微波热解污水污泥过程中氮转化途径及调控策略
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微波高温热解污水污泥具有污泥高效减容、重金属有效固定、副产物资源利用等优点,引起了国内外学者的高度关注。污泥中50%-80%的N在高温热解过程中转化为含氮气体,降低了生物燃气品质,造成了环境的二次污染。本文考察了含氮污染气体生成的影响因素,构建了切合污泥化学组分和官能团特征的含氮模型化合物,解析了污水污泥微波热解过程含氮化合物转化途径,明确了矿物添加剂抑制含氮污染气体产生机制并提出含氮污染气体选择性转化生成N2的污染控制措施。
     本研究通过序批实验考察了微波热解污水污泥过程失重规律,结果表明微波热解过程中蛋白质、糖类和脂类有机物的分解反应阶段相互叠加,而传统热解过程中三类有机物的分解反应呈现明显的三阶段特征。利用FTIR分析了气态含氮化合物的主要成分,结果显示NH_3和HCN是主要气态含氮化合物,两者含量分别占含氮气体总量的70%和10%。考察了热解终温、污泥含水率、升温速率和微波能吸收物质对NH_3和HCN产率的影响,实验结果表明热解温度、升温速率、污泥含水率和微波能吸收物质是影响NH_3和HCN形成的主要因素。微波热解污泥过程中,热解终温、升温速率和污泥含水率的增加均促进NH_3和HCN的生成。
     XPS分析表明污泥氮的主要存在形式为无机铵态氮,蛋白质氮和碱性杂环氮(吡咯和吡啶),定量分析表明蛋白质氮是污泥氮的主要存在形式,其含量占污泥总氮含量的90%。采用异硫氰酸苯酯(PITC)柱前衍生化反相高效液相色谱法(RP-HPLC)检测污泥蛋白质氨基酸组成及含量,结果表明精氨酸、甘氨酸、脯氨酸等八种氨基酸的含量占到氨基酸总量的82%以上。利用谷氨酸、精氨酸、赖氨酸、脯氨酸、苏氨酸、丙氨酸、亮氨酸和甘氨酸构建了理论模型化合物,各组分质量比为15:6:6:16:21:6:21:9,同时根据污泥氨基酸组成和比例相似原则筛选出又一种有机聚合肽链形式的大豆蛋白模型化合物。通过对两种含氮模型化合物的微波热解产气特性对比发现,大豆蛋白与脱灰污泥的含氮气体产率相似度>80%,大豆蛋白作为污泥含氮模型化合物更合理。微波热解大豆蛋白模型化合物发现了三种重要含氮中间产物,分别为胺态氮、含氮杂环和腈类氮化合物。微波热解模型化合物的氮转化途径分析表明,三类中间产物贡献了97%以上的(NH_3+HCN)总产量。
     利用XPS、GC-MS等分析手段,研究了含氮官能团在微波热解污水污泥三相产物中的转化规律,并分析了微波热解污泥过程中含氮化合物的转化途径。在温度低于300℃时,污泥中的无机氮和小部分的蛋白质氮分解生成NH_3。在300-500℃时,污泥中大量的蛋白质热裂解生成了焦油中的胺类化合物,并伴随着大量NH_3生成。500-800℃时,焦油中的胺态-N大量裂解生成含氮杂环-N和腈类-N化合物,并伴随着NH_3和HCN的大量产生。微波热解污水污泥NH_3和HCN生成途径分析表明,污泥热解过程中的二次裂解反应是生成NH_3和HCN的主要途径,胺态氮、含氮杂环和腈类氮化合物的裂解反应贡献了热解全部(HCN+NH_3)产量的80%以上,因此可以考虑通过控制三类含氮中间产物的产生来减少NH_3和HCN的释放。
     通过对比污水污泥和酸洗脱灰污泥的热解产气特性,确定了污泥内在矿物质对NH_3和HCN生成的抑制作用。考察了外加矿物质种类、添加量及加载方式对NH_3和HCN产率的影响,结果表明添加量20%的Fe2O3和CaO对NH_3和HCN的抑制效果分别达到50%和80%。与直接机械混合法相比,化学沉淀法加载Fe盐对含氮气体抑制效果更好。GC-MS分析了污水污泥和矿物质污泥的热解气态和焦油产物组分,发现了矿物质不影响300-500℃阶段胺态氮化合物的生成反应,而抑制了500-800℃阶段含氮杂环-N和腈类-N化合物的生成过程,导致焦油中含氮杂环-N和腈类-N化合物含量大量减少,继而使得含氮杂环-N和腈类-N化合物热解生成的HCN含量大量下降。铁和钙元素结合含氮中间产物生成一种Fe-N-Ca络合物质,微波非热效应降低了此反应的活化能,因而促进NH_3和HCN生成N_2和H_2。
Microwave pyrolysis is considered as a potential alternative technology due to itseffective reduction of sludge, stability of heavy metals and high added value ofbyproducts. However,50%-80%of nitrogen in the sludge is converted to thenitrogen-containing gases during microwave pyrolysis of sewage sludge, reducing thequality of bio-gas and causing secondary pollution of environment. This paper discussedthe influences of process conditions on the formation of NH_3and HCN, built thenitrogen-containing model compounds meeting sludge characteristics and investigatedthe nitrogen conversion pathways during microwave pyrolysis of sewage sludge. Theinhibition mechanism of inorganic additives on the formation of NH_3and HCN was alsoconducted and the strategies for the selective conversion of NH_3and HCN into N2wereproposed.
     The thermogravimetric analysis was conduced by the batch experiments, indicatingthat the thermal decomposition reactions of protein, carbohydrate and lipid occurredsimultaneously in the microwave pyrolysisin comparison with the conventionalpyrolysis system. FTIR analysis showed that NH_3and HCN were the majornitrogen-containing gases accounting for about70%and10%of total gas-N yields,respectively. The influences of temperature, moisture content of sludge, heating rate andmicrowave absorbers on the formation of NH_3and HCN during microwave pyrolysis ofsewage sludge were stuied. The results showed that NH_3and HCN yields increased withthe increase of temperature, heating rate, moisture content of sludge during pyrolysis.
     XPS analysis showed that the inorganic ammonium nitrogen, protein nitrogen andheterocyclic nitrogen (pyrrole and pyridine) were the main nitrogen functionalities inthe sludge. The steam distillation and Kjeldahl nitrogen determination analysis revealedthat the protein nitrogen was the major nitrogen form in the sludge, accounting foraround90%of total nitrogen in sewage sludge. PITC-RP-HPLC analysis showed thatthe contents of nine kinds of amino acids, such as arginine, glycine, proline and so on,accounted for above82%of the total. A theoretical model compound of arginine: lysine:proline: threonine: alanine: leucine: glycine=15:6:6:16:21:6:21:9was establishedaccording to their pyrolysis characteristics. Meanwhile, an organic polymeric peptidechain model compound soybean protein was selected according to the similar sludgeamino acid compositions. Microwave pyrolysis of two nitrogen-containing modelcompounds showed that the soybean protein was more proper as the sludge-N modelcompound. Three important intermediates, including the amine-N, heterocyclic-N andnitrile-N compounds, were identified during microwave pyrolysis of soybean proten,which contributed to more than97%of the total (NH_3+HCN) productions.
     The nitrogen distributions and evolution of nitrogen functionalities in the char, tarand gas fractions were conducted by XPS and GC-MS. The nitrogen conversions inrelation to NH_3and HCN were investigated during microwave pyrolysis of sewagesludge. At temperatures below300℃, the thermal decomposition of inorganic nitrogencompounds contributed to the release of NH_3. In the temperature ranges of300-500℃,the thermal cracking of labile proteins contributed to the formation of amine-Ncompounds in the tars further generating NH_3. The cracking of nitrile-N andheterocyclic-N compounds resulted from the dehydrogenation and polymerization ofamine-N compounds led to the formation of NH_3and HCN at temperatures of500-800℃. The analysis on nitrogen conversin mechanism revealed that the secondarycracking reactions was the major pathway for the production of NH_3and HCN duringthe sludge pyrolysis. Specifically, the cracking of amine-N, heterocyclic-N and nitrile-Ncompounds contributed to above80%of the total (HCN+NH_3) productions.Consequently, it was considered that it might be able to reduce the NH_3and HCNemissions by controlling the production of three nitrogen-containing intermediates.
     Conparing the release of gas-N by pyrolysis of sewage sludge and demineralizedsludge, the inhibition of the intrinsic minerals on the formation of NH_3and HCN wasconfirmed. The experiments on the added mineral species, mineral/sludge ratio andloaded methods demonstrated that addition of20%Fe2O3and20%CaO in the sludgecould inhibited the formation NH_3and HCN by approximately50%and80%,respectively. Additionally, compared with the direct mixing method, the chemicalprecipitation loading of Fe salt possessed better inhibitory effect on thenitrogen-containing gases. GC-MS analysis on the tar-N compositions produced frommicrowave pyrolysis of sewage sludge and minerals added sludge showed that mineralsdid not inhibit the formation of amine-N compounds (300-500℃), while inhibit theformation of heterocyclic-N and nitrile-N compounds (500-800℃). Thus, this resultedin the significant decrease of heterocyclic-N and nitrile-N compounds, leading to thedecline of HCN yields during pyrolysis. The formation of N2was ascribed to theintermediate mechanism in the presence of inorganic minerals (such as the interstitial Feand Ca nitride species). The non-thermal microwave effects directly coupled to energymodes within the molecules and caused the reactive molecular oscillation and rotationreducing the reaction activation energy. As a consequence, the microwave irradiationpromoted higher productions of N2.
引文
[1]住房和城乡建设部.中国城镇排水与污水处理状况公报[R].北京:住房和城乡建设部.2012:1-17.
    [2]林云琴,周少奇.我国污泥处理、处置与利用现状[J].能源环境保护,2004,18(6):15-18.
    [3]梁鹏,黄霞,钱易等.污泥减量化技术的研究进展[J].环境污染治理技术与设备,2003,4(1):44-53.
    [4]杭世珺,陈吉宁,郑兴灿等.污泥处理处置的认识误区控制对策[J].中国环保产业,2005,11-14.
    [5]杜伟,郑国砥,陈同斌.造纸污泥土地利用的资源价值与潜在风险[J].生态学报,2008,10:36-44.
    [6]王维斌,韩育宏,季民.正确的政策导向是发展可持续污泥处理技术的保障[J].给水排水,2007,07:21-26.
    [7]李鸿江,顾莹莹,赵由才.污泥资源化利用技术[M].北京:冶金工业出版社,2010:1-5.
    [8]赵庆良.污泥资源化技术[M].北京:化学工业出版社.2002:1-3.
    [9]王岚.我国污泥处理处置发展概述[J].给水排水动态.2010,4:11-12.
    [10]白慧玲.城市污泥处置与利用综述[J].山西建筑,2008,34(20):81-82.
    [11] Halletal J. E. Survey of sludge production, treatment, quality and disposal in theEuropean Union [A]. Anjou Research [C]. Communities of the EuropeanCommunities,1994.
    [12]刘文铁,王淑彦,崔崇威等.污泥的热解动力学及机理研究[J].热能动力工程,2006,21(5):529-531.
    [13] Kim Y. and Parker W. A technical and economic evaluation of the pyrolysis ofsewage sludge for the production of bio-oil[J]. Bioresource Technology.2007,59(3):126-132.
    [14] Lu G. Q., Low J. C., Liu C.Y., et al. Surface area development of sewage sludgeduring pyrolysis[J]. Fuel,1995,74(3):344-348.
    [15]何品晶,顾国维.低温热化学转化污泥制油技术[J].环境科学,1996,17(5):82-86.
    [16]何品晶,邵立明.污水厂污泥低温热化学转化过程机理研究[J].中国环境科学,1998,18(1):39-42.
    [17]何品晶,顾国维.污水污泥低温热解处理技术研究[J].中国环境科学,1996,16(4):254-257.
    [18]邵立明,何品晶.污水厂污泥低温热解过程能量平衡分析[J].上海环境科学,1996,15(6):19-21.
    [19] Steger M. T., MeiNer W. Drying and low temperature conversion-a processcombination to treat sewage sludge obtained from oil refineries[J]. Water Sci.Technol,1996,34(10):133-139.
    [20] Caballero J. A., Front R., Marcilla A., et al. Characterization of Sewage Sludgesby Primary and Secondary Pyrolysis[J]. J. Anal. Appl. Pyrol,1997,40:433-450.
    [21] Font R., Fullana A., Conesa J. A., et al. Analysis of the Pyrolysis and Combustionof Different Sewage Sludges by TG[J]. J. Anal. Appl. Pyrol,2001,58:927-941.
    [22] Itoh S.J., Suzuki A., Nakamura T., et al. Production of heavy oil from sewagesludge by direct themo-chemical liquefraction[J]. Desalination,1994,98(9):127-133.
    [23] Yutaka Y. Biomass Energy Characteristics and Technology of Energy Conversion[M]. Tokyo:[I] Media Communications Incorporate,2002(in Japanese).
    [24] Lu G. Q., Low J. C., Liu F. C., et al. Surface area development of sewage sludgeduring pyrolysis[J]. Fuel,1995,74(3):344-348.
    [25] Li H. Y., Zhang S. T., Zhao X. H., et al. Pyrolysis experiment of municipal sewagesludge and characterstics of fractions[J]. Journal of Tianjin University,2006,39(6):739-744.
    [26]王同华,胡俊生,夏莉等.微波热解污泥及产物组成的分析[J].沈阳建筑大学学报(自然科学版),2008,24(4):662-666.
    [27] Xiong S. J., Zhang B. P., Feng Z. P., et al. The effect of experimental conditionson wet sludge pyrolysis for hydrogen-rich fuel gas[J]. Acta ScientiaeCircumstantiae,2010,30(5):996-1001.
    [28] Bridle T. R. Upgrading and evaluation of sludge derived oil as a diesel fuel, R&Dreport to Alternative Energy Board, WA Government[Z]. Perth,Australia,1990.
    [29] Bridle T. Upgrading and evaluation of sludge derived oil as a diesel fuel. InternalReport of Environmental Solution [R]. International,Perth,Australian,1990.
    [30] Jeyaseelan S., Lu G Q. Development of Adsorbent/Catalyst From MunicipalWastewater Sludge[J]. Water Sci. Technol,1996,34(3-4):499-505.
    [31] Itoh S.J., Suzuki A., Nakamura T., et al. Production of heavy oil from sewagesludge by direct themo-chemical liquefraction[J]. Desalination,1994,98(9):127-133.
    [32] Yutaka Y. Biomass Energy Characteristics and Technology of Energy Conversion[M]. Tokyo:[I] Media Communications Incorporate,2002(in Japanese).
    [33] Lu G. Q., Low J. C., Liu F. C., et al. Surface area development of sewage sludgeduring pyrolysis[J]. Fuel,1995,74(3):344-348.
    [34] Li H. Y., Zhang S. T., Zhao X. H., et al. Pyrolysis experiment of municipal;sewage sludge and characterstics of fractions[J]. Journal of Tianjin University,2006,39(6):739-744.
    [35]王同华,胡俊生,夏莉等.微波热解污泥及产物组成的分析[J].沈阳建筑大学学报(自然科学版),2008,24(4):662-666.
    [36] Xiong S. J., Zhang B. P., Feng Z. P., et al. The effect of experimental conditionson wet sludge pyrolysis for hydrogen-rich fuel gas[J]. Acta ScientiaeCircumstantiae,2010,30(5):996-1001.
    [37] Bridle T. R. Upgrading and evaluation of sludge derived oil as a diesel fuel, R&Dreport to Alternative Energy Board, WA Government[Z]. Perth,Australia,1990.
    [38] Bridle T. Upgrading and evaluation of sludge derived oil as a diesel fuel. InternalReport of Environmental Solution [R]. International,Perth,Australian,1990.
    [39] Sanchez M.E., Martinez O., Gomez X., et al. Pyrolysis of mixtures of sewagesludge and manure: A comparison of the results obtained in thelaboratory(semi-pilot)and in a pilot plant[J]. Waste Management,2006,21(9):123-129.
    [40] Jacob J., Chial H., Boey L., et al. Review-thermal and non-thermal interaction ofmicrowave radiation with materials[J]. Journal of Materials Science,1995,30(21):5321-5327.
    [41]孙萍,肖波,杨家宽等.微波技术在环境保护领域的应用[J].化工环保,2002,22(2):71-75.
    [42]佟志芳,毕诗文、杨毅宏.微波加热在冶金领域中的应用研究现状[J].材料与冶金学报,2004,3(2):117-120.
    [43]王剑虹,严莲荷,周申范等.微波技术在环境保护领域中的应用[J].工业水处理.2003,23(4):18~22
    [44] Mingos D.M.P. and Baghurst D.R.. Application of microwave dielectric heatingeffects to synthetic problems in chemistry[J]. Chemical Society Reviews,201l,20(3):1-47.
    [45] Zlotorzynski A. The application of microwave radiation to analytical andenvironmental chemistry[J]. Critical Reviews in Analytical Chemistry,2005,25(1):43-76.
    [46] Jothiramalingam R., Lo S. L., Chen C. L. Effects of different additives withassistance of microwave heating for heavy metal stabilization in electronicindustry sludge[J]. Chemosphere,2010,78(5):609-613.
    [47] Tinga W. R. and Voss W. Microwave Power Engineering(M). Academic PressNew York,1968.
    [48]彭虎,李俊.微波高温加热技术进展[J].材料导报,2005,19(10):100-103.
    [49] Prasad S. A. and William D.“Microwave Sintering Kilogram Batches of SiliconNitride”. Microwaves:Theory and Application in Materials ProcessⅢing,1995.55
    [50]奥村和平,笼桥章,西尾.微波焙烧炉和微波焙烧方法. CN Pat.03108476.1
    [51]佐藤元泰.烧结炉、制造烧结物的方法和烧结物. CN Pat.01811729.5;JP Pat.319417/2000
    [52]彭虎,李俊.一种用工业微波炉生产氮化钒的方法. CN Pat.200410023104.0
    [53]张刚.中国航天科工集团O六八基地(湖南航天管理局)[EB/OL(]2011-4-18)[2011-5-14]. http://www.hnhtj.com/showNews.asp?id=382
    [54] Stasta P., Boran J. Thermal processing of sewage sludge[J]. Applied ThermalEngineering,2006,326:1420-1426.
    [55] Menéndez J.A., Inguanzo M., Pis J.J. Microwave-induced pyrolysis of sewagesludge[J]. Water Research,2002,36:3261-3264.
    [56] Guibelin E. Sustainability of thermal oxidation processes: strengths for the newmillennium[J]. Water Science and Technology,2002,46(10):259-267.
    [57] Dominak R.P. Current practices and future direction for biosolids incinerators[J].WEF/AWWA/CWEA Joint Residuals and Biosolids Management Conference heldin San Diego (CA),2001.
    [58] Menéndez. J.A., Dominguez A., Inguanzo M., et al. Microwave pyrolysis ofsewage sludge: analysis of the gas fraction[J]. J. Anal. Appl. Pyrolysis,2004,71:657-667.
    [59] Yamaguchi S. New type of sludge density meter using microwave for applicationin sewage treatment plant[J]. Water Science and Technology,1996,33(1):53-60.
    [60] Chiang H.L., Chao C.G., Chang C.Y., et al. Residue Characteristics And PoreDevelopment Of Petrochemical Industrustry Sludge Pyrolysis[J]. Water.Research,2001,35(18):4331-4338.
    [61] Bagreev A., Bandosz T.J., Locke D.C. Pore structure and surface chemistry ofadsorbents obtained by pyrolysis of sewage sludge-derived fertilizer.Carbon[J]. J.Anal. Appl. Pyrolysis,2001,39:1971-1979.
    [62] Menéndez J.A., Inguanzo M., Pis J.J. Microwave-induced pyrolysis of sewagesludge[J]. Water Research,2002,36(13):3261-3264.
    [63] Kim H.Y. A low cost production of hydrogen from carbonaceous wastes[J]. Int. J.Hydrogen Energy,2003,28:1179-1186.
    [64] Chen G., Andries J., Spliethoff H. Catalytic pyrolysis of biomass for hydrogen richfuel gas production[J]. Energy Convers. Manage.,2003,44:2289-2296.
    [65] Dominguez A., Menendez J.A., Inguanzo M., Bernad P.L., Pis J.J. Gaschromatographic-mass spectrometric study of the oil fractions produced bymicrowave-assisted pyrolysis of different sewage sludges[J]. Journal ofChromatography A.,2003,10(12):193-206.
    [66]傅大放,蔡明元,华建良等.污水厂污泥微波处理试验研究[J].中国给水排水,1999,12(6):23-24.
    [67]傅大放,邹路易,蔡明.微波加热对污泥肥效和卫生指标的影响[J].中国给水排水,2001,19(5):36-38.
    [68]闵怀.污泥脱水和干燥新技术-微波加热工艺简评[J].环境污染与防治,1992,14(3):40-41.
    [69]袁春燕.污泥吸附剂的微波诱导热解法制备与应用[D].哈尔滨工业大学,2006,06.
    [70]乔玮,王伟,黎攀等.城市污水污泥微波热水解特性研究[J].环境科学,2008,29(1):152-157.
    [71]陈曼.城市污水污泥热解特性与转化机理的研究[D].东南大学硕士论文,2006,04.
    [72]冯志华,常丽萍,任军等.煤热解过程中氮的分配及存在形态的研究进展[J].煤炭转化,2000,23(3):6-12.
    [73] Tian F.J., Li B.Q. Formation of NOx precursors during the pyrolysis of coal andbiomass. Part V. Pyrolysis of a sewage sludge[J]. Fuel,2002,81:2203-2208.
    [74] Wu Z. and Ohtsuka.Y. Remarkable Formation of N2from a Chinese Ligniteduring Coal Pyrolysis[J]. Energy Fuels,1996,10(6):1280-1281.
    [75] Xie Z., Feng J., Zhao W., et al. Formation of NOx and SOx precursors during thepyrolysis of coal and biomass. Part IV. Pyrolysis of a set of Australian andChinese coals[J]. Fuel,2001,80(15):2131-2138.
    [76] Leppalahti J., Koljonen T. Nitrogen evolution from coal, peat and wood duringgasification: Literature review[J]. Fuel processing technology,1995,43:1-45.
    [77] Tsubouchi N., Ohtsuka Y. Formation of N2during pyrolysis of Ca-loaded coals[J].Fuel,2002,81:1423-1431.
    [78] Tan L.L., Li C.Z. Formation of Nox and Sox Precursors During the Pyrolysis ofCoal and Biomass. Part I. Effects of Reactor Configuration On the DeterminedYields of HCN and NH3During Pyrolysis[J]. Fuel,2000,79(15):1883-1889.
    [79] Tan L.L., Li C.Z. Formation of Nox and Sox Precursors During the Pyrolysis ofCoal and Biomass. Part II. Effects of Experimental Conditions On the Yields ofNox and Sox Precursors From the Pyrolysis of a Victorian Brown Coal[J]. Fuel,2000,79(15):1891-1897.
    [80] Furimsky E., Ohtsuka Y. Formation of Nitrogen-Containing Compounds DuringSlow Pyrolysis and Oxidation of Petroleum Coke[J]. Energy&fuels,1997,11(5):1073-1080.
    [81] Tian F.J., Li B.Q, Chen Y., et al. Formation of Nox Precursors During thePyrolysis of Coal and Biomass. Part V. Pyrolysis of a Sewage Sludge[J]. Fuel,2002,81(17):2203-2208.
    [82] Chang L., Xie Z., Xie K.C., et al. Formation of Nox Precursors During thePyrolysis of Coal and Biomass. Part VI. Effects of Gas Atmosphere On theFormation of NH3and HCN[J]. Fuel,2003,82(10):1159-1166.
    [83] Leichtnam J.N., Schwartz D., Gadiou R. The Behaviour of Fuel-Nitrogen DuringFast Pyrolysis of Polyamide at High Temperature[J]. J. Anal. Appl. Pyrolysis,2000,55(2):255-268.
    [84] Ratcliff J.M.A., Medley E.E., Simmonds P.G. Pyrolysis of Amino Acids.Mechanistic Considerations[J]. The Journal of Organic Chemistry,1974,39(11):1481-1490.
    [85] Hansson K.M., Amand L.E., Habermann A., et al. Pyrolysis of poly-L-leucineunder combustion-like conditions[J]. Fuel,2003,82:653-660.
    [86] Hansson K.M., Samuelsson J., Tullin C., et al. Formation of HNCO, HCN, andNH3From the Pyrolysis of Bark and Nitrogen-Containing Model Compounds[J].Combust. Flame,2004,137(3):265-277.
    [87] Hansson K.M., Samuelsson J., Amand L.E., et al. The temperature’s influence onthe selectivity between HNCO and HCN from pyrolysis of2,5-diketopiperazineand2-pyridone[J]. Fuel,2003,82(18):2163-2172.
    [88] Raunier S., Chiavassa T., Marinelli F., et al. Reactivity of HNCO with NH3at lowtemperature monitored by FTIR spectroscopy: formation of NH4+OCN-[J].Chemical Physics Letters,2003,368(5-6):594-600.
    [89] Agblevor F.A., Besler S. Inorganic Compounds in Biomass Feedstocks.1. EffectOn the Quality of Fast Pyrolysis Oils[J]. Energy&fuels,1996,10(2):293-298.
    [90] Raveendran K., Ganesh A., Khilar K.C. Influence of Mineral Matter On BiomassPyrolysis Characteristics[J]. Fuel,1995,74(12):1812-1822.
    [91] Ohtsuka Y., Wang Z.H., Furimsky E. Effect of Alkali and Alkaline Earth MetalsOn Nitrogen Release During Temperature Programmed Pyrolysis of Coal[J].Fuel,1997,76(14-15):1361-1367.
    [92] Xu C.B., Tsubouchi N., Hashimoto H., et al. Catalytic decomposition of ammoniagas with metal cations present naturally in low rank coals[J]. Fuel,2005,84:1957-1967.
    [93] Xu C., Donald J., Byambajavb E., et al. Recent advances in catalysts for hot-gasremoval of tar and NH3from biomass gasification[J]. Fuel,2010,89:1784-1795.
    [94]王美君,杨会民,何秀风,等.铁基矿物质对西部煤热解特性的影响[J].中国矿业大学学报,2010,39(3):426-430.
    [95]赵娅鸿,林建英,常丽萍,等.矿物质对煤热解气化过程中NH3形成的影响[J].环境化学,2004,23(1):26-30.
    [96]常丽萍,赵娅鸿.煤中固有矿物质在热解过程中对氮释放的影响[J].煤炭转化,2005,28(2):36-38.
    [97] Zhu T.Y., Zhang S.Y., Huang J.J., et al. Effect of Calcium Oxide on Pyrolysis ofCoal in a Fluidized Bed[J]. Fuel Processing Technology,2000,64(1):271–284.
    [98] Liu Y., Che D., Xu T. Effects of Minerals on the Release ofNitrogen Species fromAnthracite [J]. Energy Sources,Part A,2007,29:313-327.
    [99]崔燕妮.污水污泥微波热解产生NH3和HCN污染控制研究[D].哈尔滨工业大学,2012.
    [100] Thipkhunthod P., Meeyoo V., Rangsunvigit P., et al. Pyrolytic characteristics ofsewage sludge[J]. Chemosphere,2006,64(6):955-962.
    [101] Zuo W., Tian Y., Ren N.Q. The important role of microwave receptors in bio-fuelproduction by microwave-induced pyrolysis of sewage sludge[J]. WasteManagement,2011,31(6):1321-1326.
    [102]赵顺顺.剩余污泥蛋白质提取及其作为动物饲料添加剂的可行性研究[D].中国海洋大学,2007.
    [103]谭涛.污水污泥含氮模型化合物的构建及热解过程中氮的转化途径研究[D].哈尔滨工业大学,2011.
    [104]王心芳,魏复盛,齐文启,等.水和废水监测分析方法[J].北京:中国环境出版社,2002:216-219.
    [105] Tian Y., Zhang J., Zuo W., et al. Nitrogen conversion in relation to NH3and HCNduring microwave pyrolysis of sewage sludge[J]. Environmental Science&Technology,2013,47(7):3498-3505.
    [106]徐丽,叶淑伦,吴鹏鸣.污泥中碱性氮杂环化合物的分析鉴定[J].环境科学,1987,8(3):34-39.
    [107] Shpilrain E.E., Shterenberg V.Y., Zaichenko V.M. Comparative analysis ofdifferent natural gas pyrolysis methods[J]. Int. J. Hydrogen Energ.,1999,24(7):613-624.
    [108] Popov R.G., Shpilrain E.E., Zaytchenko V.M. Natural gas pyrolysis in theregenerative gas heater Part2: Natural gas pyrolysis in the free volume of theregenerative gas heater[J]. Int. J. Hydrogen Energ.,1999,24(4):335-339.
    [109] Tian Y., Zuo W., Ren Z.Y., et al. Estimation of a novel method to produce bio-oilfrom sewage sludge by microwave pyrolysis with the consideration of efficiencyand safety[J]. Bioresource Technology,2011,102:2053-2061.
    [110] Dominguez A., Menendez J.A., Fernandez Y., et al. Conventional and microwaveinduced pyrolysis of coffee hulls for the production of a hydrogen rich fuel gas[J].J. Anal. Appl. Pyrolysis,2007,79:128-135.
    [111] Dominguez A., Fernandez Y., Fidalgo B., et al. Bio-syngas production with lowconcentrations of CO2and CH4from microwave-induced pyrolysis of wet anddried sewage sludge[J]. Chemosphere,2008,70:397-403.
    [112] Menendez J.A., Dominguez A., Inguanzo M., et al. Microwave-induced drying,pyrolysis and gasification (MWDPG) of sewage sludge: Vitrification of the solidresidue[J]. J. Anal. Appl. Pyrolysis,2005,74:406-412.
    [113] Li C.Z., Tan L.L. Formation of NOx and SOx precursors during the pyrolysis ofcoal and biomass. Part3. Further discussion on the formation of HCN and NH3during pyrolysis[J]. Fuel,2000,79(15):1899-1906.
    [114] Xu H.C., He P.J., Wang G.Z., et al. Anaerobic storage as a pretreatment forenhanced biodegradability of dewatered sewage sludge[J]. BioresourceTechnology,2011,102(2):667-671.
    [115] Sanchez M.E., Menendez J.A., Dominguez A., et al. Effect of pyrolysistemperature on the composition of the oils obtained from sewage sludge[J].Biomass and Bioenergy,2009,33(6-7):933-940.
    [116] Butler E., Devlin G., Meier D., et al. A review of recent laboratory research andcommercial developments in fast pyrolysis and upgrading[J]. Renewable andSustainable Energy Reviews,2011,15(8):4171-4186.
    [117] Swain P.K., Das L.M., Naik S.N. Biomass to liquid: A prospective challenge toresearch and development in21st century[J]. Renewable and Sustainable EnergyReviews,2011,15(9):4917-4933.
    [118] Grube M., Lin J.G., Lee P.H., et al. Evaluation of sewage sludge-based compostby FTIR spectroscopy[J]. Geoderma,2006,130:324-333.
    [119] Dominguez A., Menendez J.A., Inguanzo M., et al. Production of bio-fuels byhigh temperature pyrolysis of sewage sludge using conventional and microwaveheating[J]. Bioresour. Technol.,2006,97:1185-1193.
    [120] Cao J.P., Li L.Y., Morishita K., et al. Nitrogen transformations during fastpyrolysis of sewage sludge[J]. Fuel,2013,104:1-6.
    [121]秦玲丽.金属化合物对煤热解过程中氮/硫转化的影响[D].太原理工大学硕士学位论文,2007,18-36.
    [122]周立祥,胡霭堂,胡忠明.厌氧消化污泥化学组成及其环境化学性质[J].植物营养与肥料学报,1997,3(2):176-181.
    [123]李咏梅,顾国雄,赵建夫.焦化废水中几种含氮杂环有机物在AAO系统中的降解特性研究[J].环境科学学报,2002,22(1):34-39.
    [124]范镇基. L-色氨酸[J].氨基酸和生物资源,1983,1.
    [125]吴克佐,徐琴钰,干莲,等.不同来源活性污泥分析-蛋白质及其氨基酸测定[J].环境科学,1979(50):50-52.
    [126] Johnson W.R., Kang J.C. Mechanisms of hydrogen cyanide formation from thepyrolysis of amino acids and related compounds[J]. J. Org. Chem.,1971,36(1):189-192.
    [127]黎新.谷氨酰胺热分解机理的研究[J].武汉大学学报(自然科学版),1999,45(4):407-410.
    [128]黎新,胡德彬,陈卫.谷氨酰胺热分解机理的从头算研究[J].渝西学院学报(自然科学版),2005,4(4):8-12.
    [129] Fullana A., Conesa J.A., Font R., et al. Pyrolysis of sewage sludge: nitrogenatedcompounds and pretreatment effects[J]. J. Anal. Appl. Pyrolysis,2003,68-69:561-575.
    [130] Cao J.P., Zhao X.Y., Morishita K., et al. Fractionation and identification of organicnitrogen species from bio-oil produced by fast pyrolysis of sewage sludge[J].Bioresource Technology,2010,101(19):7648-7652.
    [131] Yuan S., Chen X.L., Li W.F., et al. Nitrogen conversion under rapid pyrolysis oftwo types of aquatic biomass and corresponding blends with coal[J]. BioresourceTechnology,2011,102(2):10124-10130.
    [132] Tsai W.T., Lee M.K., Chang J.H., et al. Characterization of bio-oil frominduction-heating pyrolysis of food-processing sewage sludges usingchromatographic analysis[J]. Bioresource Technology,2009,100(9):2650-2654.
    [133] Chen H.F., Namioka T., Yoshikawa K. Characteristics of tar, NOx precursors andtheir absorption performance with different scrubbing solvents during thepyrolysis of sewage sludge[J]. Applied Energy,2011,88(12):5032-5041.
    [134] Dufour A., Masson E., Girods P., et al. Evolution of aromatic tar composition inrelation to methane and ethylene from biomass pyrolysis-gasification[J]. EnergyFuels,2011,25(9):4182-4189.
    [135] Brage C., Yu Q.Z., Sjostrom K. Characteristics of evolution of tar from woodpyrolysis in a fixed-bed reactor[J]. Fuel,1996,75(2):213-219.
    [136] Antal M.J. Effects of reactor severity on the gas-phase pyrolysis of cellulose andkraft lignin-derived volatile matter[J]. Ind. Eng. Chem. Prod. Res. Dev.,1983,22(2):366-375.
    [137] Blasi C.D., Branca C. Kinetics of primary product formation from woodpyrolysis[J]. Ind. Eng. Chem. Res.,2001,40(23):5547-5556.
    [138] Lin J.Y., Zhang S., Zhang L. HCN and NH3formation during coal/chargasification in the presence of NO[J]. Environ. Sci. Technol.,2010,44(10):3719-3723.
    [139] Yuan S., Zhou Z.J., Li J., et al. HCN and NH3(NOx precursors) released underrapid pyrolysis of biomass/coal blends[J]. J. Anal. Appl. Pyrolysis,2011,92(2):463-469.
    [140] Yuan S., Zhou Z.J., Li J., et al. Nitrogen conversion during rapid pyrolysis of coaland petroleum coke in a high-frequency furnace[J]. Applied Energy,2012,92:854-859.
    [141] Yao M.Y., Che D.F., Liu Y.H., et al. Effect of volatile-char interaction on the NOemission from coal combustion[J]. Environ. Sci. Technol.,2008,42(13):4771-4776.
    [142] Tian F.J., Yu J.L., Mckenzie L.J., et al. Formation of NOx precursors during thepyrolysis of coal and biomass. Part7. Pyrolysis and gasification of cane trash withsteam[J]. Fuel,2005,84(4):371-376.
    [143] Tian F.J., Wu H.W., Yu J.L., et al. Formation of NOx precursors during thepyrolysis of coal and biomass. Part8. Effects of pressure on the formation of NH3and HCN during the pyrolysis and gasification of Victorian brown coal insteam[J]. Fuel,2005,84(6):2102-2108.
    [144] Mckenzie L.J., Tian F.J., Li C.Z. NH3formation and destruction during thegasification of coal in oxygen and steam[J]. Environ. Sci. Technol.,2007,41(15):5505-5509.
    [145] Bond G., Moyes R.B., Whan D.A. Recent applications of microwave heating incatalysis[J]. Catalysis Today,1993,17(3):427-437.
    [146] Hoz A.D.L., Diaz-Ortiz A., Moreno A. Microwaves in organic synthesis. Thermaland non-thermal microwave effects[J]. Chem. Soc. Rev.,2005,34(2):164-178.
    [147] Li J., Liu Y. The investigation of thermal decomposition lawways ofphenylalanine and tyrosine by TG~FTIR[J]. Thermochimica Act.,2008,467:20-29.
    [148]降文萍.煤热解动力学及其挥发分析出规律的研究[D].太原理工大学硕士学位论文,2004:21-35.
    [149] Nelson P.F., Buekttzy A.N. Funetional Forms of Nitrogen in Coals: the Release ofCoal Nitrogen as NO Precursors (HCN and NH3)[J]. In24th SymP (Int)Combustion Institute,1998,1259-1263.
    [150] Friebel J., Kopsel R.F.W. The fate of nitrogen during pyrolysis of german lowrank coals-a parameter study[J]. Fuel,1999,78(8):923-932.
    [151] Wu Z., Sugimoto Y., Kawashima H. Catalytic nitrogen release during a fixed-bedpyrolysis of model coals containing pyrrolic or pyridinic nitrogen[J]. Fuel,2001,80(2):251-254.
    [152] Wu Z., Sugimoto Y., Kawashima H. Effect of demineralization and catalystaddition on N2formation during coal pyrolysis and on char gasification[J]. Fuel,2003,82(15-17):2057-2064.
    [153] Huettinger K.J. Fundamental problems in iron-catalysed coal gasification-Asurvey[J]. Fuel,1983,62(2):166-169.
    [154] Liu Y., Che D., Xu T. Catalytic reduction of SO2during combustion of typicalChinese coals[J]. Fuel Processing Technology,2002,79:157-169.
    [155] Liu Q., Hu H., Zhou Q., et al. Effect of inorganic matter on reactivity and kineticsof coal pyrolysis[J]. Fuel,2004,84:713-718.
    [156]徐秀峰,顾永达,陈诵英.铁催化剂对煤热解过程中氮元素迁移的影响[J].燃料化学学报,1998,26(1):18-23.
    [157] Kambara S., Takarada T., Toyoshima M. Relation between functional forms ofcoal nitrogen and NOx emissions from pulverized coal combustion[J]. Fuel,1995,74(9):1247-1253.
    [158] Bru K., Blin J., Julbe A., et al. Pyrolysis of metal impregnated biomass: Aninnovative catalytic way to produce gas fuel[J]. J. Anal. Appl. Pyrolysis,2007,78(1):291-300.
    [159] Liu Y.S., Kong S.F., Li Y.Q., et al. Novel technology for sewage sludge utilization:Preparation of amino acids chelated trace elements (AACTE) fertilizer[J]. J.Hazard. Mater.,2009,171(1-3):1159-1167.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700