过滤电弧离子镀沉积发光AlN薄膜及其性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
AlN薄膜具有一系列优异的物理与化学性能,其禁带宽度为6.2eV,是所有Ш-V族半导体材料中禁带宽度最宽的直接带隙半导体材料,带间跃迁发射波长可深入深紫外波段,是一种很有潜力的半导体发光材料。目前有很多方法用于制备发光AlN薄膜材料,如磁控溅射、金属有机物化学气相沉积、分子束外延等,而过滤电弧离子镀作为一种高离化率,高沉积速率的成膜方法,却因薄膜中含有大颗粒,在发光薄膜的制备中甚少得到应用。本文分别利用挡板过滤和90°弯管磁过滤电弧离子镀法消除大颗粒,制备了AlN,AlN:Cr,AlN:Cu等薄膜,并对其光致发光性能进行了研究。
     对挡板电弧离子镀制备非掺杂的研究发现,在非本征少量杂质氧元素的作用下,其光致发光谱为在400nm左右的宽带发射峰;该薄膜具有不明显的(100)方向的择优取向,其均方根粗糙度Rms值为22.150nm,Ra值为16.281nm;随着靶基距的增大,AlN薄膜的结构由多晶态逐渐转变为非晶态。
     磁过滤电弧离子镀Cr掺杂AlN薄膜,在制备过程中没有对基底进行加热,AlN:Cr薄膜为非晶态,其中Cr是以三价离子的状态存在,Cr元素的原子百分含量为5.4%,由于Cr3+形成发光中心,导致有红色的光致发光峰出现。磁过滤电弧离子镀AlN:Cr薄膜的霍尔系数为31.29cm3/C,霍尔迁移率为35.34cm2/ (V·s),载流子浓度为-1.99×1017cm-3。
     用挡板电弧离子镀制备的Cu掺杂AlN薄膜也呈非晶态,暴露于空气中的薄膜表面存在C、O等元素污染,剥蚀后氧元素迅速降低至4.1%,形成富Al的AlN薄膜,Cu元素的原子百分比为11%,有一价铜元素的存在,正是由于Cu+形成发光,其光致发光峰为中心在450nm的宽带发射峰。挡板电弧离子镀AlN:Cu薄膜的霍尔系数为3.2666cm3/ C,霍尔迁移率为0.2547cm2/(V·s),载流子浓度为1.9×1018cm-3。用磁过滤电弧离子镀制备的AlN:Cu薄膜也呈非晶态,其发光中心也在450nm左右,并发现基底为P型(111)硅和载玻片的发光强度更高,随着基底负偏压的增大,有助于发光强度的提高。
     为了研究无荧光粉白色发光材料,用磁过滤电弧离子镀的方法制备了多晶AlN:Cr,Cu双层膜,其发射波长范围覆盖蓝紫色和红光发射区。
Aluminium nitride thin film has a series of excellent physical and chemical properties,with a wide-bandgap of 6.2eV,AlN is a direct and widest-bandgapШ-V semiconductor material, the bandgap transition can give a deep ultraviolet light, it shows a promising and potential semiconductor luminescent material.Now many technologies have been used for preparation of luminescent AlN thin films such as magnetron sputtering, Metal-organic Chemieal Vapor Deposition, molecular beam epitaxy and so on.The arc ion planting as a high ionization, high deposition rate vacuum coating technology has little usage in the preparation of luminescent materials because of the macroparticles pollution in the films.The AlN,AlN:Cr,AlN:Cu thin film were deposited by sheild plate or magnetic filter arc ion planting so as to eliminate the macroparticles pollution,and also studied the properties of photoluminescence of these films.
     The non-doped AlN thin film was prepared by shield plate arc ion plating, under the function of some non-intrinsic oxygen impurity, it has a broad band photoluminescence spectrum with its wave crest at about 400nm.This film has an unconspicuous (100) preferential orientation, the surface roughness value Rms is 22.150 nm and Ra is 16.281nm, with the accretion of target- substrate distance, the configuration of AlN thin film got a transition from crystal to noncrystal.
     No heat was used on the substrate in the preparation of Cr-doped AlN thin film by magnetic filter arc ion planting(MFAIP),this film is noncrystal and the Cr element has an existance of trivalence ion and its atom percent is 5.4%,just because of the existence of Cr3+,the red photoluminescence is observed. The carrier chroma of MFAIP AlN:Cr thin film is -1.99×1017cm-3,and its hall conficient and hall mobile are 31.29cm3/ C and 35.34cm2/ (V·s).
     The noncrystal Cu-doped AlN thin film was prepared by shield plate arc ion plating, pollution of C、O elements exist in the surface of this film as the film exposed to the air after deposition.After the denudation to the inside of this film,the oxygen is 4.1% and formed an Al-rich AlN thin film,the atom percent of Cu is 11% and has an existance of univalent ion ,owing to that reason,the central photoluminescence spetrum is 450nm.The carrier chroma of shield plate arc ion plating AlN:Cu thin film is 1.9×1018 cm-3, and its hall conficient and hall mobile are 3.2666cm3/ C and 0.2547cm2/ (V·s).Also the noncrystal Cu-doped AlN thin film was prepared by magnetic filter arc ion planting,and find that the P-type(111) silicon and glass substrate have more luminescent intensity and the increase of bias voltage boosts the photoluminescence intensity of AlN:Cu thin film.
     To study the phospor-free luminescent material, the AlN: Cr, Cu double-layer thin film was deposited by magnetic filter arc ion planting and its luminescent spectrum consists of blue-violet and red emission.
引文
[1]黄可,刘清.各国的半导体照明研究计划及我国的对策[J].中国科技论坛, 2008, 6:136-139
    [2]宋航, Park S.H., Kang T.W., et al.分子束外延高Mg掺杂GaN的发光特性[J].发光学报, 1999, 20(2): 148-151
    [3] Zolina K.G., Kudryashov V.E., Turkin A.N., et al. Luminescence spectra of blue and green light-emitting diodes based on multilayer InGaN/AlGaN/GaN heterostructures with quantum wells[J]. Semiconductors, 1997, 31(9): 901-907
    [4] Liu F.S., Dong H.W., Liu Q.L., et al. Characterization and photoluminescence of AlN: Eu films [J]. Optical Material, 2006, 28: 1029-1036
    [5] Lozykowski H.J., Jadwisienczak W.M., Bensaoula A., et al. Luminescence and excita- tion mechanism of Pr, Eu, Tb and Tm ions implanted into AlN[J]. Microelectronics Journal, 2005, 36: 453-455
    [6] Kim G..C., Park H.L., Yun S.I., et al. Solid solubility limit of cerium in CaS: Ce3+ phosphor [J]. Journal of Material Science Letters,1986, 5: 359-368
    [7] Zhong Shengliang, Wang Shijin, Xu Huaping, et al. Spindlelike Y2O3:Eu3+ nanorod bundles: hydrothermal synthesis and photoluminescence properties [J]. Journal of Material Science, 2009, 44: 3687-3693
    [8] Wang S.F., LüM.K., Gu F., et al. Effect of Pb2+ ions on the photoluminescence characteristics of Mn2+ doped Zn2SiO4[J]. Applied Physics A, 2005, 80: 871-874
    [9] Lai Hua, Bao Amurisana, Yang Yuming, et al. Correlation of photo-luminescence of (La, Ln) PO4:Eu3+ (Ln = Gd and Y) phosphors with their crystal structures [J]. J.Nanopart Res, 2008, 10: 1355-1360
    [10] Hong S.K., Jung D.S., Ju S.H., et al. The Effect of flux types on the formation of green light emitting phosphor particles with spherical shape and filled morphology [J]. J.Mater. Sci: Mater.Electron., 2006, 17: 341-346
    [11] Zhu Hongliang, Yang Hong, Jin Dalai, et al. Hydrothermal synthesis and photo- luminescent properties of YV1-PxO4:Eu3+ (x=0–1.0) nanophosphors[J]. J.Nanopart Res., 2008, 10: 1149-1154
    [12] Rajan K.G., Lenus A.J.. X-ray excited optical luminescence studies on the system BaXY (X,Y =F, Cl, Br, I) [J]. Journal of Physics, 2005, 65 (2): 323-338
    [13] Inoguchi T., Takeda M., Kak ihara Y., et al. Stable high brightness thin film electro- luminescent panels [C]. SID Int.Symp.Digest, Los Angeles, 1974: 84-85.
    [14]赵辉王,永生,徐征,等.无机薄膜电致发光研究进展[J].半导体光电, 1999, 20(3): 149-153
    [15] Krames M.R., Collins D., Gardner N.F., et al. High-power III-nitride emitters for solid- state lighting [J]. Phys. Stat.Solida., 2002, 192(2): 237-245
    [16] Steigerwald D.A., Bhat J.C., Collins D., et al. Illumination with solid state lighting technology [J]. IEEE J.Selet.Top.Quant.Electron, 2002, 8(2): 310-320
    [17] Mueller Mach R., Mueller G..O., Krames M.R., et al. High-power phosphor-converted light-emitting diodes based on III nitrides [J]. IEEE.J.Selet.Top.Quant.Electron, 2002, 8(2): 339-345
    [18]罗毅,张贤鹏,韩彦军,等.半导体照明关键技术研究[J].激光与光电子学进展, 2007, 44(3): 17-28
    [19] Lia J., Fan Z.Y., Daha R., et al. 200 nm deep ultraviolet photodetectors based on AlN [J]. Applied Physics Letters, 2006, 89: 213510
    [20]吕惠民,陈光德,耶红刚,等.六方单晶氮化铝薄膜的合成与紫光发光机理[J].光子学报, 2007, 36(9): 1687-1690
    [21] Martin A.L., Spalding C.M., Dimitrova V.I., et al. Visible emission from amorphous AlN thin-film phosphors with Cu, Mn, or Cr [J]. J.Vac.Sci.Technol.A, 2001, 19: 1894-1897
    [22] Caldwell M.L., Martin A.L., Dimitrova V.I., et al. Emission porperties of an amorphous AlN: Cr3+ thin-film phosphor [J]. Appl. Phys. Lett., 2001, 78: 1246-1248
    [23] Dimitrova V.I., Van Patten P.G., Richardson H., et al. Photo-, cathodo-, and electro- luminescence studies of sputter deposited AlN: Er thin films [J]. Applied Surface Science, 2001, 175-176: 480-483
    [24] Liu F.S., Ma W.J., Liu Q.L., et al. Photoluminescence and characteristics of terbium- doped AlN film prepared by magnetron sputtering[J]. Applied Surface Science, 2005, 245: 391-399
    [25] Richardson H.H., Van Patten P.G., Richardson D.R., et al. Thin-film electro-luminescentdevices grown on plastic substrates using an amorphous AlN:Tb3+ [J]. Appl.Phys.Lett., 2002, 80: 2207-2209
    [26] Maqbool M..Luminescence and Thermal Annealing of Sputtered Deposited Samarium- Doped Amorphous AlN Films [J]. Surface Review and Letters, 2005, 12: 767-771
    [27]巴德纯、佟洪波、闻立时. Mn或Cu掺杂非晶AlN薄膜的光致发光特性[J].真空科学与技术学报, 2007, 27(6): 508-510
    [28] Gurumurugan K., Chen H., Harp G.R., et al. Visible cathodoluminescence of Er-doped amorphous AlN thin films [J]. Appl.phys.lett., 1999, 74: 3008
    [29] Aldabergenova S.B., Osvet A., Frank G., et al. Blue, green and red emission from Ce3+, Tb3+and Eu3+ ions in amorphous GaN and AlN thin films [J]. Journal of Non-Crystalline Solids, 2002, 299-302: 709-713
    [30] Wilson R.G., Schwarz R.N., Abernathy C.R., et al. 1.54μm photoluminescence from Er- implanted GaN and AlN [J]. Appl. Phys. Lett., 1994, 65: 992
    [31] Sato A., Azumada K., Atsumori T., et al. Low-temperature metalorganic chemical vapor deposition of luminescent manganese-doped aluminum nitride films [J]. Appl. Phys. Lett., 2005, 87: 021907
    [32] Lu F., Carius R., A.Alam.M., et al. Green electroluminescence from a Tb-doped AlN thin- film device on Si [J]. Journal of Applied Physics, 2002, 92: 2457-2460
    [33] Mendel H., Aldabergenova S.B., Weingartner R, et al. Anneal-ing of amorphous and nano- crystalline AlN and GaN films and photoluminescence of Tb3+ centers[J]. Optical Material, 2006, 28: 794-796
    [34] Thaik M., H?mmerich U., Schwartz R.N., et al. Photoluminescence spectroscopy of erbium implanted gallium nitride [J]. Appl. Phys.Lett., 1997, 71: 2641
    [35] Wu X., H?mmerich U., MacKenzie J.D., et al. Photoluminescence study of Er-doped AlN [J]. Journal of Luminescence, 1997, 72-74: 284-286
    [36]徐军,周圣明,杨卫桥,等. InN和GaN系衬底材料的研究和发展[J].中国有色金属学报,2004: 386-390
    [37]臧竞争.新型晶体材料[M].北京:化学工业出版社, 2006: 97-170
    [38]周公度,段连运.结构化学基础(第二版)[M].北京:北京大学出版社, 1995: 87-100
    [39]科顿F A.群论在化学中的应用[M].刘春万,游效曾,赖伍江译.福州:福建科学技术出版社, 1999: 185-191.
    [40]孙家跃,杜海燕,胡文祥.固体发光材料[M].北京:化学工业出版社,2003:67-77
    [41]余宪恩.实用发光材料与光致发光机理[M].北京:中国轻工业出版社, 1997: 97-161
    [42] Qiu J., Hirao K.. Long lasting phosphorescence in Eu-doped calciym aluminoborate glasses [J]. Solid StateCommunications. 1998, 106(12): 795-798
    [43]张天之,苏锵,王淑彬.长余辉发光性质的研究[J].发光学报. 1999, 20(2): 170- 175.
    [44]张中太,张俊英.无机光致发光材料及应用[M].北京:化学工业出版社, 2005: 120-121
    [45] Abanti Nag., Kutty T.R.N.. Role of B2O3 on phase stability and long phosphorescence of SrAl2O4: Eu, Dy [J]. Journal of Alloys and Compounds, 2003, 354: 221-231
    [46] Qiu Jianrong, Miura K., Inouye H., et al. Femtosecond laser-induced three-dimensional bright and long-lasting phosphorescence inside calcium aluminosilicate glasses doped with rare earth ions [J]. Appl. Phys. Lett., 1998, 73(13): 1763-1765
    [47] Nobuhiro Kodama,Tomoko Takahashi, Mitsuo Yamaga, et al. Long-lasting phospho- rescence in Ce3+-doped Ca2Al2SiO7 and CaYAl3O7 crystals[J]. Appl. Phys. Lett., 1999, 75 (12): 1715-1717
    [48] Nakazawa E., Mochida T.. Traps in SrAl2O4: Eu2+ phosphor with rare-earth ion doping [J]. Journal of Luminescence, 1997, 72-74: 236-237
    [49] Matsuzawa T., Aoki Y., Takeuchi N., et al. A New Long Phosphorescent Phosphor with High Brightness, SrAlO: Eu, Dy[J]. J.Electrochem.Soc., 1996, 143(8): 2670-2673
    [50] Takeru Kinoshita, Masaaki Yamazaki, Hiroshi Kawazoe, et al. Long lasting phospho- rescence and photostimulated luminescence in Tb-ion-activated reduced calcium aluminate glasses[J]. J. Appl. Phys.,1999, (86): 3729-3733
    [51]张瑞俭,宁桂玲.发光体MAl2O4: Eu2+, RE3+的长余辉形成机理[J].光电子技术. 2003, 23(01): 30-34
    [52]王广甫.磁过滤脉冲阴极真空弧沉积系统研制及合成薄膜研究[D].北京:北京师范大学,1999
    [53]罗云,张孝吉,张荟星等.阴极真空弧放电等离子体的过滤及传输[J].北京师范大学学报(自然科学版), 1996, 32(3): 334~337
    [54]吴刚.材料结构表征及应用[M].北京:化学工业出版社,2001: 357-360
    [55]周继承,石之杰. AlN电子薄膜材料的研究进展[J].材料导报,2007,21(5):14-16
    [56]杨克涛,陈光辉. AlN薄膜的研究进展[J].山东陶瓷, 2005, 28(1): 17-21
    [57]阎明.电弧离子镀AlN薄膜及其性能的研究[D].广州:华南理工大学,2008
    [58] Yang D., Jonnalagadda R., Rogers B.R., et al. Texture and surface roughness of PRCVD aluminum [J]. Thin Solid Films, 1998(332): 312-318
    [59]日本电子材料工业会.声表面波器件及应用[M].许昌昆、孟秀林.北京:科学出版社,1984:99-113
    [60]武海顺,许小红,张富强,等.氮化铝压电薄膜的晶面择优取向[J].真空科学与技术,2000,20(6):442-446
    [61]邢涛,王波,陈轶平,等.磁控反应溅射制备择优取向氮化铝薄膜[J].物理实验, 2005, 25(12): 11-14
    [62]张勇.掺杂AlN的理论和实验研究[D].武汉:华中科技大学, 2008
    [63] Wagner C.D., Riggs W.M., Davis L.E., et al. Handbook of X-Ray Photoelectron Spectro- scopy [M]. New York, USA: Perkin-Elmer Corporation Physical Electronics Division, 1979
    [64] Briggs D., Seah M.P.. Practical Surface analysis by Auger and X-ray photoelectron Spectroscopy [M]. USA: John Willy&Sons, 1993
    [65] Onyiriuka, Emmanuel C.. Aluminum, Titanium Boride and Nitride Films Sputter- Deposited from Multicomponent Alloy TargetsStudied by XPS [J]. Applied Spectroscopy, 1993, 47(1): 35-37
    [66] Fernandez A., Real C., Sanchez Lopez J.Z., et al. The use of X-ray photoelectron spectroscopy to characterize fine AlN powders submitted to mechanical attrition [J]. Nano-Structured Materials, 1999, 11(2): 249-257
    [67] Marcus P., Bussell M.E.. XPS study of the passive films formed on nitrogen-implanted austenitic stainless steels [J]. Applied Surface Science, 1992, 59(1): 7-21
    [68] Stypula B., Stoch J.. The characterization of passive films on chromium electrodes by XPS [J]. Corrosion Science, 1994, 36(12): 2159-2167
    [69]金瑞琴,朱建军,赵德刚,等. p型GaN的掺杂研究[J].半导体学报, 2005, 26(3): 508-512
    [70]江风益,李述体,王立,等. MOCVD生长GaN: Si单晶膜的研究[J].发光学报, 2000,21(2): 120-123
    [71] Valentina C., Caraman M., Rusu I.I., et al. On the luminescence of GaS (Cu) single crystals [J]. Journal of Luminescence, 2003, 101: 71–77
    [72] Grecu D., Compaan A.D.. Photoluminescence of Cu-doped CdTe and related stability issues in CdS/CdTe solar cells [J]. Journal of Applied Physics, 2002, 88: 2490-2496
    [73] Vito Capozzi,Antonio Minafra. Photoluminescence properties of Cu-doped GaSe [J]. J. Phys. C: Solid State Phys., 1981,14: 4335-4346
    [74] Queisser H.J., Fuller C.S.. Photoluminescence of Cu-Doped Gallium Arsenide [J]. Journal of Applied physics. 1966, 17: 4895-4899
    [75] Wang X.B., Song C., Geng K.W., et al. Photoluminescence and Raman scattering of Cu- doped ZnO films prepared by magnetron sputtering [J]. Applied Surface Science, 2007, 253: 6905-6909
    [76] Bol A.A., Ferwerd J., Bergwerff J.A., et al. Luminescence of nanocrystalline ZnS: Cu2+ [J]. Journal of Luminescence, 2002, 99: 325-334
    [77] Huang Jinman, Yang Yi, Xue Shanhua, et al. Photo-luminescence and electro- luminescence of ZnS: Cu nanocrystals in polymeric networks [J]. Appl.Phys.Lett., 1997, 70(18): 2335-2337
    [78] Ali Azam Khosravi, Manisha Kundu, Lalita Jatwa, et al. Green luminescence from copper doped zinc sulphide quantum particles [J]. Appl. Phys. Lett., 1995, 67(18): 2702-2704
    [79] Yang Ping, Song Chunfeng, Lu Mengkan, et al. Photoluminescence of Cu+-doped and Cu2+-doped ZnS nanocrystallites [J]. Journal of Physics or Chemistry Solids, 2002, 63: 639-643
    [80] Lahaye J., NanséG., Bagreev A., et al. Porous structure and surface chemistry of nitrogen containing carbons from polymers [J]. Carbon, 1999, 37(4): 585-590
    [81] Schmiers H., Friebel J., Streubel P., Hesse R., et al. Change of chemical bonding of nitrogen of polymeric N-heterocyclic compounds during pyrolysis [J]. Carbon, 1999, 37(12): 1965-1978
    [82] Hinnen C., Imbert D., Siffre J.M., et al. An in situ XPS study of sputter-deposited aluminium thin films on graphite [J].Applied Surface Science, 1994, 78(3): 219-231
    [83] Rochefort A., Abon M., Delichère P., et al. Alloying effect on the adsorption properties of Pd50Cu50{111} single crystal surface[J]. Surface Science, 1993,294(1-2):43-52
    [84]张怀武.偏压对溅射ITO膜载流子浓度和迁移率的影响[J].半导体光电, 1993, 14(1): 89-92
    [85]李述体,范广涵,周天明,等.退火对P型GaP和P型AIGaInP载流子浓度的影响[J].华南师范大学学报(自然科学版), 2004, 1: 67-70
    [86]丛秋滋.多晶二维X射线衍射[M].北京:科学出版社, 1997: 80-88
    [87] Nikishin S.A., Faleev N.N., Antipov V.G., et al. High quality GaN grown on Si (111) by gas source molecular beam epitaxy with ammonia[J]. Appl. Phys. Lett., 1999, 75 (14): 2073 -2075
    [88] Schenk H.P.D., Kipshidze G.D., Lebedev V.B., et al. Epitaxial growt h of AlN and GaN on Si (111) by plasma2assisted molecular beam epitaxy[J]. J.Cryst. Grow., 1999, 201/ 202: 359-364
    [89] Ishikawa H., Zhao G.Y., Nakada N., et al. High quality GaN on Si subst rate using AlGaN/ AlN intermediate layer [J]. Phys.Stat.Sol.(a), 1999,176 (1) : 599-603.
    [90]刘技文,李娟,许京军.射频磁控溅射工艺参数对SiC薄膜发光性能的影响[J].光电子.激光, 2006, 17(5): 558-563
    [91] Papadimitriou D., Roupakas G., Xue C., et al. Raman and photoluminescence study of magnetron sputtered amorphous carbon films[J]. Thin Solid Films, 2002, 414: 18-24
    [92]夏磊.常温等离子体化学气相沉积制备纳米多孔硅基薄膜的过程和特性研究[D].上海:东华大学,2007
    [93]许文翠,牛萍娟,付贤松,等.无荧光粉转换白光LED的研究和进展[J].光机电信息. 2009, 26(8): 25-29
    [94] Martin A.L., Caldwell M.L., Kordesch M.L., et al. Luminescence properties of amorphous AlN thin film phosphors incorporated with mixtures of Tb, Cu or Cu, Cr [J]. Mat.Res. Soc. Symp.Proc., 2001, 639: 651-656
    [95]田少华,李志强,宋伟朋. Cu+对ZnS:Cu电致电光光致发光谱的影响[J]. 2004, 24(5): 482-485
    [96]徐玲,马忠元,徐峻,等.不同尺寸CdTe纳米晶体的共振能量迁移过程的荧光光谱[J].半导体学报,2006,27:68-71
    [97]毛丽红.纳米硫化锌发光材料的制备与发光性能研究[D].上海:上海师范大学,2005
    [98]傅竹西,林碧霞,郭常新,等.氧化锌半导体薄膜的光致发光谱[J].半导体学报,1999, 20(9):827-830

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700