紫外诱变纤维素分解菌降解木薯渣的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木薯渣易造成环境污染,加之粗纤维含量过多,不利于动物消化利用。为了解决这一问题,通过微生物降解木薯渣,使其纤维素含量降低、还原糖含量增高,并对混菌发酵产菌体蛋白进行了初步探讨。
     本研究以实验室保藏的黑曲霉作为原始菌株,通过在纤维素培养基上富集培养,经紫外线辐射诱变,确定最适诱变条件为:用30 W紫外灯,垂直距离30 cm,辐射时间为3 min,得到一株高产纤维素酶的突变菌株GL-1,其降解纤维素产还原糖量403.57 mg/g,为出发菌株的1.33倍。
     为了进一步提高目的菌株对木薯渣的降解率,增加其还原糖含量,对黑曲霉GL-1发酵工艺进行研究。采用Plackett-Burman试验筛选对发酵影响显著的因素:固态发酵为初始pH、温度、培养基含水量;液态发酵为pH、发酵温度、含氮量。分别对其进行单因素试验以确定适当的水平。固态发酵采用响应面试验(中心点试验N = 5)确定最优工艺条件为:初始pH 7.5、温度35℃、培养基含水量4 mL/g;液态发酵采用L9(33)正交试验,确定最优工艺条件为:pH 8、发酵温度30℃、含氮量0.5%。最优条件下各发酵3 d,测得其还原糖含量分别为435.7 mg/g和395.6 mg/mL,对比试验结果可知固态发酵较液态发酵效果好。
     发酵所产还原糖提纯后通过高效液相色谱分析得出其中含有2.61%鼠李糖、50.28%葡萄糖、25.37%果糖、2.57%蔗糖和1.85%麦芽糖。
     对固态发酵产物的常规分析表明木薯渣经黑曲霉GL-1降解后,其粗纤维含量变化影响很大,与未发酵木薯渣相比其中粗纤维含量由15.46%降至8.47%。
     为提高发酵产物蛋白含量,研究了黑曲霉GL-1与酵母菌的拮抗关系,结果表明两种菌之间不存在拮抗。混菌接种量为7%~12%,25℃~35℃固态发酵4 d,考马斯亮蓝法测其蛋白含量为12.18%,相比原料提高了10.25%。
     混菌发酵产物进行氰化物定性检测,未检出氰化物。
Cassava residue can easily lead to environmental pollution, it is not conducive animal digestion for its too much crude fiber content. In order to solve the problm, the biological degradation on cassava residue is used, and the result of it is the decrease of cellulose content and the increase of reducing sugar content. And the production of cell protein by mixed fermentation was simply discussed in this study.
     Aspergillus niger was selected as the initial strain for breeding cellulase-producing mutants. A mutant strain, GL-1 was obtained through mutagenization with ultraviolet(UV). The optimal mutation conditions were illumination with 30 W UV lamp for 3 minutes at a vertical distance of 30 cm. The reducing sugar content of this high-yield strain reached 403.57 mg/g, which was 1.33 times of that of initial strain.
     To further enhance the objective strain on the degradation of cassava and increase the content of its reducing sugar, the fermentation conditions of Aspergillus niger GL-1 were studied. And through Plackett-Burman single-factor test screening significant factors on the fermentation: solid state fermentation are the initial pH of fermentation, fermentation temperature, the content of water, liquid state fermentation are pH, fermentation temperature, the content of nitrogen. The appropriate level was determined by single-factor test. Solid state fermentation, via the response surface test, the optimum fermentation conditions were as follows: the initial pH 6.52, 35℃, water content 4 mL/g; Solid state fermentation, through orthogonal experiment, the optimum fermentation conditions were as follows: the initial pH was 8, the fermentation temperature was 30℃, the content of nitrogen was 0.5%. Under optimal conditions the fermentation was 3 d. The content of reducing sugar were 435.7 mg/g and 395.6 mg/mL, respectly. The results of experiment showed that solid state fermentation was better than liquid state fermentation.
     The result of HPLC analysis of oligosaccharide composition.The fermentation product includes 2.61% rhamnose, 50.28% glucose, 25.37% fructose, 2.57% sucrose and 1.85% maltose.
     The conventional analysis to product of solid state fermentation showed that the dual fermentation create a great change of crude fiber content in cassava residue. And compared to non-fermented cassava residue, the fermentation product decrease crude fiber from 15.46 percent to 8.47 percent.
     The antagonistic test showed that there was no antagonism between the Aspergillus niger GL-1 and the yeast. Mixed bacterial inoculum was 7%~12%, 25℃~35℃solid-state fermentated 4 d, then the protein content was 12.18 % which was tested by coomassie brilliant blue method, increased than raw materials by 10.25%.
     Through the cyanide test, there was no cyanide in the fermentation product.
引文
[1]中国热带农业学院,华南热带大学主编.中国热带栽培学[M]。北京:中国农业出版社. 1995, 15-60
    [2]罗培敏.我国木薯现状分析与发展研究[J].耕作与栽培, 2002, (3): 51-52
    [3]陈桂光,庞宗文,梁慧娟.木薯渣生料发酵生产单细胞蛋白的研究[J].粮食与饲料工业, 1997, 6
    [4]胡忠泽,刘雪峰.木薯渣饲用价值研究[J].安徽技术师范学院学报, 2002, 16(4): 4-6
    [5]饲料手册(上册)[M]。北京:北京科技出版社, 1984, 11-43
    [6]白元生主编.饲料原料学[M]。北京:中国农业出版社. 1992, 20-67
    [7]郝静,刘刚,左福元.木薯渣的饲用价值及应用[J].饲料研究, 2007, (11): 22-23
    [8]杨凤.动物营养学[M]。北京:中国农业出版社, 2001, 17-22
    [9]陈桂光,苗兴泉.木薯渣生料发酵生产单细胞蛋白的研究[J].粮食与饲料工业, 1997, (6): 23
    [10]汤燕花,谢必峰.利用木薯渣发酵生产啤酒酵母单细胞蛋白的研究[J].药物生物技术, 13(1): 51-54
    [11]劳有德,韦文添,岑志坚.木薯皮发酵料栽培杏鲍菇技术[J].食用菌, 2003, (5): 22-23
    [12]何建明.木薯渣生料栽培平菇技术[J].食用菌, 2002, (4): 23
    [13]苏启苞.木薯杆(渣)栽培黑木耳关键技术[J].食用菌, 2008, (3): 36-37
    [14]洪葵,刘四新,雷雄飞,等.木薯渣发酵柠檬酸研究初报[J].热带作物研究, 1996, (1): 23-25
    [15] Hong Kui, Ma Yan, Li Meiqiu. Solid-State Fermentation of Phytase from Cassava Dregs[J]. Applied Biochemistry and Biotechnology, 2001, 91-93: 777-785
    [16]王宇飞,田小杰,张钰爽,等.木薯发酵制备酒精后剩余残渣的利用[J].广东化工, 2008, 35(12): 78-81
    [17]马静静,王小芬,程序,等.乳酸发酵使木薯淀粉残渣饲料化研究[J].农业工程学报, 2008, 24(6): 267-272
    [18] R. Saifutdinov.Degree of polymerization and polydispersity of cellulose obtained from cyclone fluff by the oxygensoda method[J]. Chemistry of Natural Compounds, 1998, (34): 331-333
    [19] Zhou Xuguo, Smith Joseph A, Oi Faith M, et al. Correlation of cellulase gene expression and cellulolytic activity throughout the gut of the termiteReticulitermes flavipes[J]. Gene, 2007, 395(1-2): 29-39
    [20]刘翔,何国庆.利用木素纤维素生产燃料乙醇的微生物代谢工程[J].粮油加工与食品机械, 2003, (8): 67-69
    [21]史玉英,沈其荣,娄无忌,等.纤维素分解菌群的分离和筛选[J].南京农业大学学报, 1996, 19(3) :59-62
    [22]宋颖琦,杨谦.纤维素降解菌的筛选及其降解特征的研究[J].哈尔滨工业大学学报, 2002, 34(2): 197-199
    [23]刘倩,宋金柱,宋颖琦,等.影响玉米秸秆微生物降解制肥的因素浅析[J].环境卫生工程, 2002, 10(3): 103-106
    [24]金钟跃,包怡红,王振宇,等.植物纤维素微生物降解条件[J].东北林业大学学报, 2004, 32(3): 44-45
    [25] Andrew J. Bowling, Yoshihiko Amano, Robert Lindstrom, et al. Rotation of Cellulose Ribbons During Degradation with Fungal Cellulase[J]. Cellulose, 2001, (8): 91-97
    [26]王巧兰,郭刚,林范学.纤维素酶研究综述[J].湖北农业科学, 2004, (3):14-19
    [27] Li Li, Jurgen F, Peter P, et al. Termite gut symbiotic arehaezoa are becoming living metabolic fossils[J]. Eukaryotic Cell, 2003, 2(5): 1091-1098
    [28]李琼芳,刘明学,徐志鹏,等.纤维素分解菌的分离及产酶条件研究[J].安徽农业科学, 2008, 36(18): 7518-7520
    [29]赵小蓉,林启美.纤维素分解菌对不同纤维素类物质的分解作用[J].微生物学杂志, 2000, 9( 3): 12-14
    [30]史央.秸秆降解的微生物学机理研究及应用发展纤维素分解菌的分离及产酶条件研究[J].微生物学杂志, 2002, 22(1): 47-50
    [31]魏亚琴,李红玉.纤维素酶高产菌选育研究进展及未来趋势[J].兰州大学学报(自然科学版), 2008, 44(1): 107-114
    [32]席北斗,刘洪亮,白庆中,等.堆肥纤维素和木质素生物降解研究现状[J].环境污染治理技术与设备, 2002, 3(3): 19-23
    [33]齐云,陈飞,袁月祥,等.一株能分解纤维素的高温耐碱放线菌[J].应用与环境生物学报, 2003, 9(3): 322-325
    [34]刘小杰,陶飞,童纪峰.黑曲霉ZJ1摇瓶发酵产β-葡萄糖苷酶的研究[J].中国饲料添加剂, 2004, (3): 27-31
    [35]郭鲁宏,杨顺楷.黑曲霉产生的酶类及其应用[J].天然产物研究与开发, 1998, 10(4): 87-93
    [36]刘洁丽,王靖.生物产纤维素酶研究进展[J].化学与生物工程, 2008, 25(12): 9-12
    [37]吴斌,胡肄珍.产纤维素酶放线菌的研究进展[J].中国酿造, 2008, (1): 5-8
    [38]杨柳,魏兆军,朱武军,等.产纤维素酶菌株的分离、鉴定及其酶学性质研究[J].微生物学杂志, 2008, 28(4): 65-69
    [39]曾青兰.纤维素降解细菌的分离鉴定和筛选方法的研究[J].安徽农业科学, 2008, 36(24): 10309-10310
    [40]刘海波,王义强,陈介南,等.一株高产纤维素酶菌的筛选与鉴定[J].生物学杂志, 2008, 25(3): 16-20
    [41]马旭光,张宗舟,蔺海明,等.黑曲霉产高酶活纤维素酶突变株ZM-8的筛选[J].饲料工业, 2006, 27(24): 11-13
    [42]刘春芬,贺稚非.纤维素酶高产菌株的诱变选育[J].中国酿造, 2008, (5): 29-33
    [43]张海生,陈德兆,黄利利,等.纺织用纤维素酶高产菌种的选育、固态发酵及其应用[J].印染助剂, 2004, 21(3): 39-40
    [44]王靖,刘洁丽.木质纤维素降解菌及其降解途径研究进展[J].生物产业技术, 2008, (3): 87-90
    [45] Lenting H B M, Warmoeskerken M M C G.. Mechanism of interaction between cellulase action and applied shear force, an hypothesis[J]. Journal of Biotechnology, 2001, 89(2-3): 217-226
    [46] Wheeler Marsha M, Zhou Xuguo, Scharf Michael E, et al. Molecular and biochemical markers for monitoring dynamic shifts of cellulolytic protozoa inReticulitermes flavipes[J]. Insect Biochemistry and Molecular Biology, 2007, 37(12): 1366-1374
    [47]刘洁丽,王靖.生物产纤维素酶研究进展[J].化学与生物工程, 2008, 25(12): 9-12
    [48] Henrissat B, Bairoch A. Updating the sequence-based classfication of glycosyl hydrolases[J]. Biochem J, 1996, (316): 695-706
    [49] Henrissat B, Coutinho P M. Classification of glycoside hydrolases and glycosyl transferases from hyperthermophiles[J]. Methods Enzymol, 2001, (330): 183-201
    [50]李西腾.纤维素酶及其在发酵食品中的应用[J].江苏调味副食品, 2009, 26(4): 33-36
    [51]潘穗华,陈颖俊,蒋宗勇,等.木薯配合饲料生产工艺研究[J].饲料工业, 1993, (4): 25-27
    [52]潘穗华,陈颖俊,刘汉林,等.木薯渣在肉用鸭日粮中的应用[J].饲料博览, 1993 , (4): 28-29
    [53]陈颖俊,梁琳,苏基双,等.黄羽肉鸡色氨酸需求参数的研究[J].动物营养学报, 1998, 10(3): 61
    [54]蔡永权,杨文巧.青贮木薯渣饲喂杂交牛增质量试验[J].广东畜牧兽医科技, 2007, 32 (1): 52-53
    [55] Ashok Pandey, Soccol C R, Mitchell D. New developments in solid state fermentation: I- bioprocesses and products[J]. Process Biochemistry, 2000, 35: 1153-1169
    [56] Ravindra A P. Value-added food:Single cell protein[J]. Biotechnology Advances, 2000, 18(6): 459-479.
    [57]卢向阳,饶力群,彭丽莎,等.酒糟单细胞蛋白饲料生产技术研究[J].湖南农业大学学报, 2001, 27(4): 317-320
    [58]汤燕花,谢必峰.利用木薯渣发酵生产啤酒酵母单细胞蛋白的研究[J].药物生物技术, 2006, 13(1): 51-54
    [59]陈桂光,庞宗文,梁静娟.木薯渣生料发酵生产单细胞蛋白的研究[J].粮食与饲料工业, 1997, (6): 23-24
    [60]刘琨,赖翠华,童张法.工业糖化酶固体发酵木薯渣制取单细胞蛋白饲料的研究[J].高校化学工程学报, 2007, 21(4): 720-724
    [61]管军军,张同斌,崔九红,等.木薯渣生产菌体蛋白的研究[J].安徽农业科学, 2008, 36(22): 9556-9558
    [62]林捷,谭兆赞.利用木薯渣进行纤维素分解菌混合发酵工艺研究[J].安全与环境学报, 2005, 5(6): 26-29
    [63]廖善秋,樊幼民.以木薯渣、黄浆为原料生产酒精技术经济评价[J].广西大学学报, 1997, 22(3): 230-234
    [64]张宇昊,张伟,李长文.一种改进的纤维素分解菌鉴别培养基[J].纤维素科学与技术, 2004, 12(1): 33-36
    [65]禹惠,徐有良,林勇,等.黑曲霉固态发酵生产木聚糖酶条件研究[J].中国饲料, 2002, 15: 17-18
    [66]王晓芳.产纤维素酶的真菌筛选与纤维素酶的诱导及其理化性质研究: [硕士学位论文]。南京:南京师范大学, 2002
    [67]管斌,丁友昉,谢来苏.还原糖测定方法的规范[J].无锡轻工业大学学报, 1999, 18(3): 74-79
    [68]叶生梅,薛正莲,王岚岚.纤维素酶产生菌的筛选及其固态发酵初步研究[J].安徽理工大学学报(自然科学版), 2003, 23(1): 57-59
    [69]林英,秦萍,杜志强,等.产纤维素酶绿色木霉F-UV264产酶条件优化[J].安徽农业科学, 2006, 34(11): 2312-2314
    [70]季更生,林弦,曹阳,等. pH值对绿色木霉合成纤维素酶的影响.安徽农业科学, 2007, 35(27): 8593-8594
    [71]兰时乐,陈娴,李慧,等.产纤维素酶菌种TP1202的选育及产酶条件优化研究[J].生物技术, 2003, 13(2): 12-13
    [72]王菁莎,王颉,刘景彬.康宁木霉固态发酵秸秆生产纤维素酶的研究[J].纤维素科学与技术, 2005, 13(4): 26-31
    [73] M. Latifian, Z. H. Esfahani, M. Barzegar. Evaluation of culture conditions for cellulase production by two Trichoderma reesei mutants under solid-state fermentation conditions[J]. Bioresource Technology, 2007, 18(98): 3634-3637
    [74] Xia L, Cen P. Cellulase production by solid state fermentation on lignocellulosic waste from the xylose industry[J]. Proc. Biochem, 1999, 34: 909-912
    [75] Panagiotou G., Kekos D, Macris B J, et al. Production of cellulytic and xylanolytic enzymes by Fusarium oxysporum grown on corn stover in solid state fermentation[J]. Ind. Crops Products, 2003, 18: 37-45
    [76] Juhasz T, Szengyel Z, Szijarto N, et al. The effect of pH on the cellulase production of Trichoderma reseei RUT C-30[J]. Appl. Biochem. Biotechnol, 2004, 113-116: 201-211
    [77] X. Liming , S. Xueliang. High-yield cellulase production by Trichoderma reseei ZU-02 on corn cob residue[J]. Bioresource Technol, 2004, 91: 259-262
    [78] B.O. Solomon, B.O. Amigun, E. Betiku, et al. Optimization of cellulase production by Aspergillus flavus Linn isolate NSPR 101 grown on bagasse[J]. JNSChE, 2000, 16: 61-68
    [79]龙芳羽.鹅源纤维素分解菌固态发酵秸秆工艺的研究: [硕士学位论文]。青岛:青岛农业大学, 2007
    [80]周德庆.微生物学教程(第二版)[M].北京:高等教育出版社, 2002, 84-175
    [81]白洪志,杨谦,宋金柱.纤维素降解菌绿色木霉C-08产酶条件研究[J].哈尔滨工业大学学报, 2008, 40(7): 1111-1115
    [82]林英,秦萍,杜志强.产纤维素酶绿色木霉F-UV264产酶条件优化.安徽农业科学, 2006, 34(11): 2312-2314
    [83]杨静.甜高粱秸秆纤维素分解菌株筛选及产酶性能的分析: [硕士学位论文]。沈阳:沈阳农业大学, 2002
    [84] A.G LA, N.M S, M.K A, et al. Response surface optimization of conditions for clarification of carambola fruit juice using a commercial enzyme[J]. Journal of Food Engineering, 2007, 81(1): 65-71
    [85]应芝,励建荣.响应面分析法优化桑叶多糖提取工艺的研究[J].中国食品学报, 2008, 8(4): 39-45
    [86]李硕,赵春芳.响应面分析法优化7’-Br-脱水长春碱合成工艺[J].化工进展, 2007, 26(l0): 1470-1474
    [87]杨超英,陶玉贵,许先卢,等.响应面法优化苏云金杆菌固态发酵培养基[J].中国农学通报, 2008, 7(24): 60-66
    [88]梁霆,王遂,莫志忠,等.纤维素酶液体深层发酵条件的研究[J].生物技术, 1997, 7(6): 22-26
    [89]谢宇,赵金生,尚晓娴.黑曲霉No.5.1纤维素酶液体发酵培养基研究[J].江西农业大学学报, 2008, 30(1): 127-130
    [90]韩艳霞,陈太政,侯彦喜,等.小麦全蚀病拮抗微生物的分离及其拮抗性能研究[J].河南农业科学, 2007, (8): 60-63
    [91]齐慧玲,魏绍云. Sevage法去除白及多糖中蛋白的研究[J].天津化工, 2000, 3: 20-21
    [92]郑集,陈钧辉.普通生物化学[M]。北京:高等教育出版社, 1998: 18

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700