全固态高功率Nd:YAG激光器及其二次与四次谐波产生的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与传统的激光器相比,激光二极管(LD)泵浦的全固态激光器具有重量轻、效率高、结构紧凑、光束质量高、使用寿命长、维护费用低廉等一系列优点使其逐步替代气体、染料等激光器而在军事、工业、医疗、科研以及通讯等领域有着广泛的应用。利用非线性频率变换技术,使近红外的光波变频后产生的激光拓展了激光器在实际中的应用领域。如532nm的激光在激光医学、激光显示方面有着广阔的应用前景;而波长更短的266nm紫外激光器在精密材料加工、光刻、光印刷等领域则有着独特的优势。
     本论文的主要工作如下:
     1.从理论上分析了多向侧面泵浦激光介质中泵浦能量的分布情况,模拟不同泵浦结构下泵浦光强在介质中的分布。并以三向泵浦为例,建立热传导方程并对激光介质内的温度分布情况进行模拟。再根据温度梯度与热透镜焦距的关系,得出热焦距随泵浦功率的变化曲线,并介绍了对热透镜效应进行补偿的方法。最后从侧面泵浦情况下泵浦光与振荡光的交叠积分出发,计算了阈值泵浦功率、斜效率和输出功率随不同参数之间的变化关系。
     2.对几种常用的紫外非线性晶体的特性进行分析,比较各自的优缺点,并针对CLBO晶体与BBO晶体,分析了负单轴晶体Ⅰ类临界相位匹配方式,讨论了不同晶体的相位匹配角、有效非线性倍频系数以及角度相位匹配中存在的一些问题,在讨论晶体允许角时,先利用级数展开的方法计算了晶体的允许角,又根据晶体自身的特点,分析了在主平面内与垂直于主平面的平面内允许角的投影分量,经计算后得出这两种晶体在平行于主平面的平面内允许角远远小于另一个投影分量,从而直接影响着相位匹配的实现与输出的光束质量。最后介绍了CLBO晶体的防潮措施。
     3.分析了用于倍频的非线性晶体中的相位失配情况;在此基础上给出了平面波近似下与高斯光束下倍频效率的表达式,并分析了倍频效率的影响因素;介绍了聚焦透镜的选择方法;最后分析了非线性晶体温度变化对倍频效率的影响情况。
     4.在对平-平直腔与平-凹直腔比较分析腔参数对系统稳定性影响的情况下,选择合适的腔型和参数进行实验。首先对绿光生成系统进行调节,在腔长为265mm、电流为45A、重复频率为17kHz时得到了最大输出功率为80W的稳定绿光输出。改变腔型,在系统中引入布儒斯特镜对基频光进行分光,使其实现两路同时振荡,并在其中一路中加入倍频晶体进行倍频,实现了绿光与基频光同时输出。在直腔的情况下,选择合适的聚焦透镜焦距值后先用垂直切割的BBO晶体进行四倍频实验,在泵浦电流为33.2A时获得了607mW的紫外光输出。然后用以布儒斯特角切割的CLBO晶体分别进行了准连续紫外实验,获得了7.1W的266nm紫外光。最后分析了CLBO晶体的切割方式对四倍频效率的影响。
Laser diode pumped all-solid-state lasers have many advantages, such as light weight, compactness, efficiency, good beam quality, long life time, and so on. They have been applied in the fields of military, industry, medical treatment, research and communication, and have replaced the traditional lasers, like dye-laser, gas-laser, and so on. The application of laser has been expended by using the nonlinear optical frequency conversion technology. For example, high power solid state green lasers have attracted much attention in numerous applications such as laser medicine, laser display, and so on. The ultraviolet laser with shorter wave length has the unique superiority in precision machining, lithography, high-resolution printing.
     The main contents of this dissertation are as follows,
     1. The intensity distribution of multi-side pumped light has been analyzed theoretically, corresponding to different pumping parameters. With the three-side pumped condition, the heat conduct equation has been build up, and the temperature profile in the gain medium has also been simulated. Then the relation between the temperature gradient and the thermal focal length has also been discussed, and the compensation methods of the thermal focal length are provided. At last, we calculate the overlap integral between the pumping light and the oscillating light, and discuss the influence factors of the threshold pumping power and the slop efficiency.
     2. In this dissertation, the properties of several UV nonlinear optical crystals has been summarized, and some parameters of the negative uniaxial optical crystal has also been calculated, such as phase matching angle, effective nonlinear coefficient, and discussed some problems in the process of angle phase matching. Then the moisture preventive measure of the CLBO crystal has been discussed as well.
     3. The theories of second-harmonic generation with the plane wave approximation and the focused gaussian beam have been discussed. The selection of the focal length of the focusing lens has also been provided. In the end, we have analyzed the impaction of the temperature change of the nonlinear crystal on the frequency doubling efficiency.
     4. After comparative analyzing the impaction of the cavity parameters on the system stability of both plano-plano cavity and the plano-concave cavity, a set of optimal parameters for our experiment has been selected. We then experimentally demonstrate a high power 532nm A-O Q-switched intracavity frequency doubling green laser system in a linear cavity, At incident pump current of 46 A, a maximum QCW output of 80W green laser is achieved. Then we demonstrate a complex cavity that can make the fundamental wave and the frequency doubled wave oscillated simultaneously. On this basis, after focusing the green laser into a type I phased BBO crystal, a UV output at 266nm of 607mW has been achieved with an incident current of 32.2A. Changing the focal length, and use the CLBO crystal to carry on the experiment. At the pumping current of 40A, we get a 7.1W 266nm output using a 70mm focal length of the lens. Finally, we analyze the influence of the cutting way of the CLBO crystal on the conversion efficiency.
引文
[1]Keyes R.J.,Quist T.M..Injection luminescent pumping of CaF_2:U~(3+) with GaAs diode lasers[J].Appl.Phys.Lett.,1964,4:50.
    [2]Conant L.C.,Reno C.W..GaAs laser diode pumped Nd:YAG laser[J].Appl.Opt.,1974,13:2457.
    [3]Weber H.P.,Damen T.C.,Daielmeyler H.G.,et al.Nd-ultraphosphate laser[J].Appl.Phys.Lett.,1973,22:534-536.
    [4]Kubode K.,Otsuka K..Efficient LiNdP_4O_(12) laser pumped with a laser diode[J].Appl.Opt.,1979,18:3882-3883.
    [5]Kubodera K.,Otsuka K..Diode-pumped miniature solid state laser:Design considerations [J].Appl.Opt.,1977,16:2747-2752.
    [6]Kane T.J.,Nielsson A.C.,Byer R.L..Frequency statility and offset locking od a laser-diode-pumped Nd:YAG monolithic nonptanar ring oscillator[J].Opt.Lett.,1987,12:175-177.
    [7]Kozlovsky W.J.,Nabors C.D.,Byer R.L..Second harmonic generation of a cw diode-pumped Nd:YAG laser using an externally resonant cavity[J].Opt.Lett.,1988,13.
    [8]Hanson F..Laser diode transverse pumping of neodymium laser rods,in Postdeadline Papers,Conf.Lasers Electro-Opt.,Opt.Soc,Amer.,Washington,DC,1987,ThU3.
    [9]Beach R.,William J..Modular microchannel cooled heatsinks for high average power laser diode arrays[J].IEEE J Q.E.,1992,28(4):966-976.
    [10]Marshall L.R.,Kaz A.,Burnharm R.L..Highly efficient TEM_(00) operation of transversely diode pumped Nd:YAG lasers[J].Opt.Lett.,1992,17:186-188.
    [11]Golla D.,Kunke S.,Schone W.,et al.300W cw diode laser side pumped Nd:YAG rod laser[J].Opt.Lett.,1995,20(10):1148-1150.
    [12]Brand T..Compact 170-W cw diode pumped Nd:YAG rod laser with a cusp-shaped reflector[J].Opt.Lett.,1995,20:1776-1778.
    [13]Lee S.,Yun M.J.,Cha B.H.,et al.Stability analysis of a diode-pumped,thermal birefringence-compensated two-rod Nd:YAG laser with 770-W output power[J].Appl. Opt.,2002,41(27):5625-5631.
    [14]戴特力.半导体二极管泵浦固体激光器[M].成都:四川大学出版社,1993:80-92.
    [15]Tian F.,Xie H.M.,Chen H.W.,et al.Diode-laser End-pumped Intra-cavity Frequency Doubling Nd:YVO_4/LBO Continuous-wave 8W Green Laser[J].Acta Photon.Sin.,2004,33(6):651-653.
    [16]Hirano Y.,Koyata Y.,Yamamoto S.,et al.208-W TEM_(00) operation of a diode-pumped Nd:YAG rod lasers[J].Opt.Lett.,1999,24(10):679-681.
    [17]Lee Sungman,Kim Sun Kook,Yun.Mijeong,et al.Design and fabrication of a diode-side-pumped Nd:YAG laser with a diffusive optical cavity for 500-W output power [J].Appl.Opt.,2002,41(6):1089-1094.
    [18]Yang A.F.,Guo Zh.,Wang Sh.Y.,et al.Acoustooptic Q-switching performance of composite-pumped DPL[J].J Appl.Opt.,2007,28(5):593-597.
    [19]Koji Yasui.Efficient and stable operation of a high-brightness cw 500-W Nd:YAG rod laser[J].Appl.Opt.,1996,35(15):2566-2569.
    [20]Project yields a pair of 3.3kW solid-state lasers[J].Laser Focus World,1999,35(7):38-40.
    [21]http://210.162.201.243/photon2/ripe_ new_t/randd_e.htm
    [22]Velsko S.P.,Ebbers C.A.,Comaskey B.,et al.100W average power at 0.53μm by external frequency conversion of an electro-optically Q-switched diode-pumped power oscillator[J].Appl.Phys.Lett.,1994,64(23):3086-3088.
    [23]Le Garret B.J.,Raze G.J.,Thro P.Y.,et al.High-average-power diode-array-pumped frequency-doubled YAG laser[J].Opt.Lett.,1996,21(24):1990-1992.
    [24]Honea Eric C.,Ebbers Christopher A.,Beach Raymond J.,et al.Analysis of an intracavity-doubled diode-pumped Q-switched Nd:YAG laser producing more than 100W of power at 0.532μm[J].Opt.Lett.,1998,23(15):1203-1205.
    [25]Yi Jonghoon,Moon Heejong,Lee Jongmin.Diode-pumped 100-W green Nd:YAG rod laser[J].Appl.Opt.,2004,43(18):3732-3737.
    [26]Kojima T.,Furuta K.,Kurosawa M.,et al.400-W Diode-Pumped Solid-State Green Laser[J].CLEO,2005,CTul3-7.
    [27]李林,李正佳,何艳艳.全固态紫外激光器研究进展[J].激光杂志,2005,26(6):1-3.
    [28]Hodgson N.,Li M.W.,Held A.,et al.Diode-pumped TEM_(00) mode solid state lasers and their micromaching applications[J].Proc.SPIE,2003,1977:281-286.
    [29]胡淼.BBO晶体四倍频的紫外激光器研究[D].杭州:浙江大学,2008.
    [30]李港.激光频率的变换与扩展-实用非线性光学技术[D].北京:科学出版社,2005.
    [31]Kitano H.,Matsui T.,Sato K.,et al.Efficient 355nm generation in CB_3O_5 crystal[J].Opt.Lett.,2003,28(4):263-265.
    [32]Harnilton C.E.,Doughty C.B.,Roper P.M.,et al.All solid-state,single-frequency 193-nm laser system for deep-UV metrology[J].CLEO,1998,1(1-4):322-323.
    [33]谭雪春.高效紫外倍频激光器的研制[D].长春:长春理工大学,2004.
    [34]Petersen A.,Utter S..High reliability,high repetition rate 266nm output from a diode-pumped,solid-state laser[J].CLEO,2002,87-88.
    [35]Oka M.,Liu L.Y.,Wiechmann W.,et al.Progress in all-solid-state deep-ultraviolet coherent light sources[J].Proc.SPIE,1996,2700:302-310.
    [36]Stamm U.,Zschocke W.,Deutsch N.,et al.Highly efficient UV-generation from a 1kHz diode-pumped solid-state laser system[J].Conf.Lasers Electro-opt.Eur.,1996,8-13:73.
    [37]Angus S.B.,Graeme P.A.M.,Gareth T.M..High power continuous wave UV generation[J].Proc.SPIE,1999,3613:151-154.
    [38]Sakuma J.,Sumiyoshi T.,Asakawa Y.,et al.High power cw DUV coherent light sources for metrology applications[J].LEOS,2004,2(7-11):890-891.
    [39]Kojima T.,Konno S.,Fujikawa S.,et al.High-reliable high-power 266-nm all-solid-state UV laser[J].Proc.SPIE,2002,4426:468-471.
    [40]Wang Gulling,Geng Aicong,Bo Yong,et al.28.4 W 266 nm ultraviolet-beam generation by fourth-harmonic generation of an all-solid-state laser[J].Opt.Commun.,2006,259:820-822.
    [41]Oka M.,Liu L.Y.,Wiechmann W.,et al.All solid-state continuous-wave frequency-quadrupled Nd:YAG laser[J].IEEE J Sel.Top.Quantum.Electron.,1995,1(3):859-866.
    [42]Sakuma J.,Asakawa Y.,Imahoko T.,et al.High-power continuous-wave 266nm and 213nm generation with CsLiB_6O_(10) crystals[J].CLEO,2004,1:3.
    [43]Sudmeyer T.,Imai Y.,Masuda H.,et al.12W continuous-wave 266-nm deep-UV generation through 24W single-frequency 1064-nm light from a fiber MOPA[J].CLEO,2006,CTuD1.
    [44]Schinke D.P..Generation of ultraviolet light using the Nd:YAG laser[J].IEEE J Quant.Electron.,1972,QE-8(2):86-87.
    [45]Konno S.,Inoue Y.,Kojima T.,et al.Efficient high-pulse-energy green-beam generation by intracavity frequency doubling of a quasi-continuous-wave laser-diode-pumped Nd:YAG laser[J].Appl.Opt.,2001,40(24):4341-4343.
    [46]Kojima T.,Konno S.,Fujikawa S.,et al.High-power high-repetition-rate all-solid-state UV laser[J].CLEO,1999,CTuB6.
    [47]Nishioka M.,Kawamura F.,Yoshimura M,et al.Influence of crystallinity on the bulk laser-induced damage threshold in CsLiB_6O_(10) for high-power UV laser source[J].IEEE J Quant.Electron.,2003,WP-(7)-7.
    [48]何京良,卢兴强,贾玉磊,等.BBO四倍频全固态Nd:YAVO_4紫外激光器[J].物理学报,2000,49(10):2106-2107.
    [49]Lv J.H.,Wang G.L.,Xu Z.Y.,et al.Efficient 266um ultraviolet beam generation in K_2Al_2B_2O_7 crystal[J].Chin.Phys.Lett.,2002,19(5),680-681.
    [50]周城,叶子青,郑权,等.Cr~(4+):YAG被动调Q 4倍频全固态紫外激光器的研究[J].激光技术,2003,27(4):339-341.
    [51]范秀伟,王云,彭倩倩,等.二极管泵浦Nd:GdVO_4晶体紫外激光器的研究[J].激光与红外,2005,35(5):331-334.
    [52]谭成桥,薛庆华,贾富强,等.LD泵浦Nd:YAG/Cr:YAG腔外频率变换高功率紫外激光器[J].光子学报,2005,34(9):1289-1292.
    [53]Pan S.D.,Han K.Zh.,Fan X.W.,et al.Efficient fourth harmonic UV generation of passively Q-switched Nd:GdVO_4/Cr~(4+):YAG laser[J].Opt.Laser Technol.,2007,39:1030-1032.
    [54]耿爱丛,张鸿博,王桂玲,等.实用化全固态266nm激光器的研究[J].光电子·激光,2007,18(7):767-769.
    [55]Liu Q.,Yah X.P.,Fu X.,et al.High power all-solid-state fourth harmonic generation of 266nm at the pulse repetition rate of 100kHz[J].Laser Phys.Lett.,2009,6(3):203-206.
    [56]Sasaki T.,Mori Y.,Yoshimura M.,et al.Recent development of nonlinear optical borate crystals:key materials for generation of visible and UV light[J].Mater.Sci.Eng.,2000,30:1-54.
    [57]Smith W.L..KDP and ADP transmission in the vacuum ultraviolet[J].Appl.Opt.,1977,16(7):1798.
    [58]G.Nath and S.Haussühl.Large nonlinear optical coefficient and phase matched second harmonic generation in LiIO_3[J].Appl.Phys.Lett.,1969,14(5):154-156.
    [59]Boyd G.D.,Miller R.C.,Nassau K.,et al.LiNbO_3:an efficient phase matchable nonlinear optical material[J].Appl.Phys.Lett.,1964,5(11):215-238.
    [60]Dewey C.F.,Jr.,Cook,W.R.Jr.,Hodgson R.T.,et al.Frequency doubling in KB_5O_8·4H_2O and NH_4B_5O_8·4H_2O to 217.3nm[J].Appl.Phys.Lett.,1975,26(12):714-716.
    [1]姚建铨,徐德刚.全固态激光及非线性光学频率变换技术[M].北京:科学出版社,2007,194.
    [2]Innocenzi M.E.,Yura H.T.,Fincher C.L.,et al.Thermal modeling of cw end-pumped solid-state lasers[J].Appl.Phys.Lett.,1990,56:1831-1833.
    [3]Cousins A.K..Temperature and thermal stress scaling in finite-length end-pumped laser rods[J].IEEE J Quant.Electron.,1992,28(4):1057-1069.
    [4]Fan T.Y..Heat generation in Nd:YAG and Yb:YAG[J].IEEE J Quant.Electron.,1993,29(6):1457-1459.
    [5]Pfistner C.,Weber R.,Weber H.P.,et al.Thermal beam distortions in end-pumped Nd:YAG,Nd:GSGG,and Nd:YLG rods[J].IEEE J Quant.Electron.,1994,30(7):1605-1615.
    [6]Tsunekane M.,Taguchi N.,Humio I..Improvement of thermal effects in a diode-pumped,composite TM:YAG rod with undoped ends[J].Appl.Opt.,1999,38(9):1788-1791.
    [7]Chen Y,F..Pump-to-mode size ratio dependence of thermal loading in diode-end-pumped solid-state lasers[J].Opt.Commun.,2000,178:383-393.
    [8]Schmid M.,Weber R.,Graf T.,et al.Numerical simulation and analytical description of thermally induced birefringence in laser rods[J].IEEE J Quant.Electron.,2000,36(5):620-626.
    [9]Lee S.M.,Sun K.K.,Yun M.,et al.Design and fabrication of a diode-side-pumped Nd:YAG laser with a diffusive optical cavity for 500W output power[J].Appl.Opt.,2002,41(6):1089-1094.
    [10]朱广志,陈培峰,邹雪芬,等.侧面泵浦激光器热透镜效应的有限元分析[J].激光技术,2004,28(2):208-210.
    [11]Meng J.Q.,Chen W.B.,Hou X.,et al.Comparison of different side-pumping configurations for high power laser diode pumped solid-state laser[J].Chin.Opt.Lett.,2003,1(9):538-540.
    [12]蔡志强,姚建铨,温午麒,等.LD侧泵激光器抽运光和温度分布数值研究[J].光电子·激光,2004,15(11):1305-1310.
    [13]Koechner W..固体激光工程[M].北京:科学出版社,2002.
    [14]Bachmarm F..Industrial applications of high power diode lasers in materials processing [J].Appl.Surf.Sci.,2003,208-209:125-136.
    [15]Sutton S.B.,Albrecht G F..Simple analytical method to calculate the radial energy deposition profile in an isotropic diode-pumped solid-state laser rod[J].Appl.Opt.,1996,35(30):5937-5948.
    [16]姚建铨,徐德刚.全固态激光及非线性光学频率变换技术[M].北京:科学出版社,2007,1197-201.
    [17]张文生.科学计算中的偏微分方程有限差分法[M].北京:高等教育出版社,2006.
    [18]杨爱粉,陈德东,文建国,等.激光二极管bar侧面泵浦Nd:YAG激光器热效应研究[J].应用光学,2003,24(4):23-26.
    [19]戴特力.半导体二极管泵浦固体激光器[M].成都:四川大学出版社,1993,80-84.
    [20]戴特力.半导体二极管泵浦固体激光器[M].成都:四川大学出版社,1993,88.
    [21]杨爱粉,卜英华,陈德东,等.线阵激光二极管侧面抽运Nd:YAG激光器特性研究[J].光学学报,2004,24(5):633-640.
    [22]戴特力.半导体二极管泵浦固体激光器[M].成都:四川大学出版社,1993,89.
    [1]Sasaki T.,Mori Y.,Yoshimura M.,et al.Recent development of nonlinear optical borate crystals:key materials for generation of visible and UV light[J].Mater.Sci.Eng.,2000, 30:1-54.
    [2]Mori Y.,Kuroda I.,Nakajima S.,et al.New nonlinear optical crystal:Cesium lithium borate[J].Appl.Phys.Lett.,1995,67(13):1818-1820.
    [3]Yap Y.K.,Haramura S.,Taguehi A.,et al.CsLiB_6O_(10) crystal for frequency doubling the Nd:YAG laser[J].Opt.Commun.,1998,145:101-104.
    [4]姚建铨.非线性光学频率变换及激光调谐技术[D].北京:科学技术出版社,1995,6-11.
    [5]Nikogosyan D.N..Beta Barium Borate(BBO) a Review of its Properties and Applications [J].Appl.Phys.,1991,A52:359-368.
    [6]何京良,大功率全固态Nd:YVO_4激光器[D].北京:中国科学院物理研究所,1998.
    [7]Ye N.,Zeng W.,Wu B.,et al.Two new nonlinear optical crystals:BaAl_2B_2O_7 and K_2Al_2B_2O_7[J].Proe.SPIE,1998,3556:21-23.
    [8]陈创天.紫外、深紫外非线性光学晶体探索十年回顾[J].人工晶体学报,2001,30(1):36-42.
    [9]Ye N.,Zeng W.,Jiang J.,et al.New nonlinear optical crystal K_2Al_2B_2O_7[J].J.Opt.Soe.Am.,2006,B17(5):764-768.
    [10]Chen Ch.T.,Lu J.H.,Togashi T.et al.Second-harmonic generation from a KBe_2BO_3F_2crystal in the deep ultraviolet[J].Opt.Lett.,2002,27(8):637-639.
    [11]Chen Ch.T.,WangY.B.,Xia Y.N.,et al.New Development of Nonlinear Optial Crystals for the Ultraviolet Region with Molecular Engineering Approach[J].J.AppI.Phys.,1995,77(6):2268-2272.
    [12]贺为国,沈光球,王晓青,等.CLBO晶体的开裂机理及防开裂方法研究[J].人工晶体学报,2001,30(3):267-272.
    [13]龙槐生,张仲先,谭恒英,等.光的偏振及其应用[M].北京:机械工业出版社,1989,14-21.
    [1]姚建铨.非线性光学频率变换及激光调谐技术[M].北京:科学出版社,1995,106.
    [2]石顺祥,陈国夫,赵卫,等.非线性光学[M].西安:西安电子科技大学出版社,2003,124.
    [3]Boyd G.D.,Kleinman D.A..Parametric interaction of focused Gaussian light beams[J].J. Appl.Phys.,1968,39(8):3597-3693.
    [4]姚建铨,徐德刚.全固态激光及非线性光学频率变换技术[M].北京:科学出版社,2007,655-658.
    [5]Jabezynski Jan K..Diode Pumped,intracavity frequency doubled,Nd lasers[J].SPIE,2000,4237:154-165.
    [6]Steinbach A.,Rauner M.,Cruz F.C..CW second harmonic generation with elliptical Gaussian beams[J].Opt.Commun.,1996,123:207.
    [7]Liu J.G..,Kim D.,Optimization of intracavity doubled Passively Q-switched solid-state lasers[J].IEEE J.Quant.Electron.,1999,35(11):1724-1730.
    [8]石顺祥,陈国夫,赵卫,等.非线性光学[M].西安:西安电子科技大学出版社,2003,109.
    [9]Sasaki T.,Mori Y.,Yoshimura M.,et al.Recent development of nonlinear optical borate crystals:key materials for generation of visible and UV light[J].Mater.Sci.Eng.,2000,30:1-54.
    [10]Kleinman D.A.,Ashkin A.,Boyd G.D..The second harmonic generation of light by focused beams[J].IEEE J Quant.Electron.,1966,QE-2(9):425-429.
    [11]吕百达.激光光学-激光束的传输变换和光束质量控制[M].成都:四川大学出版社,1992,92-93.
    [12]姚建铨.非线性光学频率变换及激光调谐技术[M].北京:科学出版社,1995,684
    [1]Liu J.H.,Lu J.R.,Lv J.H.,et al.Thermal lens determination of end-pumped solid-state lasers by a simple direct approach[J].Chin.Phys.Lett.,1999,16(3):181-183
    [2]龙槐生,张仲先,谭恒英,等.光的偏振及其应用[M].北京:机械工业出版社,1989,81-88.
    [3]龙槐生,张仲先,谭恒英,等.光的偏振及其应用[M].北京:机械工业出版社,1989,19-21.
    [4]沈德忠,沈光球,王晓青,等.非平行通光面激光变频器[J].人工晶体学报,2000,29(2):95-101.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700