Barberisa,7Li and31P nuclear magnetic resonance studies of Li1-3xMgFexPO4[J]. J. Appl. Phys.,1998,84:416-421.
    [12] A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, Phospho-olivines asPositive-Electrode Materials for Rechargeable Lithium Batteries[J]. J. Electrochem.Soc.,1997,144(4):1188-1194.
    [13] F. Hanic, M. Handlovic, K. Burdova, and J. Majling, Crystal structure of lithiummagnesium phosphate, LiMgPO4: Crystal chemistry of the olivine-type compounds[J]. J. Crystallogr. Spectrosc. Res.,1982,12:99-127.
    [14] A. Go i, L. Lezama, A. Pujana, M. I. Arriortua, and T. Rojo. Clustering of Fe3+inthe Li1-3xFexMgPO4(0﹤x﹤0.1) solid solution [J]. Int. J. Inorg. Mater.,2001,3:937-942.
    [15] A. Go i, L. Lezama, G. E. Barberis, J. L. Pizarro, M. I. Arriortua, and T. Rojo,Magnetic Properties of the LiMPO4(M=Co, Ni) compounds[J]. Jour. of Mag. andMag. Materials,1996,164:251-255.
    [16] R. M. Macfarlane and R. M. Shelby, in Spectroscopy of Solids Containing RareEarth Ions, A. A. Kaplyanskii and R. M. Macfarlane, Editors, North-Holland,Amsterdam,1987, chap.3, p.51.
    [17] R. D. Shannon and C. T. Prewitt, Effective ionic radii in oxides and fluorides [J].Acta Crystallogr.,1969,25:925-946.
    [18] R. D. Shannon, Revised effective ionic radii and systematic studies of interatomicdistances in halides and chalcogenides [J]. Acta Crystallogr.,1976,32:751-767.
    [19] Z. Fu, S. Zhou, Y. Yu, and S. Zhang, Photoluminescence properties and analysis ofspectral structure of Eu3+-doped SrY2O4[J]. J. Phys. Chem. B,2005,109:23320-23325.
    [20]P. Yang, Z. Quan, C. Li, Z. Hou, W. Wang, and J. Lin, Solvothermal synthesis andluminescent properties of monodisperse LaPO4:Ln (Ln=Eu3+, Ce3+, Tb3+)particles[J]. J. Solid State Chem.,2009,182(5):1045-1054.
    [21] A. Lorenzo, H. Jaffrezic, B. Roux, G. Boulon, and J. Garcia-Sole, Lattice locationof rare-earth ions in LiNbO3[J]. Appl. Phys. Lett.,1995,67(25):3735-3737.
    [22]G. Gasparotto, M. A. Cebim, M. S. Goes, S. A. M. Lima, M. R. Davolos, J. A.Varela, C. O. P. Aiva-Santos, and M. A. Zaghete, Correlation between thespectroscopic and structural properties with the occupation of Eu3+sites inpowdered Eu3+-doped LiTaO3prepared by the Pechini method[J]. J. Appl. Phys.,2009,106(6):063509-063513.
    [23] P. Dorenbos, Energy of the first4f7→4f65d transition of Eu2+in inorganiccompounds [J]. J. Lumin.,2003,104(4):239-260.
    [24] R. Alcala, D. K. Sardar and W. A. Sibley. Optical transitions of Eu2+IONS inRbMgF3crystals [J]. J. Lumin.,1982,27(3):273-284.
    [25] J. M. P. J. Verstegen and J. L. Sommerdijk, Line emission of SrBe2Si2O7:Eu2+andBaBe2Si2O7:Eu2+[J]. J. Lumin.1974,9(4):297-301.
    [26] Mahlik S, GrinbergM, Shi L and Seo H J, Pressure evolution of LiBaF3: Eu2+luminescence [J]. J. Phys.:Condens. Matter,2009,21(23):235603-235610.
    [27] Su H, Jia Z, Shi C, Xin J and Reid S A, Study of Energy Transfer in KMgF3:Eu-X(X=Gd, Ce, Cr) by the Decay Model of6P7/2Excited State of Eu2+[J]. Chem. Phys.Lett.200,335:17-22.
    [28] Latourrette B, Guillen F and Fouassier C, Energy transfer from Eu2+to trivalentrare earth ions in BaY2F8[J]. Mater. Res. Bull.,1979,14(7):865-868.
    [29] Hoffman Mary V., Eu2+Emission in Ternary Alkaline Earth Aluminum Fluorides[J]. J. Electrochem. Soc.,1972,119:905-909.
    [30] Yamashita N, Yamamoto I, Ninagawa K, Wada T, Yamashita Y and Nakao Y,Investigation of TLD Phosphors by Optical Excitation–Luminescence of Eu2+Centers in MgSO4, CaSO4, SrSO4, BaSO4–[J]. Japan. J. Appl. Phys.,1985,24:1174-1180.
    [31] R. D. Shannon and C. T. Prewitt, Effective ionic radii in oxides and fluorides [J].Acta Crystallogr.,1969,25:925-946.
    [32] R. D. Shannon, Revised effective ionic radii and systematic studies of interatomicdistances in halides and chalcogenides [J]. Acta Crystallogr.,1976,32:751-767.
    [33] Meijerink A and Blasse G Luminescence properties of Eu2+-activated alkaline earthhaloborates [J]. J. Lumin.,1989,43(5):283-289.
    [34] Goni A, Bonagamba T J, Silva M A, Panepucci H, Rojo T and Barberisa G E,7Liand31P nuclear magnetic resonance studies of Li13xMgFexPO4[J], J. Appl. Phys.1998,84:416-421.
    [35] Belsare D, Joshi C P, Moharil S V, Kondawar V K, Muthal P L and Dhopte S M,Luminescence of Eu2+in some fluorides prepared by reactive atmosphereprocessing[J]. J. Alloys Compounds,2008,450(1-2):468-472.
    [36] Munoz Santiuste J E, Macalik B and Garc a Sole J, Optical detection of Eu3+sitesin LiNbO3: Eu3+and LiNbO3: MgO, Eu3+[J].Phys. Rev. B,1993,47(1):88-94.
    [37] Lin Q and Feng X, Computer simulation study of extrinsic defects in PbWO4crystals [J]. J. Phys.: Condens. Matter.,2003,15:1963-1973.
    [38] Goni A, Lezama L, Pujana A, Arriortua M I and Rojo T, Clustering of Fe3+in theLi13xFexMgPO4(0    [39] Flem G L, Parent C and Fouassier C, Influence of the crystal structure on theluminescence properties of rare earths [J]. J. Less-Commun. Met.,1983,93(2):383-388.
    [40] S. Tie, Q. Su, and Y. Yu, Optical and Structural Investigation of KMgLa(PO4)2Phosphate Doped with Europium[J]. J. Solid State Chem.,1995,114(1):282-285.
    [41] M. Daldosso, D. Falcomer, A. Speghini, P. Ghigna, and M. Bettinelli, Synthesis,EXAFS investigation and optical spectroscopy of nanocrystalline Gd3Ga5O12dopedwith Ln3+ions (Ln=Eu, Pr)[J]. Opt. Mater.,2008,30(7):1162.
    [42] A. Yamada, Y. Kudo, and K. Y. Liu, Phase Diagram of Lix(MnyFe1–y)PO4(0≤x,y≤1)[J]. J. Electrochem. Soc.,2001,148(10):1153-1158.
    [43] G. Blasse, The Eu3+luminescence as a measure for chemical bond differences insolids [J]. Chem. Phys. Lett.,1973,20:573-574.
    [44] L. Yu, D. Li, M. Yue, J. Yao, and S. Lu, Dependence of morphology andphotoluminescent properties of GdPO4:Eu3+nanostructures on synthesis condition[J]. Chem. Phys.,2006,326(2-3):478-482.
    [45] U. Rambabu and S. Buddhudu, Optical properties of LnPO4: Eu3+(Ln=Y, La andGd) powder phosphors [J]. Opt. Mater.,2001,17(3):401-408.
    [46] Ben Amara M., Parent C., Vlasse M., Le Flem G., Antic-Fidancev E., Piriou B.,Caro P. Use of Eu3+as an oxygen environment probe in alkali-alkalineearth-lanthanide phosphates with the β-K2SO4structure [J]. J. Less CommonMetals.,1983,93:425-429.
    [47] Amara Mm. M. Ben, Parent, C., Vlasse, M., Le Flem, G. Oxygen environment ofrare-earth ions in phosphates with β-K2SO4type structure [J]. J. Solid State Chem.,1983,46:321-327.
    [1] P. Dorenbos. Energy of the first4f7→4f65d transition of Eu2+in inorganiccompounds [J]. J. Lumin.,2003,104(4):239-60.
    [2] S. H. M. Poort, W. P. Blokoel, and G. Blasse. Luminescence of Eu2+in Barium andStrontium Aluminate and Gallate [J]. Chem. Mater.,1995,7(8):1547-1551.
    [3] Alok M. Srivastava. Results of experimental and theoretical investigationsincharge transfer transitions, scintillators and Eu2+basedphosphors [J]. Opt. Mater.2009,32:1-7.
    [4] D.H. Gahane, N.S. Kokode, P.L.Muthal, et al. Luminescence of Eu2+in someiodides [J]. Opt.Mater,2009,32(1):18-21.
    [5] Xinguo Zhang, Xiaxiao Wang, Jinqing Huang, Jinxin Shi, Menglian Gong. NearUV-based LED fabricated with Ba5SiO4(F,Cl)6:Eu2+as blue-and green-emittingphosphor [J]. Opt. Mater.2009,32(1):75-78.
    [6] Chie Iwamoto, Shinobu Fujihara. Fabrication and optical properties ofNUV-emitting SiO2–SrB4O7:Eu2+glass–ceramic thin films [J]. Opt. Mater.,2009,31(11):1614-1619.
    [7] Yanlin Huang, Haiyan Ding, Kiwan Jang, et al. Luminescence properties of triplephosphate Ca8MgGd(PO4)7: Eu2+for white light-emitting diodes [J]. J. Phys. D:Appl. Phys.,2008,41(9):095110-095114.
    [8] Y. S. Tang, S. F. Hu, C. C. Lin, et al. Thermally stable luminescenceof KSrPO4:Eu2+phosphor for white light UV light-emitting diodes [J]. Appl. Phys.Lett.,2007,90(15):151108-151110.
    [9] Z.P. Yang, G.W. Yang, S.L. Wang, J. Tian, X.N. Li, Q.L. Guo, G.S. Fu. A novelgreen-emitting phosphor NaCaPO4:Eu2+for white LEDs [J]. Mater. Lett.,2008,62:1884-1886.
    [10]C. Qin, Y. Huang, L. Shi, G. Chen, X. Qiao, H. J. Seo. Thermal Stability ofLuminescence of NaCaPO4:Eu2+Phosphor for White-Light-Emit-ting Diodes [J]. J.Phys. D: Appl. Phys.,2009,42:185105-185109.
    [11]Won Bin Im, Hyoung Sun Yoo, Sivakumar Vaidyanathan, et al. A novelblue-emitting silica-coated KBaPO4:Eu2+phosphor under vacuum ultraviolet andultraviolet excitation [J]. Mater. Chem. Phys.,2009,115(1):161-164.
    [12]Lin C C, Tang Y S, Hu S F, et al. KBaPO4:Ln (Ln=Eu, Tb, Sm) phosphors for UVexcitable white light-emitting diodes [J]. J Lumin,2009,129:1682-1684
    [13]Zhanchao Wu, Jie liu, Menglian Gong and Qiang Su. Optimization andtemperature-dependent luminescence of LiBaPO4:Eu2+phosphor for near-UVlight-emitting diodes [J]. Journal of the Electrochemical Society,2009,156(3):H153-H156.
    [14]Z. C. Wu, J. X. Shi, J. Wang, et al. A novel blue-emitting phosphor LiSrPO4:Eu2+for white LEDs [J]. J Solid State Chem,2006,179:2356-2360.
    [15]Tang Wanjun and Chen Donghua. Photoluminescent properties of ABaPO4: Eu(A=Na, K) phosphors prepared by the combustion-assisted synthesis method [J]. J.Am. Ceram. Soc.,2009,92(3):1059-1061.
    [16]G. Wallez, C. Colbeau-Justin, T. Le Mercier, M. Quarton, F. Robert. CrystalChemistry and Polymorphism of Potassium–Magnesium Monophosphate [J]. J.Solid-State Chem.,1998,136:175-180.
    [17]A. Meijerink, G. Blasse. Luminescence and temperature dependent decay behaviourof divalent europium in Ba5SiO4X6(X=Cl, Br)[J]. J. Lumin.,1990,47(1-2):1-5.
    [18]S. H. M. Poort, A.Meyerink and G. Blasse. Lifetime measurements in Eu2+-dopedhost lattices [J]. J. Phys. Chem. Solids.,1997,58(9):1451-1456.
    [19]C. K. Duan, A. Meijerink, R. J. Reeves, and M. F. Reid. The UnusualTemperatureDependence of the Eu2+Fluorescence Lifetime in CaF2Crystals [J]. J. AlloysCompds.,2006,408-412:784-787.
    [20]P. Kisliuk, H. H. Tippins, C. A. Moore, and S. A. Pollack. Optical Spectrum andZeeman Effect of CaF2:Eu2+[J]. Phys. Rev.,1968,171:336-342.
    [21]T. Tsuboi and P. Silfsten. The Lifetime of Eu2+Fluorescence in CaF2:Eu2+Crystals[J]. J. Phys.: Condens. Matter,1991,3:9163-9167.
    [22]J. P. Spoonhower and M. S. Burberry. Time-Resolved Spectroscopy of BaFBr: Eu2+[J]. J. Lumin.,1989,43:221-226.
    [23]R.D. Shannon, C.T. Prewitt. Effective ionic radii in oxides and fluorides [J]. ActaCrystallogr.,1969,25:925-946.
    [24]R.D. Shannon. Revised effective ionic radii and systematic studies of interatomicdistances in halides and chalcogenides [J]. Acta Crystallogr.,1976,32:751-767.
    [25]Xianqing Piao, Takashi Horikawa, Hiromasa Hanzawa, Ken-ichi Machida.Characterization and luminescence properties ofSr2Si5N8:Eu2+phosphor for whitelight-emitting-diode illumination [J]. Appl. Phys. Lett.,2006,88:161908-161913.
    [26]J.S. Kim, P.E. Jeon, J.C. Choi, H.L. Park. Emission color variation of M2SiO4:Eu2+(M=Ba, Sr, Ca) phosphors for light-emitting diode [J]. Solid-State Commun.,2005,133:187-190.
    [1] P. F. Smet, A. B. Parmentier, and Dirk Poelman. Selecting conversion phosphors forwhite light-emitting diodes.J. Electrochem [J]. Soc.,2011,58: R37-R54.
    [2] B. G. Yun, T. Horikawa, H. Hanzawa, and Ken-ichi Machida. Preparation andLuminescence Properties of Single-Phase BaSi2O2N2:Eu2+, a Bluish-GreenPhosphor for White Light-Emitting Diodes [J]. J. Electrochem. Soc.,2010,157:J364-J370.
    [3] B.F. Lei, K. Machida, T. Horikawa, H. Hanzawa, N. Kijima, Y. Shimomura, and HYamamoto. Reddish-Orange Long-Lasting Phosphorescence of Ca2Si5N8:Eu2+,Tm3+Phosphor [J]. Journal of the Electrochemical Society,2010,157(6):J196-J201.
    [4] Tomoyuki Kurushima, Gautam Gundiah, Yasuo Shimomura, et al. CheethamSynthesis of Eu2+-Activated MYSi4N7(M=Ca, Sr, Ba) andSrYSi4xAlxN7xOx(x=0–1) Green Phosphors by Carbothermal Reduction andNitridation [J]. J. Electrochem. Soc.,2010,157(3): J64-J68.
    [5] Y. C. Wu, T. M. Chen, Ch. H. Chiu, and C. N. Mo. Luminescence andSpectroscopic Properties of Yellow-Emitting Carbonitride Phosphors and TheirApplication in White LEDs [J]. J. Electrochem. Soc.,2010,157(10):342-346.
    [6] N. Avci, J. Musschoot, P. F. Smet, K. Korthout, A. Avci, C. Detavernier, and D.Poelman. Microencapsulation of Moisture-Sensitive CaS:Eu2+Particles withAluminum Oxide [J]. J. Electrochem. Soc.,2009,156: J333-J337.
    [7] B. Y. Han, S. P. Singh, and K. S. Sohn. Photoluminescent and Structural Propertiesof MgAlSiN3:Eu2+Phosphors [J]. J. Electrochem. Soc.,2011,158:32-35.
    [8] Y. C. Fang, P. C. Kao, Y. C. Yang, and S. Y. Chu. Two-Step Synthesis of SrSi2O2N2:Eu2+Green Oxynitride Phosphor: Electron-Phonon Coupling and ThermalQuenching Behavior [J]. J. Electrochem. Soc.,2011,158:246-249.
    [9] P. Dorenbos. Energy of the first4f7→4f65d transition of Eu2+in inorganiccompounds [J]. J. Lumin.,2003,104(4):239-260.
    [10]P. Dorenbos. Anomalous luminescence of Eu2+and Yb2+in inorganic compounds[J]. J. Phys.: Condens. Matter,2009,15:2645-2665.
    [11]M. Ben Amara, M. Vlasse, G. Le Flem and P. Hagenmuller. Structure of thelow-temperature variety of calcium sodium orthophosphate, NaCaPO4[J]. ActaCryst. C.,1983,39:1483-1485.
    [12]A. GoňI, T. J. Bonagamba, M. A. Silva, H. Panepucci, T. Rojo, and G. E. Barberisa,.Li and P nuclear magnetic resonance studies of Li13xMgFexPO4[J]. J. Appl.Phys.,1998,84:416-421.
    [13]D. Blum, J. C. Penzin, and J. Y. Henry. MM'PO4, a new family of ferroiccompounds. Ferroelectrics,1984,1:265-279.
    [14]C. S. Liang, H. Eckert, T. E. Gier, and G. D. Stucky. Compositionally InducedPhase Transitions and Nonlinear Optic Response in ABCO4Crystal Solution PhasesALiPO4(A=Sr, Ba, Pb)[J]. Chem. Mater.,1993,5:597-603.
    [15]M. Sitarz, M. Rokita, M. Handke, and E. Galuskin, Vibrational spectra ofphosphate–silicate biomaterials, J. Mol. Struct.,2003,651-653:39-54.
    [16]M. S. Waite. Luminescence of Alkali-Alkaline earth-phosphates activated with Eu2+[J]. J. Electrochem. Soc.: solid state science and technology,1974,121(8):1122-1123.
    [17]S. H. M. Poort, W. P. Blokoel, and G. Blasse. Luminescence of Eu2+in Barium andStrontium Aluminate and Gallate [J]. Chem. Mater.,1995,7(8):1547-1551.
    [18]S.H.M. Poort, W. Janssen, G. Blasse. Optical properties of Eu2+-activatedorthosilicates and orthophosphates [J]. Journal of Alloys and Compounds,1997,260:93-97.
    [19]S. V. Upadeo, S. V. Mohari. Radiation-Induced Valence Changes in Eu-DopedPhosphors [J]. J. Phys.: Condens. Matter,1997,9:735-746.
    [20]Chun Che Lin, Zhi Ren Xiao, Guang-Yu Guo, Ting-Shan Chan, and Ru-Shi Liu.Versatile phosphate phosphors ABPO4in white light-emitting diodes: collocatedcharacteristic analysis and theoretical calculations [J]. J. AM. Chem. Soc.,2010,132:3020-3028.
    [21]Suyin Zhang, Yanlin Huang, Hyo Jin Seo. Luminescence properties and structure ofEu2+doped KMgPO4phosphor [J]. Optical Materials,2010,32:1545-1548.
    [22]Dong Kyun Yim, In-Sun Cho, Chan Woo Lee, et al. Preparation andphotoluminescence properties of γ-KCaPO4:Eu2+phosphors for near UV-basedwhite LEDs [J]. Optical Materials,2011,33:1036-1040.
    [23]S.Y. Zhang, Y. L. Huang, and H. J. Seo. The Spectroscopy and Structural Sites ofEu2+Ions Doped KCaPO4Phosphor [J]. J. Electrochem. Soc.,2010,157(7):261-266.
    [24]Y. S. Tang, S. F. Hu, C. C. Lin, et al. Thermally stable luminescenceof KSrPO4:Eu2+phosphor for white light UV light-emitting diodes [J]. Appl. Phys.Lett.,2007,90(15):151108-151110.
    [25]Lin C C, Tang Y S, Hu S F, et al. KBaPO4:Ln (Ln=Eu, Tb, Sm) phosphors for UVexcitable white light-emitting diodes [J]. J Lumin,2009,129:1682-1684.
    [26]W.B. Im, H.S. Yoo, S. Vaidyanathan, K.H. Kwon, H.J. Park, Y.L. Kim, D.Y. Jeon. Anovel blue-emitting silica-coated KBaPO4:Eu2+phosphor under vacuum ultravioletand ultraviolet excitation [J]. Mater. Chem. Phys.,2009,115:161-164.
    [27]Suyin Zhang, Yosuke Nakai, Taiju Tsuboi, Yanlin Huang, Hyo Jin Seo. TheThermal Stabilities of Luminescence and Microstructures of Eu2+-Doped KBaPO4and NaSrPO4with β-K2SO4Type Structure [J]. Inorg. Chem.,2011,50:2897-2904.
    [28]C. Qin, Y. Huang, L. Shi, G. Chen, X. Qiao, H. J. Seo. Thermal Stability ofLuminescence of NaCaPO4:Eu2+Phosphor for White-Light-Emit-ting Diodes [J]. J.Phys. D: Appl. Phys.,2009,42:185105-185109.
    [29]Dong Kyun Yim, Hee Jo Song, In-Sun Cho, Ju Seong Kim, Kug Sun Hong. A novelblue-emitting NaSrPO4:Eu2+phosphor for near UV based whitelight-emitting-diodes [J]. Materials Letters,2011,65:1666-1668.
    [30]Y. L. Tung and J. H. Jean. Chemical Synthesis of a Blue-EmittingNaSr1-xPO4:EuxPhosphor Powder [J]. J. Am. Ceram. Soc.,2009,92,1860-1862.
    [31]Suyin Zhang, Yanlin Huang, Yosuke Nakai, Taiju Tsuboi, Hyo Jin Seo. Theluminescence characterization and thermal stability of Eu2+ions doped NaBaPO4phosphor [J]. J. Am. Ceram. Soc.,2011,94(9):2987-2992.
    [32]Suyin Zhang, Yanlin Huang, Liang Shi, Hyo Jin Seo. The luminescencecharacterization and structure of Eu2+doped LiMgPO4[J]. Journal of Physics:Condensed Matter,2010,22(23):235402-235407.
    [33]Suyin Zhang, Xiao Wu, Yanlin Huang, Photoluminescence and Thermal Stability ofEu2+-Activated LiCaPO4Phosphors for White Light-Emitting Diodes [J]. Int. J.Appl. Ceram. Technol.,2011,8(4):734-740.
    [34]Y. Chen, J. Wang, X. Zhang, G. Zhang, M. Gong, and Q. Su. An intense greenemitting LiSrPO4:Eu2+, Tb3+for phosphor-converted LED [J]. Sensor. Actuat. B,2010,148:259-263.
    [35]Suyin Zhang, Yosuke Nakai, Taiju Tsuboi, Yanlin Huang, Hyo Jin Seo.Luminescence and Microstructural Features of Eu-Activated LiBaPO4Phosphor [J].Chemistry of Materials,2011,23:1216-1224.
    [36]S.D. More, S.P. Wankhede, Munish Kumar, G. Chourasiya, S.V. Moharil. Synthesisand dosimetric characterization of LiCaPO4:Eu phosphor [J]. RadiationMeasurements,2011,46:196-198.
    [37]S. D. More, M. N. Meshram, S. P. Wankhede, P. L. Muthal, S. M. Dhopte, and S. V.Moharil. Luminescence in LiCaPO4[J]. Physica B: Condensed Matter,2011,406:1178-1181.
    [38]C. C. Lin and R. S. Liu. Advances in Phosphors for Light-emitting Diodes [J]. J.Phys. Chem. Lett.,2011,2:1268-1277.
    [39]Wanjun Tang and Yingli Zheng. Synthesis and luminescence properties of a novelblue emitting phosphor NaMgPO4:Eu2+[J]. Luminescence2010,25:364-366.
    [40]W. Tang, D. Chen, and H. Yang. Luminescence characteristics of energy transferbetween Ce3+and Eu2+in NaMgPO4phosphor [J]. Appl. Phys. A.,2011,103(2):263-266.
    [41]J. Alkemper and H. Fuess. The crystal structures of NaMgPO4, Na2CaMg(PO4)2andNa18Ca13Mg5(PO4)18: new examples for glaserite related structures [J]. Zeitschriftfur Kristallographie,1998,213:282-287.
    [42]L. Chen, C. C. Lin, C. W. Yeh, and R. S. Liu. Light converting inorganic phosphorsfor white light-emitting diodes [J]. Mater.,2010,3(3):2172-2195.
    [43]S. H. M. Poort, H. M. Reijnhoudt, H. O. T. van der Kuip, G. Blasse. Luminescenceof Eu2+in Silicate Host Lattices with Alkaline Earth Ions in a Row [J]. J. AlloysCompds.,1996,241:75-81.
    [44]N. Yamashita, I. Yamamoto, K. Ninagawa, T. Wada, Y. Yamashita, and Y. Nakao,Jpn. Investigation of TLD Phosphors by Optical Excitation–Luminescence ofEu2+Centers in MgSO4, CaSO4, SrSO4, BaSO4[J]. J. Appl. Phys.,1985,24:1174-1180.
    [45]S. Mahlik, M. Grinberg, L. Shi, and H. J. Seo. Pressure evolution of LiBaF3:Eu2+luminescence [J]. J. Phys.: Condens Matter,2009,21(23):235603-235610.
    [46]J. M. P. J. Verstegen and J. L. Sommerdijk. Line emission of SrBe2Si2O7:Eu2+andBaBe2Si2O7:Eu2+[J]. J. Lumin.,1974,9:297-301.
    [47]P. Dorenbos. Thermal Quenching of Eu2+5d–4f Luminescence in InorganicCompounds [J]. J. Phys.: Condens. Matter,2005,17:8103-8111.
    [48]A. M. Srivastava, H. A. Comanzo, S. Camardello, S B. Chaney, M. Aycibin, U.Happek. Unusual luminescence of octahedrally coordinated divalent europium ionin Cs2M2+P2O7(M2+=Ca, Sr)[J]. J. Lumin,2009,129(9):919-925.
    [1] M. Ben Amara, M. Vlasse, G. Le Flem and P. Hagenmuller. Structure of thelow-temperature variety of calcium sodium orthophosphate, NaCaPO4[J]. ActaCryst. C.,1983,39:1483-1485.
    [2] L. Elammari, M. El Koumiri, I. Zschokke-Granacher, B. Elouadi. Elaboration andNon Linear Properties of Orthophosphate Solid Solutions AIBII1-xMIIxPO4(AI=Monovalent Cation, BII&MII=Divalent Cations)[J]. Ferroelectrics,1994,158:19-24.
    [3].S. Chan, R.S. Liu, I. Baginskiy. Synthesis, crystal structure, and luminescenceproperties of a novel green-yellow emitting phosphor LiZn1-xPO4:Mnxfor lightemitting diodes [J]. Chem. Mater.,2008,20:1215-1217.
    [4] Chun Che Lin, Zhi Ren Xiao, Guang-Yu Guo, Ting-Shan Chan, and Ru-Shi Liu.Versatile phosphate phosphors ABPO4in white light-emitting diodes: collocatedcharacteristic analysis and theoretical calculations [J]. J. AM. Chem. Soc.,2010,132:3020-3028.
    [5] S.Y. Zhang, Y. L. Huang, and H. J. Seo. The Spectroscopy and Structural Sites ofEu2+Ions Doped KCaPO4Phosphor [J]. J. Electrochem. Soc.,2010,157(7):261-266.
    [6] Y. S. Tang, S. F. Hu, C. C. Lin, et al. Thermally stable luminescenceof KSrPO4:Eu2+phosphor for white light UV light-emitting diodes [J]. Appl. Phys.Lett.,2007,90(15):151108-151110.
    [7] W.B. Im, H.S. Yoo, S. Vaidyanathan, K.H. Kwon, H.J. Park, Y.L. Kim, D.Y. Jeon. Anovel blue-emitting silica-coated KBaPO4:Eu2+phosphor under vacuum ultravioletand ultraviolet excitation [J]. Mater. Chem. Phys.,2009,115:161-164.
    [8] Lin C C, Tang Y S, Hu S F, et al. KBaPO4:Ln (Ln=Eu, Tb, Sm) phosphors for UVexcitable white light-emitting diodes [J]. J Lumin,2009,129:1682-1684.
    [9] Z. C. Wu, J. X. Shi, M. L. Gong, J. Wang, and Q. Su. Nanosized LiSrPO4: Eu2+Phosphor with Blue-Emission Synthesized by the SolGel Method [J]. Mater. Chem.Phys.,2007,103:415-418.
    [10]C. Qin, Y. Huang, L. Shi, G. Chen, X. Qiao, H. J. Seo. Thermal Stability ofLuminescence of NaCaPO4:Eu2+Phosphor for White-Light-Emit-ting Diodes [J]. J.Phys. D: Appl. Phys.,2009,42:185105-185109.
    [11]Tang Wanjun and Chen Donghua. Photoluminescent Properties of ABaPO4:Eu (A=Na, K) Phosphors Prepared by the Combustion-Assisted Synthesis Method [J]. J.Am. Ceram. Soc.,92,2009,92(5):1059-1061.
    [12]Boutinaud, P., Parent, C., Le Flem, G., Moine, B. Pedrini C. The solid solutionBaLi1–xCuxPO4(x≤0.5): an example of Cu+single-ion luminescence in oxideinsulators [J]. J. Mater. Chem.,1996,6:381-384.
    [13]S. H. M. Poort, W. P. Blokoel, and G. Blasse. Luminescence of Eu2+in Barium andStrontium Aluminate and Gallate [J]. Chem. Mater.,1995,7(8):1547-1551.
    [14]H rkner, V.W. and Müller-Buschbaum, H., Allg, Z. A. Chem.,1979,451,40.
    [15]S. H. M. Poort, H. M. Reijnhoudt, H. O. T. van der Kuip, G. Blasse. Luminescenceof Eu2+in Silicate Host Lattices with Alkaline Earth Ions in a Row [J]. J. AlloysCompds.,1996,241:75-81.
    [16]Peng, M.Y., Pei, Z.W., Hong, G.Y. and Su, Q. The reduction of Eu3+to Eu2+inBaMgSiO4∶Eu prepared in air and the luminescence of BaMgSiO4∶Eu2+phosphor [J]. J. Mater. Chem.,2003,13:1202-1205.
    [17]Huang, S., Von Der Mühll, R., Ravez, J., Chaminade, J., Hagenmuller, P. andCouzi, M. A propos de la ferroeléctricité dans BaAl2O4[J]. J. Solid State Chem.,1994,109(1):97-105.
    [18]Liu, B., Barbier, J. Structures of the Stuffed Tridymite Derivatives, BaMSiO4(M=Co, Zn, Mg)[J]. J. Solid State Chem.,1993,102(1):115-125.
    [19]Dougill, M. W. Crystal structure of calcium monoaluminate [J]. Nature1957,180:292-293.
    [20]C. S. Liang, H. Eckert, T. E. Gier, and G. D. Stucky. Compositionally InducedPhase Transitions and Nonlinear Optic Response in ABCO4Crystal Solution PhasesALiPO4(A=Sr, Ba, Pb)[J]. Chem. Mater.,1993,5:597-603.
    [21]Boutinaud, P., Duloisy, E., Pedrini, C., Moine, B., Parent, C., Le Flem, G.Fluorescence properties of Cu+ion in phosphate glasses of the BaLiPO4P2O5system [J]. J. Solid Slate Chem.,1991,94(2):236-243.
    [22]Wanmaker, W. L., Spier, H. L. Luminescence of Copper-Activated Orthophosphatesof the Type ABPO4(A=Ca, Sr, or Ba and B=Li, Na, or K [J]. J. Electrochem.Soc.,1962,109(2):109-114.
    [23]M. S. Waite. Luminescence of Alkali-Alkaline earth-phosphates activated with Eu2+[J]. J. Electrochem. Soc.: solid state science and technology,1974,121(8):1122-1123.
    [24]Zhanchao Wu, Jie liu, Menglian Gong and Qiang Su. Optimization andtemperature-dependent luminescence of LiBaPO4:Eu2+phosphor for near-UVlight-emitting diodes [J]. Journal of the Electrochemical Society,2009,156(3):H153-H156.
    [25]Ding, H. Y., Huang, Y. L., Shi, L., Seo, H. J. Site-Selective Excitation andLuminescence Properties of Eu3+Ions Doped in SrZn2(PO4)2[J]. J. Electrochem.Soc.,2010,157(3):54-58.
    [26]Elamman, L., Elouadi, B., Muller-Vogt, G. Study of phase transitions in the systemA1B11PO4with A1=Li, Rb and B11=Mg, Ca, Sr, Ba, Zn, Cd, Pb [J]. PhaseTransitions.,1988,13(1-4):29-32.
    [27]Wu, Z. C., Liu, J., Guo, Q. J., Gong, M. L. A Novel Blue-green-emitting PhosphorLiBaPO4:Eu2+for White Light-emitting Diodes [J]. Chem. Lett.,2008,37(2):190-191.
    [28]Qi Xia, Miroslaw Batentschuk, Andres Osvet, Albrecht Winnacker and JuergenSchneider. Quantum yield of Eu2+emission in (Ca1xSrx)S:Eu light emitting diodeconverter at20–420K [J]. Radiation Measurements,2010,45(3-6):350-352.
    [29]Kazuo Inoue, Naoto Hirosaki, Rong-Jun Xie and Takashi Takeda. Highly Efficientand Thermally Stable Blue-Emitting AlN:Eu2+Phosphor for Ultraviolet WhiteLight-Emitting Diodes [J]. J. Phys. Chem. C,2009,113(21):9392-9397.
    [30]A. L. N. Stevels. Effect of non-stoichiometry on the luminescence of Eu2+-dopedaluminates with the β-alumina-type crystal structure [J]. J. Lumin.,1978,17(1):121-133.
    [31]BACHMANN V, RONDA C, MEIJERINK A. Temperature quenching of yellowCe3+luminescence in YAG:Ce [J]. Chem Mater,2009,21(10):2077-2084.
    [32]Volker Bachmann, Cees Ronda, Oliver Oeckler, Wolfgang Schnick and AndriesMeijerinkV. Bachmann, C. Ronda, and A. Meijerink. Color Point Tuning for(Sr,Ca,Ba)Si2O2N2:Eu2+for White Light LEDs [J]. Chem. Mater.,2009,21:316-325.
    [33]A. M. Srivastava, H. A. Comanzo, S. Camardello, S B. Chaney, M. Aycibin, U.Happek. Unusual luminescence of octahedrally coordinated divalent europium ionin Cs2M2+P2O7(M2+=Ca, Sr)[J]. J. Lumin,2009,129(9):919-925.
    [34]S. H. M. Poort, A.Meyerink and G. Blasse. Lifetime measurements in Eu2+-dopedhost lattices [J]. J. Phys. Chem. Solids.,1997,58(9):1451-1456.
    [35]V. Bachmann, T. Jüstel, A. Meijerink, C. Ronda, P. J. Schmidt. LuminescenceProperties of SrSi2O2N2Doped with Divalent Rare Earth Ions [J]. J. Lumin.,2006,121:441-449.
    [36]P. Dorenbos. Thermal Quenching of Eu2+5d–4f Luminescence in InorganicCompounds [J]. J. Phys.: Condens. Matter,2005,17:8103-8111.
    [37]I. Baginskiy and R. S. Liu. Significant Improved Luminescence Intensity ofEu2+-Doped Ca3SiO4Cl2Green Phosphor for White LEDs Synthesized ThroughTwo-Stage Method [J]. J. Electrochem. Soc.,2009,156: G29-G32.
    [38]Yamaga, M., Masui, Y., Sakuta, S., Kodama, N., Kaminaga. Radiative andnonradiative decay processes responsible for long-lasting phosphorescenceof Eu2+-doped barium silicates [J]. Phys. Rev. B.,2005,71(20):205102-205108.
    [39]Vikhnin, V. S., Liu, G. K., Beitz, J. V. Laser-induced “charge transfer–lattice”clusters and site-conversion near charged impurities [J]. Phys. Lett. A,2001,287(5-6):419-425.
    [40]Macfarlane, R. M. Shelby, R. M. Kaplyanskii, A. A., Macfarlane, R. M., Eds. InSpectroscopy of Solids Containing Rare Earth Ions [M]. North-Holland:Amsterdam,1987, p51.
    [41]Meijerink, A., Dirksen, G. J. Spectroscopy of divalent samarium in LiBaF3[J]. J.Lumin.1995,63(4):189-201.
    [1] S. Vaidyanathan and D. Y. Jeon. A Novel Narrow Band Red-Emitting Phosphorfor White Light Emitting Diodes [J]. Int. J. Appl. Ceram. Technol.,2009,6(4):453-458.
    [2] S. C. Huang, J. K. Wu, and W. Hsu. Particle Size Effect on the PackagingPerformance of YAG: Ce Phosphors in White LEDs [J]. Int. J. Appl. Ceram.Technol.,2009,6(4):465-469.
    [3] H. L. Li, R. J. Xie, N. Hirosaki, T. Takeda, and G. H. Zhou. Synthesis andLuminescence Properties of Orange–Red-Emitting M2Si5N8:Eu2+(M=Ca, Sr, Ba)Light-Emitting Diode Conversion Phosphors by a Simple Nitridation of MSi2[J].Int. J. Appl. Ceram. Technol.,2009,6(4):459-464.
    [4] X. Zhang, H. Chen, W. Ding, H. Wu, and J. Kim. Ca2B5O9Cl:Eu2+, A SuitableBlue-Emitting Phosphor for n-UV Excited Solid-State Lighting [J]. J. Am.Ceram. Soc.,2009,92(2):429-432.
    [5] X. Zhang, J. Zhang, R. Wang, and M. Gong. Photo-Physical Behaviors ofEfficient Green Phosphor Ba2MgSi2O7:Eu2+and Its Application inLight-Emitting Diodes [J]. J. Am. Ceram. Soc.,2010,93(5):1368-1371.
    [6] S. Yao, Y. Li, L. Xue, and Y. Yan. Luminescent Properties of Ba2(Mg, Zn)Si2O7:Eu2+Particles as Potential Blue-Green Phosphors For Ultraviolet Light-EmittingDiodes [J]. J. Am. Ceram. Soc.,2010,93(11):3793-3797.
    [7] H. Do, S. Choi, and S. Hong. Blue-emitting AlN: Eu2+Powder PhosphorPrepared by Spark Plasma Sintering [J]. J. Am. Ceram. Soc.,2010,93(2):356-58.
    [8] S. H. M. Poort, W. P. Blokoel, and G. Blasse. Luminescence of Eu2+in Bariumand Strontium Aluminate and Gallate [J]. Chem. Mater.,1995,7(8):1547-51.
    [9] P. Dorenbos. Energy of the first4f7→4f65d transition of Eu2+in inorganiccompounds [J]. J. Lumin.,2003,104(4):239-60.
    [10] Y. S. Tang, S. F. Hu, C. C. Lin, N. C. Bagkar, and R. S. Liu. Thermally StableLuminescence of KSrPO4: Eu2+Phosphor for White Light UV Light-EmittingDiodes [J]. Appl. Phys. Lett.,2007,90(15:151108-151110.
    [11] Z. C. Wu, J. X. Shi, M. L. Gong, J. Wang, and Q. Su.Nanosized LiSrPO4: Eu2+Phosphor with Blue-Emission Synthesized by the Sol–Gel Method [J]. Mater.Chem. Phys.,2007,103(2-3):415-418.
    [12] C. Qin, Y. Huang, L. Shi, G. Chen, X. Qiao, and H. J. Seo. Thermal Stability ofLuminescence of NaCaPO4: Eu2+Phosphor for White-Light-Emitting Diodes [J].J. Phys. D: Appl. Phys.,2009,42(18):185105-185109.
    [13] W. B. Im, H. S. Yoo, S. Vaidyanathan, K. H. Kwon,H. J. Park, Y. I.Kim, andD. Y. Jeon. A Novel Blue-Emitting Silica-Coated KBaPO4: Eu2+Phosphor UnderVacuum Ultraviolet and Ultraviolet Excitation [J]. Mater. Chem. Phys.,2009,115(1):161-164.
    [14] L. Elammari, M. El Koumiri, I. Zschokke-Gra¨nacher, and B. Elouadi.Elaboration and Non Linear Properties of Orthophosphate Solid SolutionsAIBII1-xMIIxPO4(AI=Monovalent Cation, BII&MII=Divalent Cations)[J].Ferroelectrics,1994,158(1):19-24.
    [15] M. S. Waite. Luminescence of Alkali-Alkaline Earth-Phosphates Activated withEu2+[J]. J. Electrochem. Soc.,1974,121(8):1122-1123.
    [16] W. Tang, and D. Chen. Photoluminescent Properties of ABaPO4:Eu (A=Na, K)Phosphors Prepared by the Combustion-Assisted Synthesis Method [J]. J. Am.Ceram. Soc.,2009.92(5):1059-1061.
    [17] Z. Yang, and X. Li. A novel blue-emitting phosphor NaBaPO4: Eu2+for whiteLEDs [J]. Photonics and Optoelectronics,2009:14-16.
    [18] G. Blasse, A. Bril, W.C. Nieuwpoort, On the Eu3+fluorescence in mixed metaloxides. Part I. The crystal structure sensitivity of the intensity ratio of electricand magnetic dipole emission [J]. J. Phys. Chem. Solids.,1966,27:1587-1592.
    [19] C. G rller-Walrand and K. Binnemans. in Handbook on the Physics andChemistry of Rare Earths[M]. K. A. Gschneidner, Jr. and L. Eyring, Editors,NorthHolland, Amsterdam,1996,23:121-283.
    [20] W. R. Liu, C. C. Lin, Y. C. Chiu, Y. T. Yeh, S. M. Jang, R. S. Liu. ZnB2O4:Bi3+,Eu3+: a highly efficient, red-emitting phosphor [J]. Opt. Express.,2010,18:2946-2951.
    [21] R.M.Krsmanovic′, Z. Antic′, M.G. Nikolic′, M. Mitric′, M.D. Dramic′anin.Preparation of Y2O3:Eu3+nanopowders via polymer complex solution methodand luminescence properties of the sintered ceramics [J]. Ceram. Int.,2011,37:525-531.
    [22] K. Park, S.W. Nam, M.H. Heo. VUV photoluminescence properties ofY1-xGdxVO4: Eu phosphors prepared by ultrasonic spray pyrolysis [J]. Ceram.Int.,2010,36:1541-1544.
    [23] Y. Yu, D. Chen, P. Huang, H. Lin, Y. Wang. Structure and luminescence of Eu3+doped glass ceramics embedding ZnO quantum dots [J]. Ceram. Int.,2010,36:1091-1094.
    [24] G. Bhaskar Kumar, S. Buddhudu. Synthesis and emission analysis of RE3+(Eu3+or Dy3+):Li2TiO3ceramics [J]. Ceram. Int.,2009,35:521-525.
    [25] M.H. Hwang, Y.J. Kim. Luminescent properties of Eu3+-doped YTaO4powders[J]. Ceram. Int.,2008,34:1117-1120.
    [26] R.Y. Yang, H.Y. Chen, C.M. Hsiung, S.J. Chang. Crystalline morphology andphotoluminescent properties of YInGe2O7:Eu3+phosphors prepared frommicrowave and conventional sintering [J]. Ceram. Int.,2011,37:749-752.
    [27] S. S. Chang, M.S. Jo. Luminescence properties of Eu-doped SnO2[J]. Ceram.Int.,2007,33:511-514.
    [28] C. C. Lin, Z. R. Xiao, G. Guo, T.Chan, and R.Liu. Versatile PhosphatePhosphors ABPO4in White Light-Emitting Diodes: Collocated CharacteristicAnalysis and Theoretical Calculations [J]. J. Am. Chem. Soc.,2010,132(9):3020-3028.
    [29] W.J. Tang, D.H. Chen. Photoluminescent properties of ABaPO4:Eu (A=Na, K)phosphors prepared by the combustion-assisted synthesis method [J]. J. Am.Ceram. Soc.,2009,92:1059-1061.
    [30] X. Li, Li. Guan, X. N. Li, J. W. Wen, Z. P. Yang. Luminescent properties ofNaBaPO4:Eu3+red-emitting phosphor for white light-emitting diodes [J].Powder Technol.200(2010)12-15.
    [31] Z. J. Wang, Z. P. Yang, Q. L. Guo, P. L. Li, Preparation and luminescentcharacteristics of the NaBaPO4:Tb3+green phosphor [J]. Acta Phys.-Chim. Sin.26(2010)3317-3321.
    [32] S. V. Upadeo, S. V. Moharil. Radiation-induced valence changes in Eu-dopedphosphors [J]. J. Phys.: Condens. Matter.,1997,9:735-746.
    [33] C. Alvo and R. Faggiani. Crystal Structure of the Glaserite Form of BaNaPO4[J].CAN. J. CHEM.,1975,53(12):1849-1853.
    [34] W. Kolsi, M. Quarton, and W. Freundlich. Structure Cristalline de NaBaPO4[J].J Solid State Chem.,1981,36(1):107-111.
    [35] Q. Xia, M. Batentschuk, A. Osvet, A. Winnacker, and J. Schneider, QuantumYield of Eu2+Emission in (Ca1-xSrx)S: E u Light Emitting Diode Converter at20–420K, Radiat. Meas.,2010,45(3-6):350-352.
    [36] L. N. Stevels. Effect of non-stoichiometry on the luminescence of Eu2+-dopedaluminates with the β-alumina-type crystal structure [J]. J. Lumin.,1978,17(1):121-133.
    [37] K. Inoue, N. Hirosaki, R. J. Xie, and T. Takeda, Highly Efficient and ThermallyStable Blue-Emitting AlN: Eu2+Phosphor for Ultraviolet White Light-EmittingDiodes [J]. J. Phys. Chem. C.,2009,113(21):9392-9397.
    [38] H. D. Ju, X.Y. Su, S. q. Xu, Y. Zhang, D.G. Deng, S.L. Zhao, H.P. Wang, B.L.Wang, and L.Z. Sun. Luminescence Properties of Eu2+-ActivatedCa12Al10.6Si3.4O32Cl5.4: A Promising Phosphor for Solid State Lighting [J]. Mater.Lett.,2009,63(15):1275-1277.
    [39] S.Y. Zhang, Y. L. Huang, and H. J. Seo. The Spectroscopy and Structural Sites ofEu2+Ions Doped KCaPO4Phosphor [J]. J. Electrochem. Soc.,2010,157(7):261-266.
    [40] S.Y. Zhang, Y. L. Huang, L. Shi, and H. J. Seo. The luminescencecharacterization and structure of Eu2+doped LiMgPO4[J]. J. Phys.: Condens.Matter,2010,22(23)235402-235407.
    [41] Blasse G. Energy transfer between inequivalent Eu2+ions [J]. J. Solid StateChem.,1986,62(2):207-211.
    [42] G. Blasse. Luminescence of Inorganic Solids: From Isolated Centers toConcentrated Systems [J]. Prog. Solid State Chem.,1988,8:79-171.
    [43] M. Srivastava, H. A. Comanzo, S. Camardello, S B. Chaney, M. Aycibin, U.Happek. Unusual luminescence of octahedrally coordinated divalent europiumion in Cs2M2+P2O7(M2+=Ca, Sr)[J]. J. Lumin,2009,129(9):919-925.
    [44] S. H. M. Poort, A. Meijerink, and G. Blasse. Lifetime measurements inEu2+-doped host lattices [J]. J. Phys. Chem. Solids.,1997,58(9):1451-1456.
    [45] V. Bachmann, T. Jüstel, A. Meijerink, C. Ronda, and P.J.Schmidt. Luminescenceproperties of SrSi2O2N2doped with divalent rare earth ions [J]. J. Lumin.,2006,121(2):441-449.
    [46] S. H. M. Poort, H. M. Reijnhoudt, H. OT. Kuip, G. Blasse. Luminescence ofEu2+in silicate host lattices with alkaline earth ions in a row [J]. J. AlloysCompd.,1996,241(1-2):75-81.
    [47] V. B. Mikhailik, H. Kraus, D. Wahl, M. Itoh, M. Koike, and I. K. Bailiff. One-and two-photon excited luminescence and band-gap assignment in CaWO4[J].Phys. Rev.B.,2004,69(20):205110-205118.
    [48] Y. P. Varshni. Temperature dependence of the energy gap in semiconductors [J].Physica (Amsterdam),34(1):149-154.
    [49] J. S. Kim, Y. H. Park, S. M. Kim, J. C. Choi, and H. L. Park.Temperature-dependent emission spectra of M2SiO4:Eu2+(M=Ca, Sr, Ba)phosphors for green and greenish white LEDs [J]. Solid State Commun.,2005,133(7):445-448.
    [50] P. Dorenbos. Thermal quenching of Eu2+5d–4f luminescence in inorganiccompounds [J]. J. Phys.: Condens. Matter,2005,17(50):8103-8111.
    [51] R. J. Xie, N. Hirosaki, N. Kimura, K. Sakuma, and M. Mitomo.2-Phosphor-Converted White Light-Emitting Diodes Using Oxynitride/NitridePhosphors [J]. Appl. Phys. Lett.,2007,90(19):191101-191103.
    [52] Baginskiy and R. S. Liu. Significant Improved Luminescence Intensity ofEu2+-Doped Ca3SiO4Cl2Green Phosphor for White LEDs Synthesized ThroughTwo-Stage Method [J]. J. Electrochem. Soc.,2009,156(5):29-32.
    [53] Y. S. Tang and S. F. Hu. Near-Ultraviolet Excitable Orange-Yellow Sr3(Al2O5)Cl2: Eu2+Phosphor for Potential Application in Light-Emitting Diodes[J]. Appl. Phys. Lett.,2008,93(13):131114-131116.
    [54] G. Blasse. The Eu3+luminescence as a measure for chemical bond differences insolids [J]. Chem. Phys. Lett.,1973,20:573-574.
    [55] R. A. Benhamou, A. Bessière, G. Wallez, B. Viana, M. Elaatmani, M. Daoud, A.Zegzouti. New insight in the structure–luminescence relation-ships ofCa9Eu(PO4)7[J]. J. Solid State Chem.,2009,182:2319-2325.
    [56] F. Auzel, O. Malta, A scalar crystal-field strength parameter for rare earth ions:meaning and usefulness [J]. J. Phys.,1983,44:201-206.
    [57] M. Karbowiak, S. Hubert. Site-selective emission spectra of Eu3+:Ca5(-PO4)3F[J]. J. Alloys Compd.,2000,302:87-93.
    [58] Q. Lin, X. Feng. Computer simulation study of extrinsic defects in PbWO4crystals [J]. J. Phys.: Condens. Mater.,2003,15:1963-1973.
    [1] Peter A., Tanner, Pan Z. Luminescence Properties of Lanthanide and TransitionMetal Ion-Doped Ba2LaNbO6: Detection of MnO68and CrO69Clusters [J]. Inorg.Chem.2009,48(23):11142-11146.
    [2] Logvinovich D., Arakcheeva A., Pattison P. G. Crystal Structure and Optical andMagnetic Properties of Pr2(MoO4)3[J]. Inorg. Chem.,2010,49:1587-1594.
    [3] Cavalli E., Boutinaud P., Mahiou R., Bettinelli M., Dorenbos P. LuminescenceDynamics in Tb3+-Doped CaWO4and CaMoO4Crystals [J]. Inorg. Chem.,2010,49(11):4916-4921.
    [4] Li G., Peng C., Li C., Yang P., Hou Z., Fan Y., Cheng Z., Lin J.Shape-controllable synthesis and morphology-dependent luminescence propertiesof GaOOH:Dy3+and β-Ga2O3:Dy3+[J]. Inorg. Chem.2010,49(4):1449-1457.
    [5] Zhang L., Jia G., You H., Liu K., Yang M., Song Y., Zheng Y., Huang Y., Guo N.,Zhang H. Sacrificial Template Method for Fabrication of Submicrometer-SizedYPO4:Eu3+Hierarchical Hollow Spheres [J]. Inorg. Chem.,2010,49:3305-3309.
    [6] Li W., Peter A Tanner. Understanding Eu3+Emission by Using15N Vibronic Shifts[J]. Inorg. Chem.,2010,49:6384-6386.
    [7] Ana de Bettencourt-Dias, Patrick S. Barber, Subha Viswanathan, Daniel T. de Lill,Alexandra Rollett, George Ling, Sultan Altun. Para-derivatized pybox ligands assensitizers in highly luminescent Ln(III) complexes [J]. Inorg. Chem.,2010,49:8848-8861.
    [8] K. H. Kwon, W. B. Im, H. S. Jang, H. S. Yoo, D. Y. Jeon. Luminescence propertiesand energy transfer of site-sensitive Ca6-x-yMgx-z(PO4)4:Euy2+,Mnz2+phosphors andtheir application to near UV LED-based white LEDs [J]. Inorg. Chem.,2009,48:11525-11532.
    [9] Song Y., You H., Yang M., Zheng Y., Liu K., Jia G., Huang Y., Zhang L., Zhang H.Facile Synthesis and Luminescence of Sr5(PO4)3Cl:Eu2+Nanorod Bundles via aHydrothermal Route [J]. Inorg. Chem.,2010,49:1674-1678.
    [10] Yang M., You H., Liu K., Zheng Y., Guo N., Zhang H. Low-temperaturecoprecipitation synthesis and luminescent properties of LaPO4:Ln3+(Ln3+=Ce3+,Tb3+) nanowires and LaPO4:Ce3+,Tb3+/LaPO4core/shell nanowires [J]. Inorg.Chem.,2010,49:4996-5002.
    [11] L. Elammari, M. El Koumiri, I. Zschokke-Gr nacher, et al. Elaboration and nonlinear properties of ortho-phosphate solid solutions AIBII1-xMIIxPO4(AI=monovalent cation, BII&MII=divalent cations)[J]. Ferroelecbics,1994,158:19-24.
    [12] Chun Che Lin, Zhi Ren Xiao, Guang-Yu Guo, Ting-Shan Chan, and Ru-Shi Liu.Versatile phosphate phosphors ABPO4in white light-emitting diodes: collocatedcharacteristic analysis and theoretical calculations [J]. J. AM. Chem. Soc.,2010,132:3020-3028.
    [13] Y. S. Tang, S. F. Hu, C. C. Lin, et al. Thermally stable luminescenceof KSrPO4:Eu2+phosphor for white light UV light-emitting diodes [J]. Appl. Phys.Lett.,2007,90(15):151108-151108-3.
    [14] S.Y. Zhang, Y. L. Huang, and H. J. Seo. The Spectroscopy and Structural Sites ofEu2+Ions Doped KCaPO4Phosphor [J]. J. Electrochem. Soc.,2010,157(7):261-266.
    [15] C. Qin, Y. Huang, L. Shi, G. Chen, X. Qiao, H. J. Seo. Thermal Stability ofLuminescence of NaCaPO4:Eu2+Phosphor for White-Light-Emit-ting Diodes [J]. J.Phys. D: Appl. Phys.,2009,42:185105-185109.
    [16] S. H. M. Poort, W. Janssen, and G. Blasse. Optical Properties of Eu2+-ActivatedOrthosilicates and Orthophosphates [J]. J. Alloys Compds.,1997,260:93-97.
    [17] Lin C C, Tang Y S, Hu S F, et al. KBaPO4:Ln (Ln=Eu, Tb, Sm) phosphors for UVexcitable white light-emitting diodes [J]. J Lumin,2009,129:1682-1684.
    [18] W.B. Im, H.S. Yoo, S. Vaidyanathan, K.H. Kwon, H.J. Park, Y.L. Kim, D.Y. Jeon. Anovel blue-emitting silica-coated KBaPO4:Eu2+phosphor under vacuum ultravioletand ultraviolet excitation [J]. Mater. Chem. Phys.,2009,115:161-164.
    [19] Y. L. Tung and J. H. Jean. Chemical Synthesis of a Blue-EmittingNaSr1-xPO4:EuxPhosphor Powder [J]. J. Am. Ceram. Soc.,2009,92:1860-1862.
    [20] P. Dorenbos. Energy of the first4f7→4f65d transition of Eu2+in inorganiccompounds [J]. J. Lumin.,2003,104(4):239-260.
    [21] S. H. M. Poort, W. P. Blokoel, and G. Blasse. Luminescence of Eu2+in Barium andStrontium Aluminate and Gallate [J]. Chem. Mater.,1995,7(8):1547–1551.
    [22] V. Bachmann, C. Ronda, O. Oeckler, W. Schnick, and A. Meijerink. Color PointTuning for (Sr,Ca,Ba)Si2O2N2:Eu2+for White Light LEDs [J]. Chem. Mater.,2009,21(2):316-325.
    [23] P. Dorenbos. Thermal Quenching of Eu2+5d–4f Luminescence in InorganicCompounds [J]. J. Phys.: Condens. Matter,2005,17:8103–8111.
    [24] Masse R., Dufif A. Chemical preparation and crystal structure refinement ofKBaPO4monophosphate [J]. J. Solid State Chem.,1987,71:574-576.
    [25] R.W.G. Wyckoff, Crystal Structures [M], Vol3,2nd edition, John Wiley and Sons,New York,1965,95.
    [26] M. Ben Amara, M. Vlasse, G. Le Flem and P. Hagenmuller. Structure of thelow-temperature variety of calcium sodium orthophosphate, NaCaPO4[J]. ActaCryst. C.,1983,39:1483-1485.
    [27] Amara Mm. M. Ben, Parent, C., Vlasse, M., Le Flem, G. Oxygen environment ofrare-earth ions in phosphates with β-K2SO4type structure [J]. J. Solid State Chem.,1983,46:321-327.
    [28] Ben Amara M., Parent C., Vlasse M., Le Flem G., Antic-Fidancev E., Piriou B.,Caro P. Use of Eu3+as an oxygen environment probe in alkali-alkalineearth-lanthanide phosphates with the β-K2SO4structure [J]. J. Less CommonMetals.,1983,93:425-429.
    [29] M. Daldosso, D. Falcomer, A. Speghini, P. Ghigna, M. Bettinelli. Synthesis,EXAFS investigation and optical spectroscopy of nanocrystalline Gd3Ga5O12dopedwith Ln3+ions (Ln=Eu, Pr)[J]. Opt. Mater.,2008,30:1162-1167.
    [30] Baginskiy and R. S. Liu. Significant Improved Luminescence Intensity ofEu2+-Doped Ca3SiO4Cl2Green Phosphor for White LEDs Synthesized ThroughTwo-Stage Method [J]. J. Electrochem. Soc.,2009,156: G29-G32.
    [31] V. Bachmann, T. Jüstel, A. Meijerink, C. Ronda, P. J. Schmidt. LuminescenceProperties of SrSi2O2N2Doped with Divalent Rare Earth Ions [J]. J. Lumin.,2006,121:441-449.
    [32] E.v.d. Kolk, P.Dorenbos, C.W.E.van Eijk, S.A. Basum, G.F. Imbusch, W.M. Yen.5d electron delocalization of Ce3+and Pr3+in Y2SiO5and Lu2SiO5[J]. Phys. Rev. B,2005,71:165120-65127.
    [33] U. Happek, S.A. Basun, J. Choi, J.K. Krebs and M. Raukas. Electron transferprocesses in rare earth doped insulators [J]. J. Alloys Comp.,2000,303–304:198-206.
    [34] J. S. Kim, Y H. Park, S. M. Kim, et al. Temperature-dependent emission spectra ofM2SiO4:Eu2+(M=Ca, Sr, Ba) phosphors for green and greenish white LEDs [J].Solid State Communications,2005,133:445-448.
    [35] Im W. B., Kim Y. I., Yoo H. S., Jeon D. Y. Luminescent and Structural Propertiesof (Sr1-x,Bax)3MgSi2O8:Eu2+: Effects of Ba Content on the Eu2+Site Preference forThermal Stability [J]. Inorg. Chem.,2009,48:557-564.
    [36] R.M. Macfarlane, R.M. Shelby In: A.A. Kaplyanskii, R.M. Macfarlane.Spectroscopy of Solids Containing Rare Earth Ions [M], North-Holland,Amsterdam,1987,51.
    [37] Frey S. T., Horrocks W. DeW. On correlating the frequency of the7F0 5D0transition in Eu3+complexes with the sum of 'nephelauxetic parameters' for all ofthe coordinating atoms [J]. Inorg. Chim. Acta.,1995,229:383-390.
    [38] Auzel F., Dexpert-Ghys J., Gautier C. Minimum ion-ion distance, cross relaxationand excitonic behavior in ln3+ion stoichiometric materials [J]. J. Lumin.,1982,27(1):1-12.
    [39] Benhamou R. A., Bessière A., Wallez G., Viana B., Elaatmani M., Daoud M.,Zegzouti A. New insight in the structure-luminescence relationships of Ca9Eu(PO4)7[J]. J. Solid State Chem.,2009,182:2319-2325.
    [1] S. Vaidyanathan, D. Y. Jeon. A Novel Narrow Band Red-Emitting Phosphor forWhite Light-Emitting Diodes [J]. Int. J. Appl. Ceram. Technol.,2009,6:453-458.
    [2] Shih Chieh Huang, Jui Kung Wu, Wei-Jen Hsu, et al. Particle Size Effect on thePackaging Performance of YAG:Ce Phosphors in White LEDs [J]. Int. J. Appl.Ceram. Technol.,2009,6(4):465-469.
    [3] H. L. Li, R. J. Xie, N. Hirosaki, T. Takeda, and G. H. Zhou. Synthesis andLuminescence Properties of Orange–Red-Emitting M2Si5N8:Eu2+(M=Ca, Sr, Ba)Light-Emitting Diode Conversion Phosphors by a Simple Nitridation of MSi2[J].Int. J. Appl. Ceram. Technol.,2009,6(4):459-464.
    [4] S. H. M. Poort, W. P. Blokoel, and G. Blasse. Luminescence of Eu2+in Barium andStrontium Aluminate and Gallate [J]. Chem. Mater.,1995,7(8):1547-1551.
    [5] Y. S. Tang, S. F. Hu, C. C. Lin, et al. Thermally stable luminescenceof KSrPO4:Eu2+phosphor for white light UV light-emitting diodes [J]. Appl. Phys.Lett.,2007,90(15):151108-151110.
    [6] M. S. Waite. Luminescence of Alkali-Alkaline earth-phosphates activated with Eu2+[J]. J. Electrochem. Soc.: solid state science and technology,1974,121(8):1122-1123.
    [7] C. S. Liang, H. Eckert, T. E. Gier, and G. D. Stucky. Compositionally InducedPhase Transitions and Nonlinear Optic Response in ABCO4Crystal Solution PhasesALiPO4(A=Sr, Ba, Pb)[J]. Chem. Mater.,1993,5:597-603.
    [8] S. V. Upadeo, S. V. Mohari. Radiation-Induced Valence Changes in Eu-DopedPhosphors [J]. J. Phys.: Condens. Matter,1997,9:735-746.
    [9] S. H. M. Poort, W. Janssen, and G. Blasse. Optical Properties of Eu2+-ActivatedOrthosilicates and Orthophosphates [J]. J. Alloys Compds.,1997,260:93-97.
    [10]Z. C. Wu, J. X. Shi, M. L. Gong, J. Wang, and Q. Su. Nanosized LiSrPO4: Eu2+Phosphor with Blue-Emission Synthesized by the SolGel Method [J]. Mater. Chem.Phys.,2007,103:415-418.
    [11]Z.P. Yang, G.W. Yang, S.L. Wang, J. Tian, X.N. Li, Q.L. Guo, G.S. Fu. A novelgreen-emitting phosphor NaCaPO4:Eu2+for white LEDs [J]. Mater. Lett.,2008,62:1884-1886.
    [12]W.B. Im, H.S. Yoo, S. Vaidyanathan, K.H. Kwon, H.J. Park, Y.L. Kim, D.Y. Jeon. Anovel blue-emitting silica-coated KBaPO4:Eu2+phosphor under vacuum ultravioletand ultraviolet excitation [J]. Mater. Chem. Phys.,2009,115:161-164.
    [13]T.S. Chan, R.S. Liu, I. Baginskiy. Synthesis, crystal structure, and luminescenceproperties of a novel green-yellow emitting phosphor LiZn1-xPO4:Mnxfor lightemitting diodes [J]. Chem. Mater.,2008,20:1215-1217.
    [14]L. Elammari, M. El Koumiri, I. Zschokke-Granacher, B. Elouadi. Elaboration andNon Linear Properties of Orthophosphate Solid Solutions AIBII1-xMIIxPO4(AI=Monovalent Cation, BII&MII=Divalent Cations)[J]. Ferroelectrics,1994,158:19-24.
    [15]C. Qin, Y. Huang, L. Shi, G. Chen, X. Qiao, H. J. Seo. Thermal Stability ofLuminescence of NaCaPO4:Eu2+Phosphor for White-Light-Emit-ting Diodes [J]. J.Phys. D: Appl. Phys.,2009,42:185105-185109.
    [16]H. D. Ju, et al. Luminescence Properties of Eu2+-Activated Ca12Al10.6Si3.4O32Cl5.4: APromising Phosphor for Solid State Lighting [J]. Mater. Lett.,2009,63:1275–1277.
    [17]A. Meijerink, G. Blasse. Luminescence Properties of Eu2+-Activated alkaline EarthHaloborates [J]. J. Lumin.,1989,43:283-289.
    [18]V. Bachmann, T. Jüstel, A. Meijerink, C. Ronda, P. J. Schmidt. LuminescenceProperties of SrSi2O2N2Doped with Divalent Rare Earth Ions [J]. J. Lumin.,2006,121:441-449.
    [19]Y. Q. Li, et al.. Luminescence Properties of Red-Emitting M2Si5N8:Eu2+(M=Ca,Sr, Ba) LED Conversion Phosphors [J]. J. Alloys Compds.,2006,417:273-279.
    [20]X. Song, H. He, R. Fu, D. Wang, X. Zhao, and Z. Pan. Photoluminescent Propertiesof SrSi2O2N2:Eu2+Phosphor: Concentration Related Quenching and Red ShiftBehavior [J]. J. Phys. D: Appl. Phys.,2009,42:065409-065414.
    [21]B. Dierre, R. J. Xie, N. Hirosaki, and T. Sekiguchi. Blue Emission of Ce3+inLanthanideSilicon Oxynitride Phosphors [J]. J. Mater. Res.,2007,22:1933-1941.
    [22]R. J.Xie, N. Hirosaki, K. Sakuma, Y. Yamamoto, M. Mitomo. Eu2+DopedCa-α-SiAlON: A Yellow Phosphor for White Light-Emitting Diodes [J]. Appl.Phys. Lett.,2004,84:5404-5406.
    [23]L. G. Van Uitert. Characterization of Energy Transfer Interactions between RareEarth Ions [J]. J. Electrochem.Soc.,1967,114:1048-1053.
    [24]D. L. Dexter. A Theory of Sensitized Luminescence in Solids [J]. J. Chem. Phys.,1953,21:836-850.
    [25]G. Blasse. Energy Transfer Between Inequivalent Eu2+Ions [J]. J. Solid State Chem.,1986,62:207-211.
    [26]P. Lightfoot, M. C. Pienkowski, P. G. Bruce. Synthesis and Structure of LiCaPo4byCombined X-Ray and Neutron Powder Diffraction [J]. J. Mater. Chem.,1991,1:1061-1063.
    [27]Z. C. Wu, J. Liu, M. L. Gong. Thermally Stable Luminescence ofSrMg2(PO4)2:Eu2+Phosphor for White Light NUV Light-Emitting Diodes [J].Chem. Phys. Lett.,2008,466:88-90.
    [28]J. S. Kim, Y. H. Park, S. M. Kim, J. C. Choi, H. L. Park. Temperature-DependentEmission Spectra of M2SiO4:Eu2+(M=Ca, Sr, Ba) Phosphors for Green andGreenish White LEDs [J]. Solid State Commun.,2005,133:445-448.
    [29]C. W. Struck and W. H. Fonger. UnifiedModel of the Temperature Quenching ofNarrow-Line and Broad-Band Emissions [J]. J. Lumin.,1975,10:1-30.
    [30]P. Dorenbos. Thermal Quenching of Eu2+5d–4f Luminescence in InorganicCompounds [J]. J. Phys.: Condens. Matter,2005,17:8103-8111.
    [31]R. J. Xie, N. Hirosaki, N. Kimura, K. Sakuma, M. Mitomo.2-Phosphor-ConvertedWhite Light-Emitting Diodes Using Oxynitride/Nitride Phosphors [J]. Appl. Phys.Lett.,2007,90:191101-191103.
    [32]I. Baginskiy and R. S. Liu. Significant Improved Luminescence Intensity ofEu2+-Doped Ca3SiO4Cl2Green Phosphor for White LEDs Synthesized ThroughTwo-Stage Method [J]. J. Electrochem. Soc.,2009,156: G29-G32.
    [33]Y. S. Tang and S. F. Hu. Near-Ultraviolet Excitable Orange-YellowSr3(Al2O5)Cl2:Eu2+Phosphor for Potential Application in Light-Emitting Diodes [J].Appl. Phys. Lett.,20008,93:131114-131116.
    [34]C. K. Duan, A. Meijerink, R. J. Reeves, and M. F. Reid. The UnusualTemperatureDependence of the Eu2+Fluorescence Lifetime in CaF2Crystals [J]. J. AlloysCompds.,2006,408-412:784-787.
    [35]P. Kisliuk, H. H. Tippins, C. A. Moore, and S. A. Pollack. Optical Spectrum andZeeman Effect of CaF2:Eu2+[J]. Phys. Rev.,1968,171:336-342.
    [36]T. Tsuboi and P. Silfsten. The Lifetime of Eu2+Fluorescence in CaF2:Eu2+Crystals[J]. J. Phys.: Condens. Matter,1991,3:9163–9167.
    [37]A. Meijerink and G. Blasse. Luminescence and Temperature Dependent DecayBehavior ofDivalent Europium in Ba5SiO4X6(X=Cl, Br)[J]. J. Lumin.,1990,47:1-5.
    [38]J. P. Spoonhower and M. S. Burberry. Time-Resolved Spectroscopy of BaFBr: Eu2+[J]. J. Lumin.,1989,43:221-226.
    [39]S. H. M. Poort, H. M. Reijnhoudt, H. O. T. van der Kuip, G. Blasse. Luminescenceof Eu2+in Silicate Host Lattices with Alkaline Earth Ions in a Row [J]. J. AlloysCompds.,1996,241:75-81.
    [1] Tomoyuki Kurushima, Gautam Gundiah, Yasuo Shimomura, et al. CheethamSynthesis of Eu2+-Activated MYSi4N7(M=Ca, Sr, Ba) andSrYSi4xAlxN7xOx(x=0-1) Green Phosphors by Carbothermal Reduction andNitridation [J]. J. Electrochem. Soc.,2010,157(3): J64-J68.
    [2] Chandramouli Kulshreshtha, Asish Kumar Sharma, and Kee-Sun Sohn. Effectof Local Structures on the Luminescence of Li2(Sr,Ca,Ba)SiO4:Eu2+[J]. J.Electrochem. Soc.,2009,156(3): J52-J56.
    [3] Wei-Ren Liu, Yi-Chen Chiu, Yao-Tsung Yeh, et al. Luminescence and EnergyTransfer Mechanism in Ca10K(PO4)7:Eu2+, Mn2+Phosphor [J]. J. Electrochem.Soc.,2009,156(7):165-169.
    [4] Kyeong Youl Jung, Kook Hyun Han, Ha-Kyun Jung. LuminescenceOptimization of M3MgSi2O8:Eu2+Phosphor by Spray Pyrolysis Combined withCombinatorial Chemistry for UV-LED Application [J]. J. Electrochem. Soc.2009,156(6):129-133.
    [5] Ho Seong Jang, Yu-Ho Won, Sivakumar Vaidyanathan, et al. Emission BandChange of (Sr1xMx)3SiO5:Eu2+(M=Ca, Ba) Phosphor for White Light SourcesUsing Blue/Near-Ultraviolet LEDs. J. Electrochem. Soc.,2009,156(6):138-142.
    [6] Jiuhui Gan, Yanlin Huang, Liang Shi, et al. Luminescence properties ofEu2+-activated Sr5(PO4)2(SiO4) for green-emitting phosphor [J]. Mater. Lett.,2009,63(24-25):2160-2162.
    [7] S. H. M. Poort, A. Meyerink and G. Blasse. Lifetime measurements inEu2+-doped host lattices [J]. J. Phys. Chem. Solids.,1997,58(9):1451-1456.
    [8] Meijerink and G. Blasse. Luminescence and temperature dependent decaybehaviour of divalent europium in Ba5SiO4X6(X=Cl, Br)[J]. J. Lumin.,1990,47(1-2):1-5.
    [9] P. Dorenbos. Energy of the first4f7→4f65d transition of Eu2+in inorganiccompounds [J]. J. Lumin.,2003,104(4):239-260.
    [10]M. Ben Amara, M. Vlasse, G. Le Flem and P. Hagenmuller. Structure of thelow-temperature variety of calcium sodium orthophosphate, NaCaPO4[J]. ActaCryst. C.,1983,39:1483-1485.
    [11]Y. S. Tang, S. F. Hu, C. C. Lin, et al. Thermally stable luminescenceof KSrPO4:Eu2+phosphor for white light UV light-emitting diodes [J]. Appl.Phys. Lett.,2007,90(15):151108-151110.
    [12]Z.C Wu, J.X Shi, J Wang, M.L Gong, Q. Su. A Novel Blue-emitting PhosphorLiSrPO4:Eu2+for White LEDs [J]. Journal of Solid State Chemistry,2006,179(8):2356-2360.
    [13]Chuanxiang Qin, Yanlin Huang, Liang Shi, Guoqiang Chen, Xuebin Qiao andHyo Jin Seo. Thermal stability of luminescence of NaCaPO4:Eu2+phosphor forwhite-light-emitting diodes [J]. J. Phys. D: Appl. Phys.,2009,42(18):185105-185109.
    [14]Won Bin Im, Hyoung Sun Yoo, Sivakumar Vaidyanathan, et al. A novelblue-emitting silica-coated KBaPO4:Eu2+phosphor under vacuum ultravioletand ultraviolet excitation [J]. Mater. Chem. Phys.,2009,115(1):161-164.
    [15]Zhanchao Wu, Jie liu, Menglian Gong and Qiang Su. Optimization andtemperature-dependent luminescence of LiBaPO4:Eu2+phosphor for near-UVlight-emitting diodes [J]. Journal of the Electrochemical Society,2009,156(3):H153-H156.
    [16]Tang Wanjun and Chen Donghua. Photoluminescent Properties of ABaPO4:Eu(A=Na, K) Phosphors Prepared by the Combustion-Assisted SynthesisMethod [J]. J. Am. Ceram. Soc.,92,2009,92(5):1059-1061.
    [17]Zhanchao Wu, Jie Liu, Menglian Gong. Thermally stable luminescence ofSrMg2(PO4)2: Eu2+phosphor for white light NUV light-emitting diodes[J]. Chemical Physics Letters,2008,466(1-3):88-90.
    [18]P. Dorenbos. Thermal quenching of Eu2+5d–4f luminescence in inorganiccompounds [J]. J. Phys.: Condens. Matter,2005,17(50):8103-8111.
    [19]J. S. Kim, Y H. Park, S. M. Kim, et al. Temperature-dependent emissionspectra of M2SiO4:Eu2+(M=Ca, Sr, Ba) phosphors for green and greenish whiteLEDs [J]. Solid State Communications,2005,133:445-448.
    [20]M. Daldosso, D. Falcomer, A. Speghini, P. Ghigna, M. Bettinelli Synthesis,EXAFS investigation and optical spectroscopy of nanocrystallineGd3Ga5O12doped with Ln3+ions (Ln=Eu, Pr)[J]. Opt. Mater.,2008,30:1162-1167.
    [21]M. Srivastava, H. A. Comanzo, S. Camardello, S B. Chaney, M. Aycibin, U.Happek. Unusual luminescence of octahedrally coordinated divalent europiumion in Cs2M2+P2O7(M2+=Ca, Sr)[J]. J. Lumin,2009,129(9):919-925.
    [22]J. Wang, J. M. Righini, A. Gnoli, S. Foss, T. Finstad, U. Serincan, and R. Turan.Thermal activation energy of crystal and amorphous nano-silicon in SiO2matrix [J]. Solid State Commun.,2008,147(1-12):461-464.
    [23]J. Wang, H. Song, X. Kong, W. Xu, and H. Xia. Temperature dependence of thefluorescence of Eu3+-ion doped in various silicate glasses [J]. J. Appl. Phys.,2002,91(12):9466-9470.
    [24]B. Henderson and G.F. Imbusch. Optical Spectroscopy of Inorganic Solids [M],Clarendon Press, New York: Oxford University Press,1989.
    [25]KIM Su Jong, KWON Ae Kyung, PARK Yun Hyung. Luminescent and thermalproperties of full-color emitting X3MgSi2O8:Eu2+,Mn2+(X=Ba, Sr, Ca)phosphors for white LED [J]. J Lumin.,2007,122-123:583-586.
    [26]V. B. Mikhailik, H. Kraus, D. Wahl, M. Itoh, M. Koike, and I. K. Bailiff. One-and two-photon excited luminescence and band-gap assignment in CaWO4[J].Phys. Rev.B.,2004,69(20):205110-205118.
    [27]Y. P. Varshni. Temperature dependence of the energy gap in semiconductors [J].Physica (Amsterdam),1967,34(1):149-154.
    [28]M. A. Bredig. Isomorphism and Allotropy in Com-pounds of the Type AzX04[J]. J. Phys. Chem.,1942,46:747-764.
    [29]S. H. M. Poort, W. Janssen, and G. Blasse. Optical Properties of Eu2+-ActivatedOrthosilicates and Orthophosphates [J]. J. Alloys Compds.,1997,260:93-97.
    [30]Y. Huang, W. Kai, Y. Cao, K. Jang, H. Lee and I. Kim.Spectroscopic and structural studies of Sm2+doped orthophosphateKSrPO4crystal [J]. J. Appl. Phys.,2008,103(5):053501-053507.
    [31]J. RUBIO O. Doubly-valent rare-earth ions in halide crystals [J]. J. Phys. Chem.Solids,1991,52(1):101-174.
    [32]H. J. Seo, B. K. Moon, B. J. Kim, et al. Optical properties of europium ions inSrB2O4crystal [J]. J. Phys.: Condens. Matter,1999,11:7635-7643.
    [33]H.J. Seo, W.S. Zhang, T. Tsuboi, S.H. Doh, W.G. Lee, H.D. Kang, K.W.Jang. Luminescence properties of a CsI crystal doped with Eu2+ions [J]. J.Alloys Compds,2002,344(1):268-271.
    [34]S. H. M. Poort, W. P. Blokoel, and G. Blasse. Luminescence of Eu2+in Bariumand Strontium Aluminate and Gallate [J]. Chem. Mater.,1995,7(8):1547-1551.
    [35]R.M. Macfarlane, R.M. Shelby In: A.A. Kaplyanskii, R.M. Macfarlane.Spectroscopy of Solids Containing Rare Earth Ions [M], North-Holland,Amsterdam,1987.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700