云南横断山地区高山姬鼠(Apodemus chevrieri)能量对策的适应性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以分布于云南西部横断山地区的高山姬鼠为研究对象,从野外实验和实验室驯化两个方面,个体、器官、细胞和激素四个水平,对其能量对策的适应性调节进行研究,为探讨横断山区小型哺乳动物的生理生态适应特征提供一些科学依据。
     本论文主要分为六部分:
     1、高山姬鼠消化道形态的季节动态
     2、高山姬鼠身体能值的适应性调节
     3、高山姬鼠体温调节和肺皮失水的季节性差异
     4、高山姬鼠冷诱导和运动诱导最大代谢率
     5、温度对高山姬鼠能量收支、产热特征和血清瘦素的影响
     6、血清瘦素对高山姬鼠能量收支、产热特征的影响
     主要结果
     1、高山姬鼠消化道形态的季节变化特征如下:
     高山姬鼠消化道总长以6月份最长,3月份最短,季节之间差异极显著。不同季节间,高山姬鼠消化道总含内容物重,总去内容物重,总干重均有极显著差异。胃,小肠,大肠含内容物重、去内容物重、干重均有极显著差异,盲肠含内容物重、干重没有显著差异,去内容物重有显著变化。除大肠热值没有显著差异外,其它各消化器官热值均有极显著差异。不同季节间小肠长度差异显著,大肠、盲肠长度有极显著差异。
     2、高山姬鼠身体能值的适应性调节
     高山姬鼠体重、酮体重、身体能值均以6月份最大,3月份最小,季节之间差异极显著。实验室饲养30d组体重显著高于野外采集组,酮体重、身体能值极显著大于野外采集组。冷驯化42d体重低于实验室饲养组,酮体重、身体能值与正常条件下实验室饲养组之间有极显著差异,冷驯化组的酮体重和身体能值极显著低于实验室饲养组。
     3、高山姬鼠体温调节和肺皮失水的季节性差异
     不同季节中,高山姬鼠的夏季体重、体温、EHL/HP、EHL/RMR极显著高于冬季。冬季高山姬鼠的热中性区为20~27.5℃,夏季为22.5-27.5℃,冬季基础代谢率、热传导、干燥热传导、蒸发失水量、EHL/EW显著高于夏季。在季节性环境中,高山姬鼠通过降低体重、体温,增加产热来适应冬季低温;同时通过降低肺皮蒸发失水量、降低蒸发热散失占总产热的比率等途径适应冬季干燥缺水的环境。
     4、高山姬鼠冷诱导和运动诱导的最大代谢率
     冬季的BMR、NST极显著高于夏季,MMR显著高于夏季。冷诱导的最大代谢率显著高于运动诱导的最大代谢率,两种诱导方式条件下的基础代谢率没有显著差异。
     5、温度对高山姬鼠能量收支、产热特征和血清瘦素的影响
     冷驯化过程中,高山姬鼠的体重、体温、血清瘦素含量下降,28d后达到最趋于稳定。同时,25℃RMR、NST显著增加,肝脏、BAT相对重量,肝脏总蛋白含量、线粒体蛋白含量、状态Ⅲ、状态Ⅳ呼吸均出现不同程度的增加,28d后达到最大值后趋于稳定。
     6、冷驯化过程中血清瘦素对高山姬鼠能量收支、产热特征的影响:
     在冷驯化过程中下,血清瘦素含量和体重、体温成极显著正相关关系,和BMR、NST、EI成极显著负相关关系。瘦素可能参与了冷诱导的体重、体温降低,食物摄入增加,同时参与了产热的调节。结论:
     综上所述,高山姬鼠产热特征、体温调节模式、消化道和身体能值的调节特征很可能反映了横断山地区小型啮齿动物该地区年温差小、日温差大,干湿季节分明的独特环境特征的适应模式,即冬季和冷驯化条件下体重、体温、蒸发失水量、身体能值等降低,而BMR、NST、MMR增加;同时,身体能值和消化道形态存在季节性调节。说明高山姬鼠在季节性环境或在冷胁迫条件下,能够降低体重,减少能量的绝对需要,降低体温,以减少维持体温恒定的能量,并同时增加能量摄入、增强产热能力等途径适应环境温度的变化。此外,还通过调节保水和失水的能力,适应环境中水资源的变化。
Apodemus chevrieri in Hengduan mountains region of Yunnan was our research objects. Their energy strategies were studied in fields and in lab from the individual, organs, cells and hormones levels to provide basic data about adaptive characteristics in physiological ecology of small mammals in this region.
     This thesis consists of six parts:
     1、Seasonal variations of the digestive tract morphology in Apodemus chevrieri
     2、Accommodation of Body Energy Contents in Apodemus chevrieri
     3、Seasonal variations of body temperature regulation and evaporative water loss in Apodemus chevrieri
     4、Maximal metabolic rates during forced exercise and cold exposure in Apodemus chevrieri
     5、The Effect of temperature on energy metabolism, thermogenesis and serum leptin concentration in Apodemus chevrieri
     6、Effects of leptin on energy metabolism, thermogenesis in Apodemus chevrieri under cold acclimation
     The results were outlined as follows:
     1 The results indicated that the organ (stomach, small intestine, large, intestine and caecum) of Apodemus chevrieri had significant seasonal variations. Each index of stomach, small intestine and large intestine was higher in June and September, as well as the weight without contents and dry weight of caecum.The length and weight with contents of caecum were higher in March and November. In order to maintain the normal physiological function, Apodemus chevrieri adjusted the morphology of digestive tract during seasonal circumstances.
     2 The results indicated that the body energy contents of Apodemus chevrieri had seasonal variations and acquits fast adaptive characters in different disposals. The energy contents were the largest in June, and the smallest in March. In the cold acclimation, the energy contents had significant decrease, and in the condition of lab-breeding, the figure increased notability.
     3 The results indicated that body mass, body temperature, EHL/HP and EHL/RMR of Apodemus chevrieri in summer were significantly higher than those in winter. The thermal neutral zone(TNZ) in winter was 20.5~27.5℃and was 22.5~27.5℃in summer. Basal metabolic rates(BMR), thermal conductance (C), dry thermal conductance, evaporative water loss(EWL) and EHL/EW were higher in winter. Apodemus chevrieri have low body temperature, high levels of basal metabolic rate in winter, high levels of total thermal conductance and high levels of evaporative water loss in summer.
     4 The results indicated that BMR, NST and MMR of Apodemus chevrieri in winter were significantly higher than those in summer. MMR which induced by cold-exposure was significantly higher than induced by forced exercise, while BMR had not significantly difference between the two methods.
     5 Results showed that the body mass, body temperature and serum leptin concentration of Apodemus chevrieri had reduced during 28 days and kept stable after reached the lowest level. IE, BMR, NST increased significantly, the total protein content and mitochondrial protein content in liver, relative mass of liver and BAT,stateⅢand stateⅣof mitochondrial respiration of liver were increased respectively during cold-exposure. After the 28d, each index reached to the highest level and then kept stable.
     6 In the course of cold acclimation, there was significant positive correlation between serum leptin concentration and body weight, body temperature, respectively. and there was significant negative correlation between serum leptin concentration and BMR, NST, El. Leptin may be involved in the reducing body mass, body temperature, increasing EI, and in the production of heat.
     Conclusions:
     In summery, thermogenic characteristics, thermoregulatory styles and the accommodation of digestive tract and body energy contents of Apodemus chevrieri is likely to reflect the adaptation Model in small rodents in the Hengduan Mountains region.In the seasonal environment or cold stress conditions, Apodemus chevrieri could reduce the absolute need for energy by reducing body mass, body temperature, increase energy intake and thermogenic capacity, In addition, Apodemus chevrieri had the ability of regulating the water and water loss of the ability to adapt to environmental changes in water resources.
引文
[1]Speakman, J. R. and Krol, E. Limits to sustained energy intake Ⅸ:a review of hypotheses.[J]. J. Comp. Physiol. B,2005,175,375-394.
    [2]Li X S, Wang D H. Suppression of thermogenic capacity during reproduction in primiparous Brandt's voles(Microtus brandtii) [J]. J.Therm. Biol.2005.30,431-436.
    [3]Rousseau, K., Atcha, Z., Cagampang, F.R., Le Rouzic, P., Stirland, J.A., Ivanov,T.R., Ebling, F.J., Klingenspor, M., Loudon, A.S., Photoperiodic regulation of leptin resistance in the seasonally breeding Siberian hamster (Phodopus sungorus).[J].Endocrinology,2002.143,3083-3095.
    [4]Rousseau K, Actha Z, Loudon ASI, Leptin and seasonal mammals[J]. Journal of Neuroendocrinology,2003,15:409-414.
    [5]Wang D H,Wang Z W,Sun R Y. Seasonal variations in digestive tract morphology in root vole[J]. Acta Theriologica Sinica,1995,15:53~59. (in Chinese)
    [6]王德华,王祖望,高寒地区根田鼠的体温调节与蒸发失水[J].兽类学报,2000,20(1):37-47.
    [7]王德华,王玉山,王祖望,华北农田大仓鼠的能量代谢特征及其体温调节[J].动物学研究,2000.21(6):452-457.
    [8]Wang, D.H., Wang, Z.W., Wang, Y.S., Yang, J.C., Seasonal changes of thermogenesis in Mongolian gerbils (Meriones unguiculatus) and Brandt's voles(Microtus brandti) [J]. Comp. Biochem. Physiol.2003.134A, S96.
    [9]Wang, D.H., Pei, Y.X., Yang. J.C., Wang, Z.W., Digestive tract morphology and food habits in six species of rodents[J]. Folia Zool.2003.52,51-55.
    [10]Karasov WH, Energetics, physiology and vertebrate ecology [J]. Trends Ecol Evol,986.1:101-104.
    [11]Bacigalupe, L. D. and Bozinovic, F. Design, limitations and sustained metabolic rate:lessons from small mammals[J]. J. Exp. Biol,2002,205,2963-2970.
    [12]Kersten, M. and Piersma, T. High levels of energy expenditure in shorebirds:metabolic adaptations to an energetically expensive way of life[J].Ardea,1987,75:175~187.
    [13]Daan,S., Masman, D., Strijkstra, A.and Verhulst, S. Intraspecific allometry of basal metabolic rate:relations with body size, temperature, composition and circadian phase in the kestrel (Falco tinnunculus) [J]. J. Biol. Rhythms,1990,4,11-23.
    [14]Hammond, K.A.and Diamond, J. Maximal sustained energy budgets in humans and animals[J]. Nature,1997.386,457-462.
    [15]Townsend, C. R. and Calow, P.1981. Physiological ecology. An evolutionary approach to resource use. Blackwell.
    [16]Peterson C J, Carson W P, McCarthy B C and Pickett S T A. Microsite variation and soil dynamics within newly created treefall pits and mounds[J]. Oikos,1990.58:39-46
    [17]Nagy K A, Girard I A, Brown T K. Energetics of free-ranging mammals, Reptiles and birds[J]. Annu Rev Nutr,1999.19:247~277.
    [18]Bacigalupe, L. D. and Bozinovic, F. Design, limitations and sustained metabolic rate:lessons from small mammals[J]. J. Exp. Biol.2002.205,2963-2970.
    [19]Starck J M. Structural flexibility of the gastro-intestinal tract of vertebrates. Implications for evolutionary morphology [J]. Zool. Anz,.1999,238:87-101.
    [20]Piersma T, Lindstrom A. Rapid reversible changes in organsize as a component of adaptive behavior [J]. Trends Ecol Evol,1997.12:134-138
    [21]Starck J M. Structural flexibility of the gastro-intestinal tract of vertebrates. Implications for evolutionary morphology [J]. Zool. Anz,.1999.238:87-101.
    [22]McWilliams S R,Karasov W H. Phenotypic flexibility in digestive system structure and function in migratory birds and its ecological significance[J]. Comparative Biochemistry and Physiology Part A,2001.128:579~593.
    [23]Naya, D.E., Bozinovic, F., Digestive phenotypic flexibility in post metamorphic amphibians: studies on a model organism[J]. Biol. Res.2004.37,365-370.
    [24]Bozinovic F and M. Rosenmann. Maximum metabolic rate of rodents:physiological and ecological consequences on distributional limits[J]. Funct. Ecol.1989.3:173~181.
    [25]Bozinovic F, Rate of basal metabolism of grazing rodents from different habitats[J]. J Mamm 1992.73(2):379~384.
    [26]王德华,王祖望.高寒地区高原鼢鼠消化道形态的季节变化[J].兽类学报200020(4):270-276.
    [27]McNab BK, On the utility of mammalian rates of basal rate of metabolism[J]. Physiol Zool, 1997.70:718-720.
    [28]Arends A, MacNab BK, The comparative energetics of 'caviomorph'rodents[J]. Comp Biochem Physiol,2001.130A:105-122.
    [29]李庆芬.刘小团.黄晨西.孙儒泳.林其谁.长爪沙鼠冷驯化过程中褐色脂肪组织产热活性及解偶联蛋白基因表达[J].动物学报,2001.47(4):388—394.
    [30]宋志刚.王德华.哺乳动物基础代谢率的主要影响因子[J].兽类学报,200222(1):53—60.
    [31]于晓东,罗天宏,周红章.横断山区东部四种林型地表甲虫的物种多样性[J].动物学研究.2004.25(1):7-14.
    [32]孙航.古地中海退却喜马拉雅隆升对中国喜马拉雅成分及高山植物区系的影响[J].云南植物研究,2002.24(3):273-288
    [33]韩联宪.丰富的生物多样性[J].科技文萃2004.(4):38—47.
    [34]申丽洁,李伟.野栖树鼩的蠕虫感染.中国媒介生物学及控制杂志[J].2005.16(6).440—441.
    [35]吴明寿戴二黑郭英等.云南鼠疫耶尔森菌基因分型研究[J].中国地方病学杂志,2005.24(5):475—477
    [36]米竹青.李兆样.张海林等.鼠类携带乙型肝炎表面抗原的研究[J].医学动物防制.2004.20(9):514—515.
    [37]王海,杨晓密,刘春燕,王政昆.大绒鼠和高山姬鼠的体温调节和产热特征[J].兽类学报2006.26(2):144-151.
    [38]王蓓,徐伟江,姜文秀,练硝,蔡金红,尹锡全,王政昆.高山姬鼠冷驯化过程中的能量收支[J].兽类 学报,2007,27(4):395-402.
    [39]朱万龙,杨永宏,贾婷,练硝,王政昆,龚正达,郭宪国,横断山两种小型哺乳动物的蒸发失水与体温调节[J].兽类学报,2008,28(1):65-74.
    [40]张荣祖.中国动物地理[M].北京:科学出版社,1999,188-235
    [41]柳支英等.中国动物志昆虫纲蚤目[M].北京:科学出版社.1986.
    [42]Corbet G B. The mammals of the Palaearctic region:a taxonomic review [M]. London:British Museum (Natural History),1978.200-314.
    [43]Corbet, G. B. and J. E. Hill.The Mammals of the Indomalayan Region:A Systematic review [M]. New York:Oxford University Press,1992 275~419。
    [44]Orlov V. N., Bulatova N. S., Nadjafova R. S., et al. Evolutionary classification of European wood mice of the subgenus Sylvaemus based on allozyme and chromosome data [J]. Bonn Zool. Beitr., 1996.46:191
    [45]Serizawa K, Suzuki H, Tsuchiya K. A phylogenetic view on species radiation in Apodemus inferred from variation of nuclear and mitochondrial genes [J]. Biochemical Genetics,2000.38:28-40.
    [46]Drozdz A. Metabolic cages for small rodents. In:Grodzinski W, Klekowski RZ, Duncan A eds: Methods for Ecological Bioenergetics [M]. Oxford:Blackwell Scientific Press.,1975.346~351.
    [47]Grodzinski and Wunder.Grodzinski W, Klekowski RZ, Duncan A. Methods for Ecological Biogenergetics [M]. London, Blackwell Scientific Publications,1975.309-3131
    [48]Nagy K A, Girard I A, Brown T K. Energetics of free-ranging mammals, Reptiles and birds [J]. Annu Rev Nutr,1999.19:247~277.
    [49]Depocas F., Hart J. S., Heroux O. Energy metabolism of the white rat after acclimation to warm and cold environments [J].J. Appl. Physiol.,1957.10:393-397.
    [50]Hill RW, Determination of oxygen consumption by use of the paramagnetic oxygen analyzer [J]. J Applied Physiology,1972.33(2):261-263.
    [51]Rosenmann M, Morrison P. Maximum oxygen consumption and heat loss facilitation in small homeotherms by He-O2 [J]. Am. J. Physiol.,1974,226:490-495.
    [52]Cygan, T. Seasonal changes in thermoregulation and maximum metabolism in the yellow-necked field mouse [J]. Acta Theriol.1985.30:115-130.
    [53]Gorecki A, Kania Z. Maximum metabolism and thermoregulation in laboratory mice [J]. Acta. Theriol.,1986,31:97-105.
    [54]王政昆,刘璐,梁子卿,李庆芬,孙儒泳.大绒鼠体温调节和产热特征[J].兽类学报,1999,19(4):276-286.
    [55]Jansky L. Nonshivering thermogenesis and its thermoregulatory significance [J]. Biol. Rev. 1973,48:85-132.
    [56]Ashoff J. Thermal conductance in mammals and birds:Its dependence on body size and circadian phase [J]. Comp. Biochem. Physiol.,1981.69A:611-619.
    [57]McNab B K. Body weight and the energetics of temperature regulation [J]. J. Biol,1970.53: 329-348.
    [58]Kleiber M. The Fire of Life [M]. New York, Wiley:1961.1-454.
    [59]Bradly, Bradley S R, Deavers D R. A re-examination of the relation between thermal conductance and body weight in mammals [J]. Comp Biochem Physiol,1980,8:472-478.
    [60]DeaversDR,Hudson J W. Temperature regulation in two rodents (Clethrionomys gapperi and Peromyscus leucopus) and a shrew (Blari na brevicauda) inhabiting the same environment [J]. Physiol Zool,1981,54:94-108.
    [61]Arturo Cortes, Mario Rosenmann, Francisco Bozinovic.Water economy in rodents:evaporative water loss and metabolic water production [J]. Rev chi. hist nat.2000.73(2):311-321.
    [62]Schmidt-Nielsen K. Desert animals:Physiological problems of heat and water [J]. Dover Publication,1979.277.
    [63]Cannon B, Lindberg O. Mitochondria from brown adipose tissue:isolation and properties[J]. Methods Enzymol.1979;55:65-78.
    [64]李庆芬,李宁,孙儒泳.布氏田鼠对低温的适应性产热[J].兽类学报,1994.14(4):286-293.
    [65]Derting T L, Bogue B A. Responses of the gut to moderate energy demands in a small herbivore (Microtus pennsylvanicus) [J]JMammal,1993.74:59-68.
    [66]Derting T L,Noakes E B. Seasonal changes in gut capacity in the white-footed mouse (Peromyscus leucopus)and meadow vole (Microtus pennsylvanicus) [J]. Can J Zool,1995.73:243~252.
    [67]Gross J E, Wang Z, Wunder B A. Effects of food quality and energy needs:Changes in gut morphology and capacities of Microtus chrogaster [J]. JMamm,1985.66:661~667.
    [68]Green D A. and J S. Millar. Changes in gut dimensions and capacity of Peromyscus maniculatus relative to diet quality and energy needs [J].Can. J. Zool.1987.65:2 159~2 162.
    [69]Hammond K. A. and B. A.Wunder. The role of diet quality and energy need in the nutritional ecology of a small herbivore, Microtus ochrogaster [J]. J. Physiol. Zool.1991.64:541-657.
    [70]Starck, J. M. Phenotypic flexibility of the avian gizzard:rapid, reversible and repeated changes of organ size in response to changes in dietary fibre content [J]. Journal of Experimental Biology 1999.202:3171-3179.
    [71]Pei, Y.X., Wang, D.H., Hume, I.D. Effects of dietary fibre on digesta passage, nutrient digestibility, and gastrointestinal tract morphology in the granivorous Mongolian gerbil (Meriones unguiculatus) [J]. Physiol. Biochem.Zool.2000,74,742-749.
    [72]Lentle RG, StaVord KJ, Hume ID. A comparison of the gross gastrointestinal morphology of genetically-similar tammar wallabies (Macropus eugenii) from diVerent nutritional environments [J]. Aust J Zool.2004.52:437-445.
    [73]Munn AJ, Banks P, Hume I D. Digestive plasticity of the small intestine and the fermentative hindgut in a marsupial herbivore, the tammar wallaby (Macropus eugenii) [J]. Aust J Zool 2006.54:287-291
    [74]Strategies in digestion and defecation. In:Townsend C:R, Calow Peds. Physiological Ecology:An evolutionary approach to resource use [M].Oxford:Blackwell scientific publications, 109~139.
    [75]Diamond J M, Karasov W H. Trophic control of the intestinal mucosa [J]. Nature,1983.304:18
    [76]Toloza E, Lam M, Diamond J. Nutrient extraction by cold exposed mice:a test of digestive safety margins [J]. Am JPhysiol,1991.261:G608~G620.
    [77]Diamond J M. Evolutionary design of intestinal nutrient absorption:enough but not too much [J]. News Physiol Sci,1991.6:92~96.
    [78]Derting T L, Bogue B A. Responses of the gut to moderate energy demands in a small herbivore (Microtus pennsylvanicus) [J]JMammal,1993.74:59~68.
    [79]Naya D E, Bacigalupe L D, Bustamante D M, et al. Dynamic digestive responses to increased energy demands in the leaf-eared mouse (Phyllotis darwini) [J]. J Comp Physiol 2005.B175:31~ 36.
    [80]Bozinovic F, C Veloso, M Rosenmann. Cambios del tracto digestivo de brothrix andinus:efecto de la calidad de dieta y requerimientos de energi'a [J]. Revista Chilena de Historia Natural 1988.61:245-251.
    [81]Green DA,Millar J S.Changes in gut dimensionsand capacity of Peromuscus manicolatus relative to diet quality and energy needs[J] Can JZool,1987,65:2159-2162.
    [82]Sabat, P. and Bozinovic, F. Digestive plasticity and the cost of acclimation to dietary chemistry in the omnivorous leaf-eared mouse Phyllotis darwini [J]. J. Comp. Physiol.2000.170,411-417.
    [83]Schwaibold U, Pillay N. The gut morphology of the African ice rat, Otomys sloggetti robertsi, shows adaptation to cold environments and sex-specific season variation [J]. J Comp Physiol B 2003.173:653-659;
    [84]Toloza E, Lam M, Diamond J. Nutrient extraction by cold exposed mice:a test of digestive safety margins [J]. Am J Physiol,1991.261:G608~620.
    [85]Bozinovic Francisco, Carlos E B, Paolal S. Spatial and seasonal plasticity in digestive morphology of cavies (Microcavia australis) in habiting habitats with different plant qualities [J]. Journal of Mammalogy,2007,88(1):165-172.
    [86]Hammond K A, Wunder B A. The role of diet quiality and energy need in the nutritional ecology of a small herbivore, Microtus ochrogaster [J]. Physiol Zool,1991.64:541~657.
    [87]Wang D H,Wang Z W. Seasonal variations in digestive tract morphology in plateau pikas (Ochotona curzoniae)on the Qinghai-tibetan plateau [J]. Acta Zoologica Sinica,2001,47 (5):495~ 501. (in Chinese)
    [88]Gebcynska Z, M Gebcynski. Length and weight of the alimentary tract of the root vole [J]. Acta theriologica.1971.16:359~369.
    [89]李吉瑞.齐氏姬鼠繁殖生态观察[J].中国地方病防治杂志,1999.14(4):223.
    [90]Speakman J R,McQueenie J. Limits to sustained metabolic rate:The link between food intake, basal metabolic rate and morphology in reproducing mice, Mus musculus [J]. Physiol. Zool. 1996.69,746~769.
    [91]Weiner J.Physiological limits to sustainable energy budgets in birds and mammals:ecological implications [J]. Trends Ecol Evol,1992,7:384-388.
    [92]Hammond KA, Wunder BA.The role of diet quality and energy need in the nutritional ecology of a small herbivore, Mcrotus ochrogaster [J]. Physiol Zool,1991,64:541-567.
    [93]Madison D M. Time patterning of nest visitation by lactating meadow vole [J].J Mamm, 1981.62:389-391
    [94]王德华,王祖望.高寒地区高原鼠兔消化道形态的季节动态.动物学报,2001.47(5):495~501.
    [95]Buret A, J Hardin, M E Olson, et al. Adaptation of the small intestine in desert-dwelling animals: morphology, ultrastructure and electrolyte transport in the jejunum of rabbits, rats, gerbils and sand rats [J]. Comparative Biochemistry and Physiology, A. Comparative Physiology 1993.105: 157~163.
    [96]Stain R W.A R Place, T Lacourse, et al. Digestive organ sizes and enzyme activities of refueling western sandpipers (Calidris mauri):contrasting effects of season and age [J]. Physiological and Biochemical Zoology,2005.78:434~446.
    [97]Starck J M, G H A Rahmaan. Phenotypic flexibility of structure and function of the digestive system of Japanese quail [J]. Journal of Experimental Biology,2003.206:1887~1897.
    [98]Karasov, W. H. Digestive plasticity in avian energetics and feeding ecology. Avian Energetics and Nutritional Ecology[M]. New York, Chapman and Hall.1996.61-84
    [99]Martinez del Rio, C. Nutritional ecology of fruit eating and flower visiting birds and bats. In The Digestive System in Mammals:Food Form and Function (ed. D. J. Chivers and P. Langer) [M], Cambridge Cambridge University Press.1994.102-127.
    [100]McWilliams, S. R., and W. H. Karasov. Phenotypic flexibility in digestive system structure and function in migratory birds and its ecological significance [J]. Comparative Biochemistry and Physiology Part A,2001.128:579-593.
    [101]Hume, Elizabeth.. Predicting metathesis:The ambiguity/attestation model [J]. Ms.2002.546.
    [102]Van soest P. Nutritional ecology of the ruminant. O and B Books Inc [M]., Cornell University Press, Ithaca, New York.1982.
    [103]Liu Quan Sheng, Wang De Hua. Effects of diet quality on phenotypic Xexibility of organ size and digestive function in Mongolian gerbils (Meriones unguiculatus)[J]. J Comp Physiol. 2007.177(5):509-518.
    [104]刘春燕,徐伟江,杨晓密等.云南三种小型哺乳动物的消化道形态特征和能量摄入水平[C].见:王德华主编:动物生态学研究进展,北京:高等教育出版社.2007,47—53.
    [105]韩崇选,李金钢,杨学军等.中国农林啮齿动物与科学管理[M].西北农林科技大学出版社.2005.
    [106]Schmidt-Nielsen and Schmidt-Nielsen. Schmidt-Nielsen B:Renal tubular excretion of urea in kangaroo rats[J]. Am J. Physiol,1952,170:45-56,1952
    [107]Forman G L, C J Phillips. The proximal colon of heteromyid rodents:possible morphophysiological correlates to enhanced water conservation, in Biology of the Heteromyidae (H. H. Genoways and J. H. Brown, eds.) [M]. Special Publication 10, The American Society of Mammalogists.1993.491~508
    [108]Bozinovic F, Gallardo P. The water economy of South American desert rodents:From integrative to molecular physiological ecology[J]. Comparative Biochemistry and Physiology,2006.142: 163-172.
    [109]Walsberg G E. Small mammals in hot deserts:some generalizations revisited[J].BioScience, 2000.50:109~120.
    [110]王德华,王祖望.高寒地区高原鼢鼠消化道形态的季节变化[J].兽类学报,2000.20(4)270-276.
    [111]杜卫国.鲍毅新.刘季科.七种鼠科啮齿动物消化道长度和重量的比较[J].兽类学报,2001.21(4):264—270.
    [112]Hammond K. A. and B. A.Wunder. Effect of cold temperatures on the morphology of gastrointestinal tracts of two microtine rodents[J]. J.Mammalogy,1995.76(1):232-239.
    [113]王德华王祖望.高寒地区高原鼠兔消化道形态的季节动态[J].动物学报,2001.47(5):495~501.
    [114]Kenagy G J, Sharbaugh S M, Nagy K A. Annual cycle of energy and time expenditure in a golden mantled ground squirrel population[J]. Oecologia,1989,78:269~282.
    [115]Corp N, Gorman M L, Speakman J R. Daily energy expenditure of free-living male Wood Mice in different habitats and seasons[J]. Functional Ecology,1999.13 (5):1365-2435.
    [116]Liu H, Wang DH, Wang Z W. Maximum metabolizable energy intake in the Mongolian gerbil Meriones unguiculatus[J]. Journal of Arid Environment,2002.52:405~411.
    [117]李兴升,王德华,杨明.冷驯化条件下长爪沙鼠血清瘦素浓度的变化及其与能量收支和产热的关系[J].动物学报,2004.50(3):334-340.
    [118]Liu H, Wang D H, Wang ZW. Energy requirements during reproduction in female Brandt's voles Microtus brandti[J]. Journal of Mammalogy,2003.84 (4):1410~1416.
    [119]宋志刚,王德华.内蒙古草原布氏田鼠的最大同化能[J].兽类学报,2001,21(4):271-278.
    [120]Johnston I A, Bennett A F. Animals and Temperature:Phenotypic and Evolutionary Adaptation. Society for Experimental Biology. [M] Cambridge University Press,Cambridge, UK Seminar Series.1996.
    [121]Voltura M B, Wunder B A. Effects of ambient temperature, diet quality, and food restriction on body composition dynamics of the prairie vole Microtus ochrogaster[J]. Physiological Zoology,1998,71(3):321-328.
    [122]Puerta M, Abelenda M. Cold-acclimation in food-restricted rats[J]. Comp Biochem Physiol, 1987.87A:31~33.
    [123]Konarzewski M, Diamond J. Peak sustained metabolic rate and its individual variation in cold-stressed mice[J]. Physiol Zool,1994.67(5):1186-1212
    [124]Enrico L Rezende, Mark A Chappell, Kimberly A. Hammond,2004. Cold-acclimation in Peromyscus:temporal effects and individual variation in maximum metabolism and ventilatory traits[J]. The Journal of Experimental Biology 207,295-305.
    [125]Nespolo R F, Rosenmann M. Thermal history in Chilean rodents:an experimental approach[J]. Rev Chil Hist Nat,1997.70:363~370.
    [126]McNab B K. On the utility of mammalian rates of basal rate of metabolism [J]. Physiol Zool, 1997.70:718-720.
    [127]Arends A, MacNab BK. The comparative energetics of'caviomorph'rodents[J]. Comp Biochem Physiol,2001,130A:105-122.
    [128]宋志刚,王德华.长爪沙鼠的代谢率与器官的关系[J].动物学报,2002,48(4):445-451.
    [129]戈峰.现代生态学[M],北京:科学出版社.2002.
    [130]Ronald L, Ariagno, Steven F Glotzbach, Roger B Baldwin, David M Rector, Susan M Bowley, Robert J Moffat. Dew-point hygrometry system for measurement of evaporative water loss in infants[J].Journal of Applied Physiology,1997.82(3):1008-1017.
    [131]Bozinovic F, Contreras L C. Basal rate of metabolism and temperature regulation of two desert herbivorous octodontid rodents:Octomys mimax and Tympanoctomys barrerae[J]. Oecologia 1990.84:567-570.
    [132]Tieleman B I,Williams J B, Buschur M B et al. Phenotypic variation of larks along an aridity gradient:are desert birds more flexible? [J] Ecology,2003.84:1800-1815.
    [133]Williams J B. A phylogenetic perspective of evaporative water loss in birds[J]. Auk,1996.113: 457-472.
    [134]Marilyn R. Banta, Dale W Holcombe. The effects of thyroxine on metabolism and water balance in a desert-dwelling rodents, Mwrriam's kangaroo rat(Dipodomys merriami) [J].Journal of Comparative Physioligy B,2001.172:17-25.
    [135]McNab B K. The physiological ecology of vertebrates[M]. Cornell University Press, New York, New York, USA.2002.576.
    [136]John E Minnich. Evaporative Water Loss from the Desert Iguana, Dipsosaurus dorsalis[J]. Copeia,1970.3:575-578.
    [137]John H Crowe. Evaporative water loss by tradigrades under controlled relative humidities[J]. Biol.Bull,1972.142:407-416.
    [138]Scantlebury M, Shanas U,Speakman J R et al. Blackwell Science, Ltd Energetics and water economy of common spiny mice Acomys cahirinus from north-and south-facing slopes of a Mediterranean valley[J]. Functional Ecology,2003.17:178-185.
    [139]Pablo Sabat, Roberto F, Nespolo et al. Water economy of three Cinclodes (Furnariidae) species inhabiting marine and freshwater ecosystems[J]. Revista Chilena de Historia Natural,2004.77: 219-225.
    [140]Terence J, Dawson, Kirsten J et al. Water use and the thermoregulatory behavior of kangaroos in arid regions:insights into the colonization of arid rangelands in Australia by the Eastern Grey Kangaroo (Macropus giganteus) [J]. J Comp Physiol B,2005.176:45-53.
    [141]Bozinovic, F., Gallardo, P.A. The water economy of South American desert rodents:from integrative to molecular physiological ecology[J]. Comparative Biochemistry and Physiology, 2006.142,163-172.
    [142]奚家星,孙儒泳.褐家鼠和社鼠肺皮蒸发失水量的初步研究[J].动物学报,1973.19(3):272-282.
    [143]Cai Z W, Huang W J. The pulmocutaneous water loss of Thebuff-Breas rat and the Ratlikehamster and its relationship with their geographical distribution[J]. Acta Ecological Sinica, 1982.2(3):291-302.
    [144]肖增祜,孙儒泳.长爪沙鼠(Meriones unguiculatus)和金黄地鼠(Mesocricetus auratus)的肺皮蒸发失水量研究[J].兽类学报,1988.8(1):49-54.
    [145]Wang D H, SUN R Y, Wang Z W. Evaporative water loss and thermoregulation in Plateau Pika (Ochotona curzoniae) [J]. Acta Theriologica,Sinica,1993.13:104-113.
    [146]王德华,王祖望.高寒地区根田鼠的体温调节与蒸发失水[J].兽类学报,2000,20(1):37-47.
    [147]Swanson DL. Are summit metabolism and thermogenic endurance correlated in winter-acclimatized passerine birds? [J] Comp Physiol B,2001,171:475-481.
    [148]Bartness T J, Elliot J A, Wade B D. Control of topor and weight patterns by a seasonal timer in Siberian hamster[J]. Am J Physiol,1989.257:R142-149.
    [149]Dark and Zucker,; Dark J, Zucker I. Photoperiodic regulation of body mass and fat reserves in the meadow vole[J]. Physiol Behav,1986.38:851-854.
    [150]Klingenspor M, Nigemann H, Heldmaier G.Modulation of leptin sensitivity by short photo period acclimation in the Djungarian hamster Phodopus sungorus[J]. J. Comp. Physiol. B. 2000.170:37-43.
    [151]Heldmaier G, Steinlechner S, Rafael J. Nonshivering thermogenesis and cold resistance during seasonal acclimatization in the Djungarian hamster[J]. J Comp Physiol,1982,149B:1-9.
    [152]Heldmaier G S, Klaus H, Wiesinger U, Friedrichs, Wenzel M. Cold acclimation and thermogenesis[M]. In:Edited by Malanand A, Canguilhem B.:Living in the Cold Ⅱ.Johon Libbey Eurotext Ltd.1989,347-358.
    [153]Bartness TJ, Demas GE and Song CK Seasonal changes in adiposity:the roles of the photoperiod, melatonin and other hormones, and sympathetic nervous system[J]. Experimental Biology andMedicine.2002,227 363-376.
    [154]Lovegrove B G. Seasonal thermoregulatory responses in mammals[J]. J Comp Physiol, 2005.175:231-247.
    [155]Voltura M B, Wunder B A. Effects of ambient temperature, diet quality, and food restriction on body composition dynamics of the prairie vole Microtus ochrogaster[J]. Physiological Zoology, 1998.71(3):321-328.
    [156]Iverson SL, Turner BN. Winter weight dynamics in Microtus pennsylvanicus[J]. Ecology 1974,55:1030-1041.
    [157]王德华,王祖望.高原鼠兔和根田鼠非颤抖性产热(NST)的季节性变化[J].兽类学报,1990,10:40-53.
    [158]Nagy TR, Gower BA, Stetson MH.Endocrine orrelates of seasonal baby mass dynamics in the collared lemming Dicrostony xgroen landicus[J]. Amer. Zool.1995,35:246-258.
    [159]Merritt J F, Zegers D A, Rose L R. Seasonal thermogenesis of southern flying squirrels (Glaucomys volans) [J]. J Mammal,2001,82(1):51-64
    [160]Peterson A T, Vieglais D A. Predicting species nvasions using ecological niche modeling:new approaches from bioinformatics attack a pressing problem[J]. Bioscience,2001.51:363-371.
    [161]Huntley B, Green R E, Collingham Y C et al. The performance of models relating species geographical distributions to climate is independent of trophic level[J]. Ecology Letters,2004.7: 417-426.
    [162]Parmesan C, Gaines S, Gonzalez L. Empirical perspectives on species borders:from traditional biogeography to global change [J]. Oikos,2005.108:58-75.
    [163]Haim A, JJ Martinez. Seasonal acclimatization in the migratory hamster Cricetulus migratorius the role of photoperiod[J]. J. Therm.Biol.1992,7(6):347-351.
    [164]Haim A, G Levri. Role of body temperature in seasonal acclimatization:Photoperiod-indused rhythm and heat production in Merionnes crassus[J]. J. Exp. Zool.,1990.256:237-241.
    [165]Oufara S, H Barre, J. Rouanet, J Chatonnet.Adaptation to extreme ambient temperatures in cold-acclimated gerbils and mice[J]. Am.J. Physiol.1987,253:R39-R45.
    [166]Wunder BA.Energetics and thermoregulation[M]. In:Tamnrin, F. H. ed. Biology of New World Microtus. Utah:Brigham Young University,1985,812-844.
    [167]McNab, B.K. Climatic adaptation in the energetics of heteromyid rodents[J]. Comp. Biochem. Physiol.1979.A 62,813-820.
    [168]McNab B K. The influence of food habits on the energetics of eutherian mammals[J].Ecological Monographs1986.,56(1):1-19.
    [169]Degen A A.Ecophysiology of small desert mammals[M]. Berlin:Springer-Verlag,1997.163-236.
    [170]Jing-Feng Chen, Wen-Qin Zhong, De-Hua Wang. Metabolism and thermoregulation in Maximowiczi's voles(Microtus maximowiczii) and Djungarian hamsters (Phodopus campbelli) [J]. Journal of Thermal Biology 2007.31,583-587.
    [171]Wang, D.H., Wang, Z.W., Wang, Y.S., Yang, J.C. Seasonal changes of thermogenesis in Mongolian gerbils (Meriones unguiculatus) and Brandt's voles(Microtus brandti) [J]. Comp. Biochem. Physiol.,2003.A 134, S96.
    [172]Zhan, X.M., Wang, D.H. Energy metabolism and thermoregulation of the desert hamster (Phodopus roborovskii) in Hunshandake desert of Inner Mongolia, China[J]. Acta Theriol. Sin., 2004.24 (2),152-159 (In Chinese with English summary).
    [173]Wang D H, Wang Y S, Wang Z W. Metabolism and thermoregulation in the Mongolian gerbil Meriones unguiculatus[J]. Acta Theriol,2000.45(2):183-192.
    [174]Wang DH., Klingenspor, M., Heldmaier, G.. Short photoperiod acclimation augments uncoupling protein 1 expression and mitochondrial respiration in brown adipose tissue of Djungarian hamsters(Phodopus sungorus) [J]. Comp. Biochem. Physiol.,2003A 134, S21.
    [175]Lovegrove, B.G.. The influence of climate on the basal metabolic rate of small mammals:a slow-fast metabolic continuum[J]. J. Comp.Physiol. B,2003,173,87-112.
    [176]Lovegrove B G. The Zoogeography of Mammalian Basal Metabolic Rate[J]. Am. Nat,2000. 156:201-219.
    [177]Rezende, E. L., Bozinovic, F. and Garland, T., Jr. Climatic adaptation and the evolution of maximum and basal rates of metabolism in rodents[J]. Evolution.2004,58,1361-1374.
    [178]Karasov W H, McWilliams S R. Digestive constraints in mammalian and avian ecology[M]. Reprinted from:Physiological and Ecological adaptations to feeding in vertebrates,2005.87-112.
    [179]Corp N, Gorman M L, Speakman J R. Seasonal variation in the resting metabolic rate of male wood mice Apodemus sylvaticus from two contrasting habitats 15 km apart[J]. J Comp Physiol,1996.167:229-239.
    [180]McNab B K. The evolution of mammalian energetics[M]. In:Calow. Ped. Evolutionary Physiological Ecology. Cambridge University Press,1987.219-236.
    [181]Haim A. Effects of long scotophase and cold acclimation on heat production in two diurnal rodents[J]. Journal of Comparative Physiology,1982.148B:77-81.
    [182]Heldmaier G, Bockler H, Buchberger A et al. Seasonal variation of thermogenesis[M]. In: Heller B C et al. eds, Living in the Cold:Physiological and Biochemical Adaptation. Elsevier Science Publishing Co. Inc.,1986.361-372.
    [183]Haim A, Rubal A, Harari J. Thermoregulatory strategies of two Apodemus species inhabiting a cold environment on Mount Hermon[M]. In:Carey, C, Florant, G L, Wunder, B W, Horwitz, B (Eds), Life in the Cold,91-97. Boulder:Westview Press.1993.575.
    [184]Wunder BA.Energetics and thermoregulation[M]. In:Tamnrin, F. H. ed. Biology of New World Microtus. Utah:Brigham Young University,1985,812-844.
    [185]Kurta A, Ferkin M. The correlation of demography and metabolic rate:a test using the vole(Microtus breweri) and the meadow vole(Microtus pennsylvanicus) [J]. Oecologia,1991.87: 102-105.
    [186]Greogry K. Snyder. Respiratory metabolism and evaporative water loss in a small tropical lizard[J].Journal of Comparative Physiology,1975.104(1):13-18.
    [187]Williams, J. B. and Tieleman, B. I. Flexibility in basal metabolic rate and evaporative water loss among hoopoe larks exposed to different environmental temperatures [J]. J. Exp. Biol.2000.203, 3153-3159.
    [188]Chessman B C. Evaporative Water Loss from Three South-Eastern Australian Species of Water Turtle[J]. Australian Journal of Zoology,1984.32(5):649-655.
    [189]Ganey Joseph L, Balda, Russell P, King, Rudy M. Metabolic rate and evaporative water loss of Mexican Spotted and Great Horned Owls[J]. Wilson Bulletin,1993.105 (4):645-656.
    [190]Amey A P, Grigg G C. Lipid-reduced Evaporative Water Loss in Two Arboreal Hylid Frogs[J]. Comparative Biochemistry and Physiology,1995.111 (2):283-291.
    [191]Wolf B, Walsberg G. Respiratory and cutaneous evaporative water loss at high environmental temperatures in a small bird[J]. J Exp Biol,1996.2:451-457.
    [192]Gilead Michaeli, Berry Pinshow. Respiratory water loss in free-flying pigeons[J]. The Journal of Experimental Biology,2001.204:3803-3814.
    [193]Buttermer William A, Thomas Craig. Influence of temperature on evaporative water loss and cutaneous resistance to water vapour diffusion in the orange-thighed frog (Litoria xanthomera) [J]. Aust.j. zool,2003.51(2):111-118.
    [194]Tirado C Cortes A, Bozinovic F. Metabolic rate, Thermoregulation and water balance in Lagidium viscacia inhabiting the arid Andean plateau[J]. Journal of Thermal Bioligy,2007. 32:220-226.
    [195]Arturo Cortes, Mario Rosenmann. Francisco Bozinovic. Water economy in rodents:evaporative water loss and metabolic water production[J]. Rev chi. hist nat.2000.73(2):311-321.
    [196]MacMillen R E. Hinds D S. Water regulatory efficiency in heteromyid rodents:a model and its application[J]. Ecology,1983.64:152-164.
    [197]Popko Wiersma, Mark A. Chappell, and Joseph B. Williams. Cold-and exercise-induced peak metabolic rates in tropical birds[J].2007.104(52):20866-20871.
    [198]Bennett A F, Ruben J A. Endothermy and activity in vertebrates[J]. Science,1979.206:649-654.
    [199]Garland, T., Jr. Laboratory endurance capacity predicts variation in field locomotor behaviour among lizard species[J]. Anim. Behav.1999.57,77-83.
    [200]Irschick, D. J. and Garland, T., Jr. Integrating function and ecology in studies of adaptation: investigations of locomotor capacity as a model system[J]. Ann. Rev. Ecol. Syst.2001.32,367-396.
    [201]Weibel, E. R., Bacigalupe, L. D., Schmitt, B et al. Allometric scaling of maximal metabolic rate in mammals:muscle aerobic capacity as determinant factor. Respire. Physiol. Neurobiol. 2004.140,115-132
    [202]Rosenmann M, Morrison P, Feist D D. Seasonal changes in the metabolic capacity of red-backed voles[J]. Physiol Zool,1975.48:303-310.
    [203]Feist D D, Morrison P R. Seasonal changes in metabolic capacity and noreponephrine thermogenesis in the Alaskan red-backed vole:environmental cues and annual differences [J]. Comp Biochem Physiol,1981.69A:697-700.
    [204]Chappell M A, Bachman G C. Aerobic performance in Belding's ground squirrel (Spermophilus beldingi):variance, ontogeny, and aerobic capacity model of endothermy [J]. Physiol Zool, 1995.68:421-442.
    [205]Sparti, A. Thermogenic capacity of shrews (Mammalia, Soricidae) and its relationship with basal rate of metabolism[J]. Physiol. Zool.1992.65:77~96.
    [206]Hayes, J. P. and C. O'Connor. Natural selection on thermogenic capacity of high2altitude deer mice[J]. Evol ution,1999.53 (4):1280-1287.
    [207]Holloway JC, Geiser F. Effects of Helium/Oxygen and temperature on aerobic metabolism in marsupial sugar glider, Petaurus breviceps[J]. Physiol Biochem Zool,2001.74 (2):219-225.
    [208]Heldmaier, G. Seasonal acclimatization of small mammals. Verh. Deutsch. Zool. Gesell.1993.86, 67-77.
    [209]王玉山,王祖望,王德华.温度和光周期对高原鼠兔和根田鼠最大代谢率的影响.动物学研究,2001,22(3):200-204.
    [210]Segrem N P, Hart J S. Oxygen supply and performance in Peromyscus[J]. Can J Physiol Pharmacol,1967.45:543-549.
    [211]Cannon, B. and Nedergaard, J. Brown adipose tissue:function and physiological significance[J]. Physiol. Rev.2004.84,277-359.
    [212]Seeherman H T, Taylor C R, Maloiy GMO et al. Design of the mammalian respiratory systems. Ⅱ. Measuring maximum aerobic capacity[J]. Respir Physiol,1981.44:11-23.
    [213]Hoppeler H, Lindsted SL, Uhlmann E et al. Oxygen consumption and the composition of skeletal muscle tissue after training and inactivation in the European woodmouse (Apodemus sylvaticus) [J]. J CompPhysiol,1984.155B:51-61.
    [214]Hinds D S, Rice-Warner C N. Maximal metabolism and aerobic capacity in heteromyid and other rodents[J], J. Physiol Zool,1992.65:188-214.
    [215]Enrico L. Rezende, Mark A. et al. Maximal metabolic rates during voluntary exercise, forced exercise, and cold exposure in house mice selectively bred for high wheel-running[J]. Journal of Experimental Biology,2005.208,2447-2458.
    [216]Chappell, M. A., Bachman, G. C. and Odell, J. P. Repeatability of maximal aerobic performance in Belding's ground squirrels, Spermophilus beldingi[J]. Funct. Ecol..1995.9,498-504.
    [217]Chappell, M. A., Rezende, E. L. and Hammond, K. A. Age and aerobic performance in deer mice[J]. J. Exp. Biol.2003.206,1221-1231.
    [218]Nespolo RF, Opazo JC, Bozinovic F. Thermal acclimation and non-shivering thermogenesis in three species of South American rodents:a comparison between arid and mesic habitats[J]. J Arid Environ 2001.48:581-590
    [219]Chappell, Hammond. Cold-acclimation in Peromyscus:temporal effects and individual variation in maximum metabolism and ventilatory traits[J]. The Journal of Experimental Biology,2004.207: 295-305
    [220]王德华,孙儒泳,王祖望等.根田鼠冷驯化过程中的适应性产热特征[J].动物学报,1996,42(4):369-397.
    [221]贾西西,孙儒泳.根田鼠静止代谢率特征的研究[J].动物学报,1986.32(3):280~287.
    [222]Rosenmann M, Morrison P. Maximumoxygen consumption and heat loss facilitation in small homeotherms by He-O2[J] J Am J Physiol,1974.226:490-495.
    [223]Wickler S J. Maximal thermogenic capacity and body temperatures of white-footed mice (Peromyscus) in summer and winter[J]. J. Physiol Zool,1980,53:338-346.
    [225]Hill R. W. Thermal physiology and energetics of Peromyscus:ontogeny, body temperature, metabolism, insulation, and microclimatology [J]. J. Mamm.,1983.64:19-37.
    [226]Haim A. Adaptive variations in heat production with gerhils(genus Gebillus) from different habitats[J]. Oecologia.1984.61:49—52.
    [227]Heldmaier, G., Steinlechner, S., Rafael, J et al. Photoperiodic control and effects of melatonin on nonshivering thermogenesis and brown adipose tissue[J]. Science,1981,212,917-919.
    [228]Wunder, B.A., Strategies for, and environmental cueing mechanisms of seasonal changes in thermoregulatory parameters of small mammals[M]. In:Merritt J.F. (Ed.), Winter Ecology of Small Mammals. Special Publication Carnegie Museum of Natural History, Pittsburgh,1984. 165-172.
    [229]Adolph EF, JW Lawrow, Acclimalization to cold air:Hypothermia and heat Production in the golden hamaster[J].Am. J. Physiol.1951.166:62-74.
    [230]Tomasi TE, BA Horwitz.Thyroid function and cold acclimation in the hamster, Mesoocricetus auratus[J].Am.J.Phtsiol,1987,252:260-267.
    [231]鲍伟东,王德华,王祖望等.鄂尔多斯高原库布齐沙地三趾跳鼠静止代谢率的季节变化.动物学报,2001,46:146-153.
    [232]Andre, C., Kirsten, J., Anne-Helene, T.et al. Heat production and substrate oxidation in rats fed at maintenance level and during fasting[J]. Comp.Biochem. Physiol. A,1998.121,423-429.
    [233]Haim A, Izbaki H. The ecological significance of resting metabolic rate and nonshivering thermogenesis for rodents[J].J Therm Biol,.1993.18 (2):71-91.
    [234]Andrzej K. GeRbczy'nski. Nonshivering thermogenesis capacity versus basal metabolic rate in laboratory mice[J]. Journal of Thermal Biology:2008.1000-1016.
    [235]White C.R, Seymour R.S. Allometric scaling of mammalian metabolism[J]. J. Exp. Biol.; 2005. 208:1611-1619.
    [236]Nespolo, R. F., Bustamante, D. M., Bacigalupe, L. D et al. Quantitative genetics of bioenergetics and growth-related traits life histories in the wild mammal, Phyllotis darwini[J]. Evolution.2005. 59:1829-1837
    [237]Bozinovic F and M. Rosenmann. Maximum metabolic rate of rodents:physiological and ecological consequences on distributional limits[J]. Funct. Ecol.1989.3:173-181.
    [238]Scelza J, Knoll J. The effects of acclimatization on body weight and oxygen consumption in Dipodomas panamintinus [J]. Comp Biochem Physiol,1979.65,77-84.
    [239]Hayes, J. P. Altitudinal and seasonal effects on aerobic metabolism of deer mice[J]. J. Comp. Physiol.1989.159B:453-459.
    [240]Bozinovic F, Novoa FF, Veloso C. Seasonal changes in energy expenditure and digestive tract of Abrothrix andinus(Cricetidae) in the Andes range[J]. Physiol. Zool.,1990,63:1216-1231.
    [241]Weiner J, Heldmaier G. Metabolism and thermoregulation in two races of djungarian hamster:Phodopus sungorus and Ph.campbelli[J].CompBiochem Physiol.1987.04:639-642.
    [242]Heldmaier G, Steinlechner S, Rafael J. Nonshivering thermogenesis and cold resistance during seasonal acclimatization in the Djungarian hamster[J]. J Comp Physiol.,1982.149B:1-9
    [243]Hart JS,Heroux O. Seasonal acclimatization in wild rats (Rattus norvegicus) [J]. Can J Zool, 1963.41:711-716.
    [244]Rosenmann M, Morrison P, Feist D D. Seasonal changes in the metabolic capacity of red-backed voles [J]. Physiol Zool,1975.48:303-310
    [245]王玉山.王德华.王祖望.高原鼠兔和根田鼠的最大代谢率[J].动物学报,2001.47:601-68.
    [246]Nespolo,R.F,Opazo,J.C,Rosenmann,M.,Bozinovic,F.,. Thermal acclimation, maximum metabolic rate and non-shivering thermogenesis in Phyllotis xanthopygus (Rodentia) inhabiting the Andean range[J]. J. Mamm.1999,80,742-748.
    [247]Heimer W, Morrison P. Effects of chronic and intermittent cold exposure on metabolic capacity of Peromyscus and Microtus [J]. Int J Biometeorol,1978.22,129-134.
    [248]Hayes J P, Chappell M A.Effects of cold acclimation on maximum oxygen consumption during cold exposure and treadmill exercise in deer mice, Peromyscus maniculatus[]]. Physiol Zool 1986.59:453-459.
    [249]Hammond K, Szewczak J and Krol E. Effects of altitude and temperature on organ phenotypic plasticity along an altitudinal gradient[J]. Journal of Experimental Biology,2001.204:9119-2000.
    [250]McNab B K. Food habits and the basal rate of metabolism in birds[J]. Oecologia,1988.77:343-349.
    [251]McNab B. K. Energy expenditure and conservation in frigivorous and mixed diet carnivorans [J]. J. Mammal,1995.76(1):206~222.
    [252]Bing C, Frankish HM, Pickavance L et al. Hyperphagia in cold exposed rats is accompanied by decreased plasma leptin but unchanged hypothalamic NPY[J]. Am. J. Physiol 1998.274:62-68.
    [253]Abelenda M, Ledesma A, Bial E, PucrLaM. Leptin administration to cold acclimated rats reduce both food intake and brown adpose tissue thermogenesis[J]. Journal of Thermal Biology, 2003,28:525-530.
    [254]Klingenspor M,Dickopp,A.,Heldmaier, G. et al. Short photoperiod reduces leptin gene expression in white and brown adipose tissue of Djungarian hamsters[J]. FEBS Lett.1996.399,290-294.
    [255]Genoud M. Energetic strategies of shrews:ecological constraints and evolutionary implications[J]. Mammal. Rev,1988.18(4):173-193.
    [256]Wiesinger, H., Heldmaier, G., Buchberger, A.. Effect of photoperiod and acclimation temperature on nonshivering thermogenesis and GDPbinding of brown fat mitochondria in the Djungarian hamster Phodopus sungorus[J]. Pflugers Arch.,1989,413,667-672.
    [257]Nagy,T.R.,Negus,N.C, Energy acquisition and allocation in male collared lemmings (Dicrostonys groenlandicus):effects of photoperiod, temperature, and diet quality[J]. Physiol. Zool.1993.66, 537-560.
    [258]张武先,王政昆,徐伟江,姚政,念永坤.冷驯化对中缅树鼩能量代谢的影响[J].兽类学报,2002,22(2):123-129.
    [259]Klause S., G. Heldmaier, and D. Ricquier. Seasonal acclimation of bank voles and thermogenic properties of brown adipose tissue mitochondria[J]. J. Comp. Phyiol.B,1988.158:157-164.
    [260]Khokhlova I, Krasnov BR, Shenbrot GI et al. Body mass and environment:a study in Negev rodents[J].Israel J Zool 2000.46:1-13
    [261]Brout A, Haim A, Castel M. Nonshivering thermogenesis and implication of the thyroid in cold labile and cold resistant populations of the golden spiny mouse (Acomys russatus) [J]. Experientia (Suppl),1978.32:219-27
    [262]Lynch GR. Seasonal changes in thermogenesis, organ weights, and body composition in the whited-footed mouse Peromyscus leucopus[J]. Oecologia,1973.13:363-376.
    [263]Tomasi T E, Horton T H. Mammalian Energetics:Interdisciplinary views of metabolism and reproduction[M]. Ithaca and London:Comdtock Publishing Associates,1992.1-276.
    [264]Grodzinski W, Klekowski R Z, Duncan A. Methods for Ecological Biogenergetics[M]. London: Blackwell Scientific Publications,1975.309-313.
    [265]McNab, B. K. Basal Rate of metabolism, body size, and food habits in the order Carnivora. Pp. in Carnivore Behavior, Ecology and Evolution, J.L. Gittleman, ed. [M].Ithaca, NY, Cornell University Press.1989.335-354
    [266]Haim A.and N.Fairall. Bioenergetics of a herbivorous rodeent(Otomys nentlensis) [J]. Physiol. Zool.,1987.60:305-309.
    [267]Mueller, P., and J. Diamond. Metabolic rate and environmental productivity:well-provisioned animals evolved to run and idle fast[J]. Proc. Natl. Acad. Sci. USA.2001.98:12550-12554
    [268]Voltura, M.B.. Seasonal variation in body composition and gut capacity of the prairie vole, Microtus ochrogaster[J]. Can. J. Zool.1997,75,1714-1719.
    [269]Li, X. S. and Wang, D. H. Regulation of body weight and thermogenesis in seasonally acclimatized Brandt's voles(Microtus brandti) [J].Horm. Behav.2005.48,321-328.
    [270]Karasov, W.H., Diamond, J.M.. Interplay between physiology and ecology in digestion[J]. BioScience,1988,38,602-611.
    [271]Owl, M.Y., Batzli, G.O., The integrated processing response of voles to fibre content of natural diets[J]. Fund. Ecol.1998.12,4-13.
    [272]Juana, C.V., Cristina, B., Alejandra, A.L.M.. Phenotypic plasticity in response to low quality diet in the South American omnivorous rodent Akodon azarae (Rodentia:Sigmodontinae) [J]. Comp. Biochem. Physiol.,2006,A145,397-405.
    [273]Mutze, G.J., Green, B and Newgrain, K. Water flux and energy use in wild house mice (Mus domesticus) and the impact of seasonal aridity on breeding and population levels[J]. Oecologia.1991.88,529-538.
    [274]Nagy, K..A. and Gruchacz, M.J. Seasonal water and energy metabolism of the desert welling kangaroo rat (Dipodomys merriami) [J]. Physiological Zoology,1994.67,1461-1478.
    [275]Hayes JP, Chappell MA. Effects of cold acclimation on maximum oxygen consumption during cold exposure and treadmill exercise in deer mice,Peromyscus maniculatus[J]. Physiol Zool, 1986.59:453-459.
    [276]Gettinger, R.D. Energy and water metabolism of freeranging pocket gophers, homomys bottaefJ]. Ecology 1984.65,740-751.
    [277]Nagy K. A., Girard I. A., and Brown T. K. Energetics of free-ranging mammals, Reptiles and birds[J]. Annu. Rev. Nutr,.1999.19:247~277
    [278]Weiner J. Physiological limits to sustainable energy budgets in birds and mammals:ecological implications [J].Trends EcolEvol,1992,7:384-388.
    [279]Kotejia P. Limits to the energy budget in a rodent, Percomys cusmaniculatus:The central limitation hypothesis[J].Physiol Zool,1996,69:981-993.
    [280]Williams, J. B. and Tieleman, B. I.. Flexibility in basal metabolic rate and evaporative water loss among hoopoe larks exposed to different environmental temperatures[J]. J. Exp. Biol.2000.203, 3153-3159.
    [281]Koteja. P. Maximum cold-induced food consumption in mice selected for high locomotor activity:implications for the evolution of endotherm[J]. Experimental Biology,2001.204: 117-1190.
    [282]Crocker D R, Prosser P, Irving P V, Bone P and Hart A. Estimating avian exposure to pesticides on arable crops[J]. Aspects of Applied Biology,2002.67:237-244.
    [283]Karasov W.H., Petrossian E., Rosenberg L. and Diamond M. How do food passage rate and assimilation differ between herbivorous Lizards and nonruminant mammals[J]? J Comp Physiol, 1985.B156:599~609.
    [284]Corp N, Gorman M L, Speakman J R. Daily energy expenditure of free-living male Wood Mice in different habitats and seasons[J]. Functional Ecology,1999.13 (5):1365-2435.
    [285]Anderson KJ, Allen AP, Gillooly JF, Brown JH, Temperature-dependence of biomass accumulation rates during secondary succession[J]. Ecology Letters,2006.9:673-682.
    [286]Terblanche JS, Janion C, Chown SL.Variation in scorpion metabolic rate and rate-temperature relation:implications for the fundamental equation of the metabolic theory of ecology [J]. Journal Compilation,2007,20:1602-1612.
    [287]Haim A, PA Racey, JR Speakman, GTH Ellison, JD Skinner.Seasonal acclinatization and thermoregulation in the pouched mouse Saccostomus campestris[J]. J Therm. Biol.1991.16 (1):13-17.
    [288]McDevitt R M, Speakman J R. Central limitsto sustainable metabolic rate have no rolein cold acclimation of the short-tailed field vole(Microtus agrestis) [J].McDevitt R M 1994.67:1117-1139.
    [289]Himms-Hagen.Brown adipose tissue and cold-acclimation. In:Trayhurn, P, and Nicholls D G eds[J]. Brown Adipose Tissue 1986.214-268.
    [290]李庆芬,李宁,孙儒泳.布氏田鼠对低温的适应性产热[J].兽类学报,1994.14(4):286-293.
    [291]Brand M D,Counture P, Else P L. Evolution of energy metabolism [J]. Biochem 1991.275:81-86.
    [292]Schmidt-Nielsen K.Scaling:Why is Animal Size so Important? [M]Cambridge University Press,,1984,214
    [293]Porter RK, Brand MD.Body mass dependence of H+ leak in mitochondria and its relevance to metabolic rate[J]. Nature,1993,362(6421):628-630.
    [294]Villarin JJ, Paul JS, Ronald A et al. Chronic cold exposure increases liver oxidative capacity in the marsupial Monodelphis domestica[J]. Comparative Biochemistry and Physiology 2004.136: 621-630
    [295]王政昆,刘璐,李庆芬等.倭蜂猴的产热及细胞呼吸特征[J].兽类学报,2000,20(1):13-18.
    [296]Zhang Y, Proenca R, Maffei M et al. Positional cloning of the mouse obese gene and it's human homologue [J]. Nature,1994,372:425-432
    [297]Trayhurn P, Hoggard N, Mercer J G et al.. Leptin:Fundamental aspects [J]. J Obesity, 1999.23:22-28.
    [298]Barash I A, Cheung, C C, Kuijper J L et al.. Leptin is a metabolic sigal to the reproductive system[J]. Endocrinology,1996.137:3144-3147.
    [299]Baskin, D.G., Lattemann, D.F., Seeley, R.J et al. Insulin and leptin:dual adiposity signals to the brain for the regulation of food intake and body weight[J]. Brain Res.1999.848,114-123.
    [300]Cheung C C, Thornton J E, Nuran S D et al. A reassessment of leptin's role in triggering the onset of puberty in the rat and mouse [J]. Neuroendocrinology,2001.74:12-21.
    [301]Schwartz M W, Woods S C, Porter D Jr et al.. Central nervous system control of food intake [J]. Nature,2000.404:661-671.
    [302]Flier, J. S. What's in a name? In search of leptin's physiological role[J].J. Clin. Endocrinol. Metab.1998.83,1407-1412.
    [303]张志强,刘全生,李纪元等.长爪沙鼠褐色脂肪组织和肝脏产热特征的季节性变化[J].动物学报2006.52(6):1034-1041.
    [304]Peino'R., V. Pineiro, O. Gualillo et al.. Cold exposure inhibits leptin secretion in vitro by a direct and non-specific action on adipose tissue[J]. Eur J Endocrinol 2000.142:195-199.
    [305]Trayhurn P; Duncan JS; Rayner DV. Acute cold-induced suppression of ob (obese) gene expression in white adipose tissue of mice:mediation by the sympathetic system[J]. Biochemical Journal,1995.1,311:729-33.
    [306]Zhi-Jun Zhao and De-Hua Wang. Effects of diet quality on energy budgets and thermogenesis in Brandt's voles[J]. Comparative Biochemistry and Physiology, Part A 2007.148.168-177.
    [307]Bocquier F, Bonnet M, Faulconnier Y et al. Effects of photoperiod and feeding level on perirenal adipose tissue metabolic activity and leptin synthesis in the ovariectomized ewe[J]. Reproduction, Nutrition, Development.1998.38.489-498.
    [308]Nieminen P, Hyvarinen H. Seasonality of leptin levels in the BATof the Common Shrew (Sorex araneus) [J]. Verlag der Zeitschrift fur Naturforschung,2000.55:455-460.
    [309]Morgan, P. J. and Mercer, J. G. The regulation of body weight:lessons from the seasonal animal[J]. Proc. Nutri Soc.2001.60,127-134.
    [310]Chilliard, Y., Delavaud, C., Bonnet, M. Leptin expression in ruminants:nutritional and physiological regulations in relation with energy metabolism. Domest[J]. Anim. Endocrinol.2005. 29,3-22.
    [311]Harris, R.B.. Leptin—much more than a satiety signal[J].. Ann. Rev. Nutr.,2000,20,45-75.
    [312]Trayhurn, P. Endocrine and signalling role of adipose tissue:new perspectives on fat[J]. Acta Physiol. Scand.2005.184,285-293.
    [313]Paivi Soppela, Seppo Saarela, Ulla Heiskari et al. The effects of wintertime undernutrition on plasma leptin and insulin levels in an arctic ruminant, the reindeer[J].Comparative Biochemistry and Physiology,2008.B149 613-621.
    [314]Friedman J M, Hallas J L. Leptin and the regulation of body weight in mammals[J]. Nature, 1998.395:763-770.
    [315]Nieminen P, Hyvarinen H. Seasonality of leptin levels in the BATof the Common Shrew (Sorex araneus) [J]. Verlag der Zeitschrift fur Naturforschung,2000.55:455-460.
    [316]Johnson, M.S., Onorato, D.P., Gower, B.A. et al. Weight change affects serum leptin and corticosterone in the collared lemming[J]. Gen. Comp.Endocrinol.2004.136,30-36.
    [317]Korhonen T, Saarela S. Role of adiposity hormones in the mouse during fasting and winter-acclimatization[J]. CompBiochem Physiol,2005.140(2):217-223.
    [318]Ahima RS, Prabakaran D,MantzorosC. Role of leptin in the neuroendocrine response to fasting. [J] Nature,1996.382:250-252
    [319]Considine R V, Caro J F. Leptin and the regulation of body weight[J]. Int J Biochem Cell Biol, 1997.29:1255-1272.
    [320]Trayhurn, P., Duncan, J.S., Hoggard, N et al. Regulation of leptin production:a dominant role for the sympathetic nervous system? [J] Proc. Nutr.Soc.1998.57,413-419.
    [321]Baskin,D G.,Lattemann,D F.,Seeley,R J. et al. Insulin and leptin:dual adiposity signals to the brain for the regulation of food intake and body weight[J]. Brain Res.1999.848,114-123.
    [322]Baskin, D.G., Blevins, J.E., Schwartz, M.W. How the brain regulates food intake and body weight:the role of leptin[J]. J. Pediatr. Endocrinol. Metab.2001.14,1417-1429.
    [323]Rayner DV, Trayhurn P. Regulation of leptin production:sympathetic nervous system interactions[J]. J. Mol. Med.,2001,79 (1):8-20.
    [324]Scarpace PJ, Matheny M, Pollock BH et al. Leptin increases uncoupling protein expression and energy expenditure [J]. Am. J. Physiol.1997.273:E226-E230.
    [325]Demas GE, Bowers RR, Bartness TJ et al. Photoperiod regulation of gene expression in brown adipose tissue of Siberian hamsters Phodopus sungorus[J]. Am J Physiol.2002.282:R114-R121.
    [331]Naya D.E., M.A. Lardies, and F. Bozinovic. The effect of diet quality in physiological and life-history traits in the harvestman Pachylus paessleri[J]. J Insect Physiol 2007.53:132-138.
    [332]Karasov W H and I D Hume. Vertebrate gastrointestinal system. [M] American Physiological Society, Bethesda, Maryland, USA. In:Dantzler W (ed) Handbook of comparative physiology:1997.409-480.
    [333]Caughley, G. and A. R. E. Sinclair. Wildlife Ecology and Management. [M] Blackwell Scientific Publications, Boston,1994.334.
    [334]Veloso C. and F. Bozinovic. Dietary and digestive constraints on basal energy metabolism in a small herbivorous rodent[J]. Ecology 1993.74:2003-2010.
    [335]Hammond K.A. and D.M. Kristan. Responses to lactation and cold exposure by deer mice (Peromyscus maniculatus) [J].Physiol Biochem Zool 2000.73:547-556.
    [336]Naya D.E., W.H. Karasov, and F. Bozinovic. Phenotypic plasiticity in laboratory mice and rats:a meta-analysis of current ideas on gut size flexibility [J]. Evol Ecol Res 2007.9:1363-1374.
    [337]Daniel E. Nayal, Luis A. et al. Digestive and Metabolic Flexibility Allows Female Degus to Cope with Lactation Costs[J]. Physiological and Biochemical Zoology,2008.81(2):186-194.
    [338]Himms-Hagen J. Brown adipose tissue thermogenesis and obesity[J]. Progress in Lipid Research.,1989.28:67-115.
    [339]Foster D.O., Frydman M.L. Nonshivering thermogenesis of the rat. Ⅱ. Measuremnts of blood flow with microspheres point to brown adipose tissue as the dominant site of the calorigenesis induced by noradenaline[J]. Can. J. Physiol. Pharmacol.,1978.56:110-122.
    [340]Brand M.D.he contribution of the leak of proton across the mitochondrial inner membrane to standard metabolic rate[J]. J.Theor.Biol.1990.145:267-286.
    [341]Liverini G., Goglia F., Lanni A et al. Elevated hepatic mitochondrial oxidative capacities in cold exposed rats[J]. Comp. Biochem. Physiol.1990.97B(2):327-331
    [342]Ricquier D., Bouillaud F., Toumelin P. et al. Expression of uncoupling protein mRNA in thermogenic or weakly thermogenic brown adipose tissue[J]. The Journal of Biochemical Chemstry.1986.261(30):13905-13910.
    [343]Sabine F., Jonhannes R. Effect of acclimation temperature on the concentration of uncoupling protein and GDP binding in rat brown fat mitochondria[J]. Eur. J. Biochem.,1994.219:681-690.
    [344]Carmona M.C., Valmaseda A., Brun S. et al. Differential regulation of uncoupling protein-2 and uncoupling protein-3 gene expression in brown adipose tissue during development and cold exposure[J]. Biochemical Biophysical Research Communication.1998.243:224-228.
    [345]Robinson E.L., Fuller C.A. Endogenous thermoregulatory rhythms of squirrel monkeys in thermoneutrality and cold[J]. Am. J.Physiol.19992.276(Regulatory Intergrative Comp. Physiol.45): R1397-R1407.
    [346]Jessen, C. Temperature Regulation in Humans and Other Mammals. Springer Verlag, [M].Berlin, Heidelberg and New York.2001.
    [347]Goyal, S. P., and P. K. Gosh. Body weight exponents of metabolic rate and minimal thermal conductance in burrowing desert rodents[J]. J. Arid Environ.1983.6:43-52.
    [348]Mac Millen, R. E, and T. Garland, Jr. Adaptive physiology. in G. L. Kirkland and J. N. Layne, ed. Advances in the study of Peromyscus (Rodentia) [M]. Texas Tech Univ. Press, Lubbock, TX. 1989.143-168
    [349]Speakman, J. R. The cost of living:field metabolic rates of small mammals in A. H. Fisher and D. G. Raffaelli, eds. Advances in ecological research. Academic Press, [M], San Diego, CA.2000. 178-294
    [350]Hayssen V. Lacy C. Basal metabolic rates in mammals:taxonomic differences in the allometry of BMR and body mass [J]. Comp Biochem Physiol,1985.81 A:741-751.
    [351]Konrzewski M., Diamond J. Evolution of basal metabolic rate and organ masses in laboratory mice [J]. Evolution,1995.49:1239-1248
    [352]McNab B. K. A statistical analysis of mammalian rates of metabolism[J]. Funct. Ecol. 1992.6:672-679.
    [353]Dawson T. J., and A. J. Hulbert. Standard metabolism, body temperature, and surface areas of Australian marsupials[J]. Am. J. Physiol.1970.218:1233-1238.
    [354]Else P. L., Hulbert A. J. Mammals:an allometric study of metabolism at tissue and mitochondrial level [J].Am. Physiol.,1985.248:415-421
    [355]Veloso C., Bozinovic F. Dietary and digestive constraints on basal energy metabolism in a small herbivorous rodent [J]. Ecology,1993.74:2003-2010.
    [356]Cork S.J. Digestive constraints on dietary scope in small and moderately-small mammals:how much do we really understand? [M]. in D.J. Chivers and P. Langer, eds.1994.337-369.
    [357]Silva S.I., F.M. Jaksic, and F. Bozinovic. Interplay between metabolic rate and diet quality in the South American fox, Pseudalopex culpaeus [J].. Comp Biochem Physiol A 2004.137:33-38.
    [358]Kersten, M., Bruinzeel, L. W., Wiersma et al. Reduced basal metabolic rate of migratory waders wintering in coastal Africa[J]. Ardea,1998.86,71-80.
    [359]Kvist, A. and Lindstrom, A. Basal metabolic rate in migratory waders:intra-individual, intraspecific, interspecific and seasonal variation[J].Funct. Ecol.2001.15,465-473.
    [360]Broggi, J., Orell, M., Hohtola, E et al. Metabolic response to temperature variation in the great tit: an interpopulation comparison [J]. J. Anim. Ecol.2004.73,967-972.
    [361]Blaxter K. Energy metabolism in animal and man [M]. New York:Cambridge University Press, 1989.110-143
    [362]鲍伟东.王德华.王祖望等.鄂尔多斯高原三趾跳鼠静止代谢率的季节变化[J].动物学报,2000.46:146-153
    [363]王德华.王祖望.高寒与干旱环境小型兽适应环境的生理生态特征比较[A].中国兽类生物学研究[C].北京:林业出版社,1995.151-160
    [364]McLean J. A., Speakman J. R. Effects of body mass and reproduction on the basal metabolic rate of brown long-eared bats [J]. Physiol. Biochem. Zool.,2000.73:112-121
    [365]Hulbert A. J., Else P. L. Evolution of mammalian endothermic metabolism:mitochondrial activity and cell composition [J]. Am. J. Physiol.,1989.256:R63-R69
    [366]Koteja P., and J. Weiner. Mice, voles and hamsters:metabolic rates and adaptive strategies in muroid rodents[J]. Oikos,1993.66:505-514.
    [367]Chappell, M. A., Bech, C. and Buttemer, W. A. The relationship of central and peripheral organ masses to aerobic performance variation in house sparrows[J]. J. Exp. Biol.1999.202,2269-2279.
    [368]Vezina, F. and Williams, T. D. Plasticity in body composition in breeding birds:what drives the metabolic costs of egg production? [J] Physiol.Biochem. Zool.2003.76,716-730.
    [369]Zhi-Gang Song, De-Hua Wang. Basal metabolic rate and organ size in Brandt's voles (Lasiopodomys brandtii):Effects of photoperiod, temperature and diet quality [J]. Physiology and Behavior,2006.89:704-710.
    [370]Francoic,G, Pattanaik,S., Bouatouch, K. et al. Subsurface texture mapping. [M] In SIGGRAPH Sketches'06,2006.172.
    [371]Swanson, D.L.1991. Substrate metabolism under cold stress in seasonally acclimatized dark eyed juncos[J]. Physiological Zoology 64:1578-1592.
    [372]Villarin, J. J., Schaeffer, P. J., Markle et al. Chronic cold exposure increases liver oxidative capacity in the marsupial Monodelphis domestica[J]. Comp. Biochem. Physiol..2003.136A,621-630.
    [373]Bobyleva V., Pazienza L., Muscatello U. et al..:Short-term hypothermia activates hepatic mitochondrial sn-glycerol-3-phosphate dehydrogenase and thermogenic systems[J]. Arch. Biochem. Biophys.2000.380,367-372.
    [374]Swanson, D. L. Seasonal metabolic variation in birds:functional and mechanistic correlates[J]. Curr. Ornithol.2006.108:140-153.
    [375]Swanson, D.L. and E.T. Liknes. A comparative analysis of thermogenic capacity and cold tolerance in small birds[J]. Journal of Experimental Biology,2006.209:466-474.
    [376]Hayes J. P., Chappell M. A. Individual consistency of maximal oxygen consumption in deer mice [J]. Funct. Ecol.,1990.4:495-503.
    [377]Wikelski M., Ricklefs R. E. The physiology of life histories[J]. TREE,2001.16(9):479-481.
    [378]Hinds D. S., Baudinette R. V., Mac Millen R. E. et al. Maximum metabolism and the aerobic factorial scope of endotherms[J]. J. Exp. Biol.,1993.182:41-56.
    [379]Cannon, B., Nedergaard, J. Brown adipose tissue:function and physiological significancefJ]. Physiol. Rev.2004.84(1),277-359.
    [380]Weible E. R., Taylor C. R., Hoppler H et al. Adaptive variation in the mammalian respiratory system in relation to energetic demand:I. Introduction to problem and strategy [J]. Respir. Physiol.,1987.69:1-6.
    [381]Bencowitz H. Z., Wagner P. D., West J. B. Effect of change in P50 on exercise tolerance at high altitude:a theoretical study [J]. J. Appl. Physiol.,1982.53:1487-1495.
    [382]Chappell M. A., Snyder L. R. G. Biochemical and physiological correlates of deer mice alpha-chain hemoglobin polymorphisms [J]. Proc. Natl. Acad. Sci. USA,1984.81:5484-5488.
    [383]Koteja P. On the relation between basal and maximum metabolic rate in mammals [J]. Comp. Biochem. Physiol.,1987.87 A:205-208.
    [384]王玉山.王祖望.王德华等.哺乳动物最大代谢率的研究进展[J].兽类学报,2002.22(3):305-317.
    [385]Bozinovic, and. Martinez del RI'O. Animals eat what they should not:why do they reject our foraging models? [J] Revista Chilena de Historia Natural,1996.69:15-20.
    [386]McNab B. K. Food habits, energetics and population biology of mammals [J]. American naturalist,1980.116:106-124.
    [387]Felsenstein J. Phylogenies and the comparative method [J]. Am. Nat.,1985.125:1-15.
    [388]Bennett A. F. The evolution of activity capacity [J]. J. Exp. Biol.,1991.160:1-23.
    [389]张启元等.现代生物学实验技术[M],北京:北京师范大学出版社,1992.89~96.
    [390]Rolfe D. F., G.C. Brown.Cellular energy utilization and molecular origin of standard metabolic rate in mammals[J]. Physiol. Rev,1997.77:731—758
    [391]Rolfe D. F., J.M.B.Newman,J.A.Buckingham,et al. Contribution of mitochondrial proton leak to respiration rate in working skeletal musle and liver and to SMR[J].Am.J.Physol,1999.276(3): C692~C699.
    [392]Brand-Saberi, B., Floel, H., Christ, B. et al.. Alterations of the fetal extracellular matrix in the nuchal edema of Down's syndrome[J]. Ann. Anat.,1994.176,539-547.
    [393]王政昆,我国热带亚热带小型兽类适应性产热及对策的比较研究[D],北京师范大学博士学位论文.1996.
    [394]Bockler H., Steinlechner S., Heldmaier G. Complete cold substitution of norepinephrine induced thermogenesis in the Djungarian hamster(Phodopus sungoruns) [J]. Experientia,1982. 38:261-262.
    [395]Heldmaier G., Bockler H., Buchberger A et al. Seasonal acclimation and thermogenesis [A]. In: Gilles Red. Circulation, respiration and metabolism [C]. Berlin and Heidelberg:Springer-Ver lag, 1985.490-501.
    [396]Wauters M, Considine RV, Iuc Gaal F V. Human Leptin:froman adipocyte hormone to an endocrine mediator.[J].EurJEndocrinol,2000.143:293-311.
    [397]Campfield L A,Smith F G, Guisez Y, et al. Recombinat mouse OBprotein:Evidence for a peripheral signallinking adiposity and central neural net works.[]].Science,1995.269:546-549.
    [398]Nieminen P,Hyvarinen H,Seasonality of Leptin levels in the BAT of the Common Shrews (Sorex araneus)[J].Verlag der Zeitschriftfur naturforschung,2003,55:455-460.
    [399]Landt M, Gingerich R L, Havel P J et al. Radioimmunoassary of rat leptin:Sexual dimorphism reversed from humans [J]. Clin Chem,1998,44(3):565-570.
    [400]Cunningham MJ, Clifton D K, Steiner R A. Leptin actions on the reproductive axis Perspectives and mechanisms [J]. Biol Reprod,1999,60:216-222.
    [401]Apter D, Butzow TL, Laughlin GA et al. Gonadotropin-releas-ing hormone pulse generator activity during pubertal transition in girls:pulsatile and diurnal patterns of circulating gonadotropins [J].J Clin Endocrinol Metab,1993,76:940-949.
    [402]Xue-Ying Zhang, De-Hua Wang. Different physiological roles of serum leptin in the regulation of energy intake and thermogenesis between pregnancy and lactation in primiparous Brandt's voles(Lasiopodomys brandtii) [J]. Comparative Biochemistry and Physiology.2008.
    [403]Butte N.F.,Hopkinson J.M.,Nicolson, M.A., Leptin in human reproduction:serum leptin levels in pregnant and lactating women[J]. J. Clin. Endocrinol. Metabol.1997.82,585-589.
    [404]Hardie, L., Trayhurn, P., Abramovich et al. Circulating leptin in women:a longitudinal study in the menstrual cycle and during pregnancy [J]. Clin. Endocrinol. (Oxf) 1997.47,101-106.
    [405]Stock, S.M., Bremme, K.A. Elevation of plasma leptin levels during pregnancy in normal and diabetic women[J]. Metabolism,1998.47,840-843.
    [406]Ehrhardt, R.A., Slepetis, R.M., Bell, A.W et al. Maternal leptin is elevated during pregnancy in sheep. Domest[J]. Anim. Endocrinol.2001.21,85-96..
    [407]Widmaier, E.P., Long, J., Cadigan, B et al. Leptin, corticotropin-releasing hormone (CRH), and neuropeptide Y (NPY) in free-ranging pregnant bats[J]. Endocrine 1997.7,145-150.
    [408]Gavrilova,O.,Barr,V.,Marcus-Samuels et al. Hyperleptinemia of pregnancy associated with the appearance of a circulating form of the leptin recepto[J]. J. Biol. Chem.1997.272,30546-30551.
    [409]Amico,J A., Thomas, A., Crowley, R.S. et al., Concentrations of leptin in the serum of pregnant, lactating, and cycling rats and of leptin messenger ribonucleic acid in rat placental tissue[J]. Life Sci.1998.63,1387-1395.
    [410]Szczepankiewicz, D., Wojciechowicz, T., Kaczmarek, P. et al. Leptin and its receptors in the course of pregnancy in the rat[J]. Int. J. Mol. Med.2006.17,95-99.
    [411]Woodside, B., Abizaid, A., Walker, C., Changes in leptin levels during lactation:implications for lactational hyperphagia and anovulation[J]. Horm. Behav.2000.37,353-365.
    [412]Mistry, A.M., Romsos, D.R. Intracerebroventricular leptin administration reduces food intake in pregnant and lactating mice[J]. Exp. Biol. Med.2002.227,616-619.
    [413]Stocker, C.J., Wargent, E., O'Dowd, J et al. Prevention of diet-induced obesity and impaired glucose tolerance in rats following administration of leptin to their mothers[J]. Am. J. Physiol. 2007.282, R1810-1818.
    [414]Marie M, Findlay P A, Thomas L et al.. Daily patterns of plasma leptin in sheep:Effects of photoperiod and food intake [J].J Endocrinol,2001,170:277-286.
    [415]Lin L, Martin R, Schaffhauser A O et al.. Acute changes in the response to peripheral leptin with alteration in the diet composition [J]. Am J Physiol,2001,280:R504-R509.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700