远距离运动物体动态参数测试技术的理论和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究为本实验室与二炮合作项目“导弹落地阶段动态参数测量技术的研究”的预研。本课题采用双目视觉立体成像技术,建立了适用于导弹航天测量的光电测量系统。在该测量系统中,摄像机以固定方式(非跟踪方式)对着预定空域,将光电经纬仪和弹道相机作用原理部分应用于解析摄影中,实现远距离运动物体的三维轮廓、运行姿态和运动速度的测量。该系统具有对硬件要求低,实现简单,成本低,精度较高,稳定性较高,运用范围广的特点。本论文主要完成以下研究工作:
     1.详细论述了简化的双目立体视觉测量系统,分别建立了光轴平行测量系统和光轴垂直测量系统的数学模型,并对高速摄像机参数选择进行了理论推导和选择。从光电经纬仪的测量原理及一般双目立体视觉测量系统分析出发,提出了简化的双目视觉系统,并分别建立了光轴平行测量系统和光轴垂直测量系统的数学模型。分析讨论了摄像机摆放位置与摄像机内部参数之间的关系。理论推导了测量用摄像机的内部参数的选择。通过实验,给出了当落弹范围要求不同时,摄像机摆放位置与摄像机内部参数之间的关系,给出了可选用的摄像机参数的部分数据。
     2.详细论述了两摄像机光轴平行和两摄像机光轴垂直时的摄像机标定方法。从理想透视原理出发,推导并建立了不考虑畸变的理想摄像机成像模型。在此基础上,论述了考虑径向和切向畸变的摄像机模型,并用罚函数法对畸变模型中的摄像机内外部参数进行了分析求解。详细研究了两摄像机光轴平行和光轴垂直的实现条件,并建立了相应的数学模型。通过实验,给出了左右CCD的内部和外部参数以及径向和切向畸变系数等标定结果,并分析了标定的误差,给出了两摄像机光轴平行和光轴垂直的标定图。结果表明,这种标定方法精度很高,X方向的标定误差最大只有±0.05pixel,Y方向的标定误差最大只有±0.07pixel。
     3.系统研究并分析了对远距离运动物体的图像进行边缘特征提取和立体匹配的方法,并给出了相应的解决方案。在研究三种常用的特征提取方法的基础上,提出以下特征提取方法:用灰度动态范围压缩方法对图像进行灰度预处理,用掩膜的方法将图像从背景中提取出来,用Sobel算子提取出图像的边缘信息。从摄像机的成像平面几何原理出发,用水平扫描线搜索的方法,得到匹配右像点的取值范围;用灰度相关与模板匹配相结合的方法,在取值范围内得到待匹配的右像点坐标;采用相关窗口方法对非边缘像点进行立体匹配,实现了远距离运动物体三维信息的恢复。应用水平顺序匹配约束策略对视差图进行误差检测与校正。通过实验,给出了不同被测物的边缘信息、视差图、经过校正的视差图以及恢复出的三维轮廓。
     4.详细研究讨论了在两种简化的双目测量系统中炮弹运行姿态和运动速度的求取方法。当采用两光轴平行系统时,利用运动目标表面点到弹轴的距离相等的原理,用最小二乘拟合法得到弹轴矢量。当采用两光轴垂直系统时,应用两种方法来求取弹轴矢量:一种是利用中轴线法推导出炮弹在两个CCD像面上所成的直线方程,通过透射原理得到弹轴矢量;另一种是利用光轴垂直原理求取弹轴矢量。从弹轴矢量出发,推导了姿态角的数学公式。应用三维插值方法,对立体匹配后得到的N个时刻坐标点进行插值,求取运行距离、平均速度。进行了求取炮弹模型在运动过程中的运行轨迹、运行姿态角、运动距离以及运动速度等运动参数的实验。实验结果表明,该测量方法具有较高的精度,能满足远距离运动物体运动参数的测量要求。
The research work of the dissertation is the pre-research item of the project“The theoretical and experimental research on dynamic parameter test technology of missile falling to the ground”, cooperated with PLA Second Artillery Forces. An electro-optical measurement system has been developed. Using the imaging technology of the binocular vision, the proposed electro-optical measurement system can measure the attitude and velocity of remote motion object easily. In the measurement system two CCDs are fixed toward the space which the remote moving object will go through, and the working principles of the photoelectric theodolite and the ballistic camera are used in the analytic photogrammetry. It is of the advantages such as low requirement to hardware, easy to implementation, low cost, high accuracy, and extensive applied fields. The research work of the dissertation mainly includes four aspects as follows:
     1. The simplified binocular stereo vision measurement systems are studied. On the basis of the analysis on general binocular stereo vision measurement system, two kinds of novel simplified binocular stereo vision measurement systems, namely one system in which two cameras’(CCD ) ray axes are parallel and the other in which two cameras’(CCD) ray axes are vertical, is proposed and the corresponding mathematic model is established. The relation of the camera location and its inner parameters is researched and discussed. Based on the above relation, how to select the parameters of the high speed camera employed in the measurement system is analyzed. Through the experiment, the relation of the camera location and its inner parameters is given and some available camera parameters are obtained when the moving object fall to different site on the ground.
     2. The CCD calibration method of the two simplified binocular stereo vision measurement systems is researched. Starting with perspective theory, the camera imaging model without thinking of distortion is derived and established. The camera imaging model with radial and tangential distortion is given, and the outer and inner parameters of CCD are obtained with the penalty function algorithms. The parallel condition and vertical condition of CCDs’ray axes is studied and performed separately. Experiments give the calibration results such as inner and outer parameter, radial and tangentialdistortion coefficients of the CCD, and calibration figures. The calibration error is also analyzed. The results show that the calibration method is of high precision: the error of X direction is no more than±0.05pixel, and the error of Y direction is no more than±0.07pixel.
     3. The methods of edge feature extracting and stereo matching on images of the remote moving object are researched and the corresponding settle schemes are given. On the basis of studying three general feature extracting methods, we realize the edge feature extracting as follows: Firstly, the images collected are pre-processed with grey compress method; Secondly, the images are extracted with the mask method; Lastly, the edge information of the images are obtained with the Sobel operator. The stereo matching on images are proceeded as follows: Firstly, The span of right points matching with left points is obtained with the search method of level line; Secondly, the grey correlation method and model matching model are employed to obtain the coordinates of right points from the span; Lastly, the related window method is used to realize the stereo matching of the points which is not edge points, and then the 3-D profile of the moving object can be recovered. With the level sequence matching strategy, the error of disparity image is detected and corrected. A lot of experiments have been done and the results such as the edge information, disparity image, corrected disparity image and recovered 3-D profile of different measured object at different angle, are obtained.
     4. The implement methods of the attitude and velocity of missile in the two simplified binocular vision measurement system are discussed. When the measurement system in which two CCDs’ray axes are parallel, is employed, starting with the principle of equal interval between the measured object’s surface points and its axis, the axis vector of the object is obtained with the least-square fitting method. When the measurement system in which two CCDs’ray axes are vertical, is adopted, there are two methods to get the axis vector of measured object. One method is to derive the linear equation of the object axis’projection line in CCD image plane with the axle wire method, and then to get the axis vector of the object using the transmission principle. The other method is to adopt the vertical principle of two CCDs’optical axes to obtain the axis vector of measured object. Starting with the axis vector, the attitude angle is derived. The 3-D interpolation method is improved to interpolate the 3-D coordinates of measured model in different times which are obtained by stereo matching. The moving distance of object is gotten by the3-D interpolation, and then the mean velocity is obtained. The experiment to get the motion parameters of missile model such as moving trace, attitude, interval and velocity has been done. The experiment results show that the measurement methods are of high accuracy, and can satisfy the measurement require of remote moving object.
引文
[1] E.R. Billarn, Phased Array Radar and Detection of Low Observables, Proc. IEEE Int. Radar Conf., 1990,491-495.
    [2] G. Van Keuk, Multihypotheses Tracking Using Incoherent Signal-Strength Information, IEEE Trans. On Aerospace and Electronic System, 1996, AES-32:1164-1170.
    [3] T. Kirubarajan, Y. Bar-Shalom, Low Observable Target Motion Analysis Using Amplitude Information, IEEE Trans. On Aerospace and Electronic System, 1996,ASE-32:1367-1383.
    [4] F. Daum, A System Approach to Multiple Target Tracking, Multitarget-Multisensor Tracking: Applications and Advances, Vol.Ⅱ,Y.Bar-Shalom(Ed.), Norwood, MA: Artech House,1992.
    [5] D.R. Moegan, Target Swamping in the Dynamic Programming Detection Algorithm, Technical Memorandum TM6873-001, Palo Alto, CA: Systems Control Inc., 1978.
    [6] G.W. Johnson, W.A. Bradford, Thresholds in Combined and Source Motio Estimation, Proc. IEEE Int. Conf. On Accoustics, Speech and Signal Processing, 1987:1095-1098.
    [7] P. Wei, J. Zeidler, W. Ku, Analysis of Multiframe Target Detection Using Pixel Statistics, IEEE Transaction on Aerospace and Electronic System, 1995, AES-31(1):238-247.
    [8] S.M. Tonissen, R.J. Evans, Performance of dynamic Programming Techniques for Track- Before-Detect, IEEE Trans. On Aerospace and Electronic System, 1996, AES-32(4):1440-1450.
    [9] M.E. Albert, J.H. Connell, Visual Rotation Detection and Estimation for Mobile Robot Navigation, Robotics and Automation, Proc. IEEE International Conference on ICRA '04, 2004, 5:4247-4252.
    [10] Y. Bar-shalom, X.R. Li, Estimation and Tracking Principles, Techniques and Software, Norwood, MA: Artech House, 1993.
    [11] Y. Bar-shalom, X.R. Li, Multitarget-Multisensor Tracking: Priciples and Techniques, Storrs, CT: YBS Publishing,1995.
    [12] S. Blackman, R. Popoli, Design and Analysis of Modern Tracking System, Artech House,1999.
    [13] A.S. Willsky, et al., Dynamic Model-Based Techniques for Detection of Incidents on Freeways, IEEE Transaction on Automatic Control, 1980, AC-25:347-359.
    [14] F.E. Daum, R.J. Fitzgerald, Decoupled Kalman Filters for Phased Array Radar Tracking, Trans. On Automatic Control, 1983, AC-28(3):268-283.
    [15] R.S. Baheti, Efficient Approximation of Kalman Filter for Target Tracking, IEEE Trans. On Aerospace and Electronic System, 1986, AES-22(1):8-14.
    [16] S.R. Rogers, Instability of a Decoupled Kalman Tracking Filter, IEEE Trans. On Automatic Control, 1989, AC-34:469-471.
    [17] R.K. Mehra, A Comparison of Several Nonlinear Filters for Reentry Vehicle Tracking, IEEE Trans. On Automatic Control, 1971, AC-16:307-319.
    [18] R.L. Gray, A pure-Cartesian Formulation for Tracking Filters, IEEE Trans. On Aerospace and Electronic System, 1993, 29(3):749-754.
    [19] M.A. Al-Alaoui, R. Farran, C. Lakkis, R. Rabbat, Ballistic oracle at military borders (B.O.M.B), The 7th IEEE International Conference on Electronics, Circuits and Systems(ICECS ), 2000, 1:446-449.
    [20] 何照才,光电测量,国防工业出版社,2002。
    [21] 何照才,胡保安,光学测量系统,国防工业出版社,2002。
    [22] 贾维敏,多传感器的数据融合落点定位方法研究,核电子学与探测技术,2004,24(5): 484-487.
    [23] C.A.Paiva, H.S. Slusher, High Energy Laser Rransmissions Through Missile Exhaust Plumes: the Implications for High Angle-of-Attack(AOA) Scenarios, Lasers and Electro-Optics, CLEO '02, Technical Digest, 2002(1):215-216.
    [24] W.F. O'Neil, Processing Requirements for the First Electro-Optic System of the Twenty-First Century, Digital Avionics Systems Conference, 16th DASC, AIAA/IEEE, 1997, 1:15-22.
    [25] 张远新,齐国铭,卫爱平,孙兴,靶场机载电视经纬仪的发展和应用,测控技术,2003 , 22(4):1-4.
    [26] 车双良,朱麦花,光电经纬仪结构动态特性研究,光电工程,1004,31(7):15-17,45.
    [27] 陈涛,陈娟,王旭超,陈长青,光电经纬仪跟踪架结构模式浅析,吉林工学院学报,2002,23(3):19-22.
    [28] 周军,车双良,刘国荣,朱麦花,张兴社,戴岳坤,光电经纬仪动力学模型分析,应用光学,2003,24(2):26-30.
    [29] 王颖,张小虎,王建军,黎东新等,视频图像记录判读系统,光学技术,2003,29(2):232-234,238.
    [30] 刘利生,外弹道测量数据处理,国防工业出版社,2000.
    [31] 柴饶军,纪大山,马彩文,电视经纬仪复杂多目标交会测量点匹配算法,光电工程,2004,31(9):29-31,40.
    [32] 张玲霞,马彩文,刘轶等,靶场光电经纬仪多台交会测量的融合处理及其仿真分析,光子学报,2002,31(12):1528-1532.
    [33] 张玲霞,马彩文,陈明,曹晓青,靶场光电经纬仪多台交会测量数据的一
    [14] F.E. Daum, R.J. Fitzgerald, Decoupled Kalman Filters for Phased Array Radar Tracking, Trans. On Automatic Control, 1983, AC-28(3):268-283.
    [15] R.S. Baheti, Efficient Approximation of Kalman Filter for Target Tracking, IEEE Trans. On Aerospace and Electronic System, 1986, AES-22(1):8-14.
    [16] S.R. Rogers, Instability of a Decoupled Kalman Tracking Filter, IEEE Trans. On Automatic Control, 1989, AC-34:469-471.
    [17] R.K. Mehra, A Comparison of Several Nonlinear Filters for Reentry Vehicle Tracking, IEEE Trans. On Automatic Control, 1971, AC-16:307-319.
    [18] R.L. Gray, A pure-Cartesian Formulation for Tracking Filters, IEEE Trans. On Aerospace and Electronic System, 1993, 29(3):749-754.
    [19] M.A. Al-Alaoui, R. Farran, C. Lakkis, R. Rabbat, Ballistic oracle at military borders (B.O.M.B), The 7th IEEE International Conference on Electronics, Circuits and Systems(ICECS ), 2000, 1:446-449.
    [20] 何照才,光电测量,国防工业出版社,2002。
    [21] 何照才,胡保安,光学测量系统,国防工业出版社,2002。
    [22] 贾维敏,多传感器的数据融合落点定位方法研究,核电子学与探测技术,2004,24(5): 484-487.
    [23] C.A.Paiva, H.S. Slusher, High Energy Laser Rransmissions Through Missile Exhaust Plumes: the Implications for High Angle-of-Attack(AOA) Scenarios, Lasers and Electro-Optics, CLEO '02, Technical Digest, 2002(1):215-216.
    [24] W.F. O'Neil, Processing Requirements for the First Electro-Optic System of the Twenty-First Century, Digital Avionics Systems Conference, 16th DASC, AIAA/IEEE, 1997, 1:15-22.
    [25] 张远新,齐国铭,卫爱平,孙兴,靶场机载电视经纬仪的发展和应用,测控技术,2003 , 22(4):1-4.
    [26] 车双良,朱麦花,光电经纬仪结构动态特性研究,光电工程,1004,31(7):15-17,45.
    [27] 陈涛,陈娟,王旭超,陈长青,光电经纬仪跟踪架结构模式浅析,吉林工学院学报,2002,23(3):19-22.
    [28] 周军,车双良,刘国荣,朱麦花,张兴社,戴岳坤,光电经纬仪动力学模型分析,应用光学,2003,24(2):26-30.
    [29] 王颖,张小虎,王建军,黎东新等,视频图像记录判读系统,光学技术,2003,29(2):232-234,238.
    [30] 刘利生,外弹道测量数据处理,国防工业出版社,2000.
    [31] 柴饶军,纪大山,马彩文,电视经纬仪复杂多目标交会测量点匹配算法,光电工程,2004,31(9):29-31,40.
    [32] 张玲霞,马彩文,刘轶等,靶场光电经纬仪多台交会测量的融合处理及其仿真分析,光子学报,2002,31(12):1528-1532.
    [33] 张玲霞,马彩文,陈明,曹晓青,靶场光电经纬仪多台交会测量数据的一
    [56] 高林奎,宁伟,激光测距,北京,人民铁道出版社,1977.
    [57] 季必达,冯惠兰,一种天文/惯性/GPS/激光测距组合应用方案分析,导航.2001,37(2):83-91.
    [58] J. F. Walter, Prospects for Precision Active Tracking Using a Guadrant Detector, ADAO22714, 1976.
    [59] Precesion Automated Tracking System, Electronic System Group Western Division,A1-A14.
    [60] 杨文淑,张以谟,马佳光,0.68m 地面跟踪望远镜的跟踪控制技术,光电工程,1998,25(6):60-64.
    [61] 孙渝生,激光多普勒测量技术及其应用,上海,上海科学技术文献出版社,1995.
    [62] 张敏贤等,激光与红外成像技术,北京,北京理工大学出版社,1995.
    [63] 尤红建,刘彤,李树楷,基于机载三维成像仪快速获取数字地面模型,测绘工程,2003,12(2):14-16,33.
    [64] 潘璐阳,黄芝平,吴伶锡,一种大量程高精度激光测距仪实现方案,计量技术,2004(9):6-8.
    [65] 朱相磊 王存记,脉冲-相位式激光测距仪的研究,仪器仪表用户,2004,11(5):3-4.
    [66] ThorstenKortmann, Ellen-ChristineReiff,精确定位—用途广泛的激光测距仪,现代制造.2003(25):46-47.
    [67] Liu li-xin; Liu li-hong; Rapid Target Extraction Technology in TV Tracking System, Proceedings of the Fourth International Conference on Parallel and Distributed Computing, Applications and Technologies, PDCAT, 2003:814-816.
    [68] http://www.trw.com/thel/.
    [69] J. Aibert, Laser radar system, Artech House, 1992.
    [70] 巴克曼 C.G.著,胡桂兰译, 激光雷达系统与技术,北京,国防工业出版社,1982.
    [71] David Klick, James A. Deley, Argon Laser radar Returns from Retroflecting Spacecraft Laser 1990.
    [72] http://www.aphis.usda.gov.
    [73] Sullivan LI, Edwarda BE, Keicher WE, The Firepond High Power Carbon Dioxide Laser System, RADAR-80,Vol.2.
    [74] http://www.haystack.edu.
    [75] Martin R.Stiglitz, Christine Blanchard, A Laser Radar Experiment, Microwave Journal, Vol.33,1990.
    [76] Hulme K.F., Laser Heterodyne Rangefinders Velocimeters and Radars, Infrared Phys, 1985,Vol,25(1/2).
    [77] 吴立德,计算机视觉,上海:复旦大学出版社,1993。
    [78] 郑南宁,计算机视觉与模式识别,国防工业出版社,1998。
    [79] 马颂德,张正友,计算机视觉-计算理论与算法基础,北京:科学出版社,1998。
    [80] L.G.. Roberts, Machine perception of three-dimensional solids, In: Tippet J. T. ed. Optical and Electro-Optical Information Processing, 1965:159-197.
    [81] D. Marr, T. Poggio, A Computational Theory of Human Stereo Vision, Proc. Royal Soc. London, 1979, B204:301-328.
    [82] 章毓晋,图像工程-图像理解于计算机视觉,清华大学出版社,2000。
    [83] S. T. Barnard, M. A. Fischler, Computational stereo, Computing Surveys, 1982,14:553~572.
    [84] 游素亚,徐光祐,立体视觉研究的现状与进展,中国图像图形学报,1997,2(1):17-24.
    [85] W.E.L. Grimson, From Images to Surfaces, MIT Press, 1981.
    [86] D. scharstein, R. Szeliski, A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithm, IJCV, 2002, 47(1/2/3):7-42.
    [87] 贾云得,机器视觉,科学出版社,2000。
    [88] 柳强,张根耀,遥感图像的获取方法研究,哈尔滨工业大学学报,2003,25(12): 1489-1491.
    [89] Faig, W. Calibration of Close-Range Photogrammetry System: Mathematical Formulation. Photometric Eng. Remote Sensing, 1975, 41(12):1479-1486.
    [90] Y. I. Abdel-Aziz, H. M. Karara, Photogrammetric Potential of Nonmetric Cameras, Civil Engineering Studies, Photogrammetry Series No.36, Urbana, Illinois, 1974,3:1~18.
    [91] A. Dainis, M. Juberts, Accurate Remote Measurement for Robot Trajectory motion, Proceediong of International Conference on Robotics and Automation, 1985, 92-99.
    [92] Yakimovsky Y., Cunningham R. A System for Extracting 3D, Image Processing, 1978,7:195~210.
    [93] Tsai R. Y., An Efficient and Accurate Camera Calibration Technique for 3D Machine Vision, In Proc. IEEE Conference on Computer Vision and Patern Recognition, Miami Beach, FL, 1986:364-374.
    [94] Grosky W. I., Tamburino L. A., A unified approach to the linear camera calibration problem, IEEE Trans. on PAMI-12, 1990, 663~671.
    [95] Shin S. S., Hung Y. P., Lin W. S., Accurate Linear Technique for Camera Calibration Considering Lens Distortion by Solving an Eigenvalue Problem, Optical Engineering, 1993, 32(1): 138-149.
    [96] Wang L. L., Tsai W. H., Camera Calibration by Vanishing Lines for 3D Computer Vision, IEEE Trans on PAMI-13, 1991.
    [97] 段发阶,计算机视觉检测基础理论及应用技术研究,[博士学位论文],天津:天津大学,1994。
    [98] A. Kuijper, L.M.J. Florack, On The Creations of Critical Points in Scale Space With Applications to Medical Image Analysis, UU-CS-2001-25 TR.
    [99] H.P. Moravec, Towards Automatic Viaual Obstacle Avoidance, In Proc. 5th Int Joint Conf Artificial Intelligent, Cambridge, MA, 1977.
    [100] R.V. Ee, C.M. Schor, Unconstrained stereoscopic matching of lines, Vision Research,2000,40:151~162.
    [101] H. Loaiza, J. Triboulet, S. Lelandais, et al., Matching Segments in Stereoscopic Vision, IEEE Instrumentation & Measurement Magazine, 2001,3:37~42.
    [102] B.J. Supa, W.N. Klariquist, Patch-based stereo in a general binocular viewing, Theory and experiment, 1997, PAMI-19(3):247~253.
    [103] V. Torre, T.A. Poggio, On Edge Detection, IEEE Trans. on PAMI-8,1986,2:147-163.
    [104] W.E.L. Grimson, Computational Experiments with a Feature-Based Stereo Algorithm, IEEE Trans. on PAMI-7,1985,1:17-34.
    [105] W.E.L. Grimson, From Image to Surface: A computational Study of the Human Early Visual System, Cambridge, MA, MIT Press,1981.
    [106] J.E.W. Mayhew, J.P. Frisby, Psychophysical and Computational Study towards a Theory of Human Stereopsis, Art. Intell. 1981,17:349-385.
    [107] S.B. Pollard, J.E.W. Mayhew, J.P. Frisby, PMF: A Stereo Correspondence Algorithm Using a Disparity Gradient Linit, Perception, 1981,14:449-470.
    [108] Y.C. Kim, J.K. Aggarwal, Positioning 3D Objects Using Stereo Images, IEEE J. Robotics and Automation, 1987, RA-3(4):361-373.
    [109] N. Ayache, B. Faverjon, Efficient Registration of Stereo Images by Matching Graph Descriptions of Edge Segments, Int. J. Computer Vision, 1987:107-131.
    [110] J.F. Canny, A Computational Approach to Edge Detection, IEEE Trans. on PAMI-8,1985(6):679-698.
    [111] R. Deriche, Using Canny’s Criteria to Derive A Recursively Implemented Optimal Edge Detector, Int. J. Computer Vision, 1987,1(2).
    [112] H.H. Baker, T.O. Binford, Depth From Edge and Intensity-Based Stereo, In Proc. 7th IJCAI,1981:631-636.
    [113] Y. Ohta, T. Kanade, Stereo by Intra-and Interscanline Search Using Dynamic Programming, IEEE Trans. on PAMI-6,1984(1):139-154.
    [114] D.H. Ballard, C.M. Brown, Computer Vision, Englewood Cliffs, NJ: Prentice-Hall, 1982.
    [115] M. Peidtikainen, D. Harwood, Depth From Three Camera Stereo, In Proc. IEEE CS Conf. Pattern Recognition, Miami Beach, FL,1986:2-8.
    [116] G.V.S. Raju, T.O. Binford, S. Shekhar, Stereo Matching Using Viterbi Algorithm, In Proc. Im. Understand Workshop, 1987:766-776.
    [117] G. Medioni, R. Nevatia, Segment-Based Stereo Matching, CVGIP, 1985,31:2-18.
    [118] N. Ayache, F. Lustman, Fast and Reliable Trinocular Stereo Vision, In Proc. 1st Int. Conf. Computer Vision, 1987:422-427.
    [119] C. Hansen, N. Ayache, F. Lustman, High-Speed Trinocular Stereo for Mobile-Robot Navigation, In Proc. NATO Adv. Res. Workshop Highly Reduntant Sensor Systems, ⅡCjiocco, Italy,1988.
    [120] A. Agrawal, Evolutionary Programming for Fast and Robust Point Pattern Matching, Proceeding of IEEE International Conference In Neural Networks, 1994.
    [121] D. Marr, T. Poggio, Cooperative Computation of a Theory of Human Stereo Vision, Phil Trans. Roy. Soc., 1981, B292:217-253.
    [122] C. F. Olson, Maximum-Likelihood Template Matching, In Proceeding of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2000,2:52~57.
    [123] C. F. Olson, Subpixel Localization and Uncertainty Estimation Using Occupancy Grids, In Proceedings of the IEEE International Conference on Robotics and Automation, 1999,3:1987~1992.
    [124] C. F. Olson, L. H. Matthies, Maximum-Likelihood Rover Localization by Matching Range Maps, In Proceedings of the IEEE International Conference on Robotics and Automation, 1998,1:272~277.
    [125] S. Pavel, S. G. Akl, Efficient algorithms for the Euclidean distance transform, Parallel Processing Lerrers,1995,5(2):205~212.
    [126] F. Schaffalitzky, A. Zisserman, Viewpoint Invariant Texture Matching and Wide Baseline Stereo, IEEE, 2001.
    [127] S.J.D. Prince, R.D. Eagle, Weighted Directional Energy Model for Human Stereo Correspondence, Vision Research, 2000,40:151~162.
    [128] P. Moallem, K. Faez, Search Space Reduction in the Edge Based Stereo Correspondence, VMV, 2001.
    [129] C. F. Olson, A probabilistic formulation for Hausdorff matching, In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1998:150~156.
    [130] T. Kanade, A. Yoshida, K. Oda, et al., A Stereo Machine for Video-Rate Dense Depth Mapping and Its New Application, Proceeding CVPR, 1996, 15:196-202.
    [131] M. S. Lew, T. Huang, K. Wong, Learning and Feature Selection in Stereo Matching, IEEE PAMI, 1994,16(9):869~881.
    [132] Medioni G., Nevatia R., 1985,Segment-based stereo matching, CVGIP,31(1):2~18.
    [133] Lee H. J., Lei W. L., 1990, Region Matching and Depth Finding for 3D Objects in Stereo Aerial Photographs, PR, 23(1):81~94.
    [134] Y. ohta, T. Kanade, Stereo by Intra and Inter-Scanline Search Using Dynamic Programming, IEEE Transaction Pattern Analysis and Machine Intelligence, 1985,7.
    [135] Y.L. Xiong, L. Matthies, Error Analysis of a Real-Time Stereo System, Proc. of IEEE Computer Vision and Pattern Recognition, 1997:1087-1093.
    [136] D. Marr, T. Poggio, Cooperative Computation of Stereo Disparity, Science,1976.
    [137] W. Grimson, A Computer Implementation of a Theory of Human Stereo Vision, Phil Trans. Roy. Soc., B292,1981:217-253.
    [138] R.D. Arnold, T.O. Binford, Geometric Constraints in Stereo Vision, In Image Processing for Missile Guidance, 1980:281-292.
    [139] R.D. Arnold, Automated Stereo Perception, Ph.D. dissertation, Dept. of Computer Science, Stanford University, CA 1983.
    [140] H.H. Baker, Edge Based Stereo Correction, In Proc. Im. Understand Workshop, 1980:168-175.
    [141] G.D. Forney Jr, The Viterbi Algorithm, Proc. IEEE, 1973,61:268-278.
    [142] M. Hariyama, T. Takeuchi, M. Karneyama, VLSI Processor for Reliable Stereo Matching Based on Adaptive Window-Size Selection, Proc. of IEEE Int. Conf. On Robotics & Automation, 2001:1168-1173.
    [143] J. Woodfill, B. Von Herzen, Real-Time Stereo Vision on the PARTS Reconfigurable Computer, Proceedings IEEE Symposium on Field-Programmable Custom Computing Machines, 1997:242-250.
    [144] T. Kanade, H. Kano, S. Kimura, et al., Development of a Video-Rate Stereo Machine, Proceedings of International Robotics and Systems Conf. IROS’95, 1995, PA.
    [145] T. Kanade, A. Yoshida, K. Oda, et al., A Stereo Machine for Video-Rate Dense Depth Mapping and Its New Applications, Proceedings of 15th Computer Vision and Pattern Recognition Conf. CVPR, 1996.
    [146] J. Vuillwmin, P. Bertin, D. Roncin, et al., Programmable Active Memories: Reconfigurable Systems Come of Age, IEEE Transactions on VLSI Systems, 1996, 4(1).
    [147] J. Arnold, D. Buell, D. Hoang, et al., The Splash-2 Processor and Applications, Proceedings of the 1993 IEEE Int. Conf. On Computer Design: VLSI in Computer & Processors, 1993:482-485.
    [148] B. Box, Field Programmable Gate Array Based Reconfigurable Preprocessor, Proceedings of IEEE Workshop on FPGAs for Custom Computing Engines, 1994:40-48.
    [149] http://www.gigaops.com.
    [150] R. C. Bolles, H. H. Baker, D. H. Marimont, Epipolar-Plane Image Analysis: An Approach to Deterning Structure from Motion, J. Computer vision, 1987,1(1).
    [151] K.P. Behrooz, Minimization of the Quantization Error in Camera Calibration, Proc. of Image Understand Workshop, 1987:671-680.
    [152] S.D. Blostein, et al., Error Analysis in Stereo Determination of 3-D Point Position, IEEE Trans. on PAMI, 1987,9:752-765.
    [153] Gem-Sum J. Young, 3D Motion Estimation Using a Sequence of Noisy Image: Models Estimation and Uniquence Result, IEEE Trans. PAMI, 1990,12(8).
    [154] 刘忠伟,章毓晋,基于颜色特征进行图像检索,电子技术应用,1999,25(2):19-20.
    [155] Maitre H., et. al, Using models to improve stereo reconstruction, IEEE PAMI, 1992, 149(2):
    [156] W. E. L. Grimson, Surface consistency constraints in vision, CVGIP, 1983,24:28~51.
    [157] D. Terzopoulos, The Computer of Visible Surface Representations, IEEE Trans. on PAMI, 1988,40(10):417-438.
    [158] H. Maitre, et al., Using Models to Improve Stereo Reconstruction, IEEE Trans. on PAMI, 1992,149(2):269-277.
    [1] 段发阶,计算机视觉检测基础理论及应用技术研究,[博士毕业论文],天津大学,1994。
    [2] 马颂德,张正友,计算机视觉-计算机理论与算法基础,科学出版社,1998。
    [3] Nicolas Alvertos, Dragana Brzakovic, Rafael C. Gonzalez, Camera Geometries for Image Matching in 3-D Machine Vision, IEEE Transaction on Pattern Analysis and Intelligence, 1989,11(9):897-914.
    [4] W.D. Wang, J.H. Duncan, Recovering the Three-Dimensional Motion and Structure of Multiple Moving Objects from Binocular Image Flows, Computer Vision and Image Understanding, 1996, 63(3):430-446.
    [5] J. Majumdar, Seethlakshmy, Efficient Parallel Processing for Depth Calculation Using Stereo, Robotics and Autonomous Systems, 1997,20:1-13.
    [6] N.D. Kehtarnavaz, W. Sohn, Error Analysis of Camera Movements in Stereo Vehicle Tracking Systems, Computer Vision and Image Understanding, 1995, 62(3):347-359.
    [7] 王立升,移动式光电经纬仪光学设计,光学精密工程,1995,3(5):29-37.
    [8] 杨廷梧,EOMS 光电经纬仪作用距离研究分析,飞行试验,1999,3:42-48.
    [9] 丁旭明,於崇真,佟恒伟,小型光电经纬仪的光学参数选择,光子学报,1994,23(6):570-575。
    [10] 王庆有,CCD 应用技术,天津大学出版社,2002。
    [11] 颜树华,黄锐,吕海宝等,双 CCD 视觉传感器测量分辨率和有效视场的理论研究,光电子· 激光,1998,9(1):61-63。
    [12] P. Kornik, Selecting lenses to maximize IR camera performance, Photonics Spectra, 2003, 37(9): 100-104.
    [1] W. Faig, Calibration of Close-range Photogrammetry System: Mathematical Formulation. Photommetric Engineering Remote Sensing, 1975, 41(12): 1479-1486.
    [2] I. Soble, On Calibrating Computer Controlled Cameras for Perceiving 3D Scenes, Artificial Intelligence, 1974, 5:185-198.
    [3] D.B. Gennery, Stereo-Camera Calibration, Proceeding Image Understanding Workshop, 1979,11:101-108.
    [4] D.G. Lowe, Solving for the Parameters of Object Models from Image Descriptions, Proceeding Image Understanding Workshop, 1980, 4:121-127.
    [5] Y.I. Abdel-Aziz, H.M. Karara, Photogrammetric Potential of Nonmetric Cameras, Civil Engineering Studies, Photogrammetry Series No.36, Urbana, Illinois, 1974,3:1-18.
    [6] A. Dainis, M. Juberts, Accurate Remote Measurement for Robot Trajectory Motion, Proceeding of International Conference on Robotics and Automation, 1985, 92-99.
    [7] Y. Yakimovsky, R. Cunningham, A System for Extracting 3D, Image Processing, 1978,7:195-210.
    [8] R.Y. Tsai, An Efficient and Accurate Camera Calibration Technique for 3D Machine Vision, In Proceeding IEEE Conference on Computer Vision and Pattern Recognition, Miami Beach, FL, 1986, 364-374.
    [9] R.K. Lenz, R.Y. Tsai, Technique for Calibration of Scale Factor and Image Center for High Accuracy 3-D Machine Vision Metrology, IEEE Transaction on PAMI-10, 1988, 713-720.
    [10] W.I. Grosky, L.A. Tamburino, A Unified Approach to the Linear Camera Calibration Problem, IEEE Transaction on PAMI-12, 1990, 663-671.
    [11] S.S. Shin, Y.P. Hung, W.S. Lin, Accurate Linear Technique for Camera Calibration Considering Lens Distortion by Solving an Eigenvalue Problem, Optical Engineering, 1993,32(1): 138-149.
    [12] L.L. Wang, W.H Tsai, Camera Calibration by Vanishing Lnes for 3D Computer Vision, IEEE Trans on PAMI-13, 1991.
    [13] 段发阶,计算机视觉检测基础理论及应用技术研究,博士论文,1994。
    [14] J. Weng, T.S. Huang, N. Ahuja, Motion and Structure from Two PerpectiveViews: Algorithms, Error Analysis, and Error Estimation, IEEE Transaction on PAMI-11, 1989:451-476.
    [15] J. Weng, P. Cohen, M. Herniou, Camera Calibration with Distortion Models and Accuracy Evaluation, IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-14, 1992(10):965-980.
    [16] 张健新,双目立体视觉技术在工业检测中的应用研究,博士论文,1996。
    [17] J. Heikkila, O. Silven, A Four-Step Camera Calibration Procedure with Implicit Image Correction, Proceeding IEEE Computer Society Conference, Computer Vision and Pattern Recognition, 1997:1106-1112.
    [18] J. Heikkila, O. Silven, Calibration Procedure for Short Focal Length Off-the-Shelf CCD Cameras, Proceeding 13th International Conference on Pattern Recognition, 1996:166-170.
    [19] J. Heikkila, Geometric Camera Calibration Using Circular Control Points, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(10):1066-1077.
    [20] Manual of Photogrammery, Amer. Soc. Photogrammery, 1980.
    [21] A. Rosenfeld, A.C. Kak, Difital Picture Processing, Academic Press,1976.
    [22] D.C. Brown, Decentering Distortion of Lenses, Photogrammetric Engineering Remote Sensing, 1966, 444-462.
    [23] 段发阶,张健新,叶声华,CCD 摄像机参数标定新技术,计量学报,1997,18(4):294-299.
    [24] 段发阶,张健新,叶声华,摄像机参数高精度求解方法,光电工程,1998,25(1):61-66.
    [1] A. Kuijper, L.M.J. Florack, On the Creations of Critical Points in Scale Space With Applications to Medical Image Analysis, UU-CS-2001-25 TR.
    [2] H.P. Moravec, Towards Automatic Viaual Obstacle Avoidance, Proceeding 5th International Joint Conf Artificial Intelligent, Cambridge, MA, 1977.
    [3] R.V. Ee, C.M. Schor, Unconstrained Stereoscopic Matching of Lines, Vision Research, 2000, 40:151-162.
    [4] H. Loaiza, J. Triboulet, S. Lelandais, et al., Matching Segments in Stereoscopic Vision, IEEE Instrumentation & Measurement Magazine, 2001, 3:37-42.
    [5] B.J. Supa, W.N. Klariquist, Patch-Based Stereo in a General Binocular Viewing, Theory and Experiment, 1997, PAMI-19(3):247-253.
    [6] D. Marr, E. Hildreth, Theory of Edge Detection, Proceeding R. Soc. Lond, 1980, B207: 187-217.
    [7] V. Torre, T.A. Poggio, On Edge Detection, IEEE Transaction on PAMI-8,1986:147-163.
    [8] Y. Ohta, M. Watanable, K. Ikeda, Improving Depth Map by Right-angled Trinocular Stereo, Proceeding International Conference on Pattern Recognition, 1986: 519-521.
    [9] T. Law, H. Itoh, H. Seki, Image Filtering, Edge Detection and Edge Tracing Using Fuzzy Reasoning, IEEE Trans, Pattern Analalysis and Machine Intelligence, 1996, 18(5): 481-491.
    [10] A. Beghdadi, A. Khellaf, A Noise-Filtering Method Using a Local Information Measure, IEEE Transaction, Image Processing, 1997,6(6): 879-882.
    [11] J.P. Deok, M.N. Kwom, H.P. Rae, Edge Detection in Noisy Images Based on the Co-occurrence Matrix, Pattern Recognition, 1994, 27(6): 765-775.
    [12] S.M. Smith, J.M. Brady, SUSAN-A new Approach to Low Level Image Processing, International Journal of Computer Vision, 1997,23(1): 45-78.
    [13] J.M.S. Prewitt, Object Enhancement and Extraction, Academic Press, New York.
    [14] R.Y. Tsai, T.S. Huang, Uniqueness and Estimation of 3D Motion Parameters of Rigid Objects with Curved Surface, IEEE Transaction on PAMI-6, 1984: 13-27.
    [15] E. Gulch, Adaptive Least Squares Correlation: A Powerful Image Matching Technique, South African Journal of Photogrammetry, Remote Sensing and Cartography, 1985,14(3): 175-187.
    [16] S.C. Pei, L.G. Liou, Tracking a Planar Patch in Three-Dimensional Space by Affine-Transformation in Monocular and Binocular Vision, Pattern Recognition, 1993, 26(1): 23-31.
    [17] W.T. Freeman, E.H. Adelson, Steerable Filters for Early Vision, Image Analysis, and Wavelet Decomposition, Proceeding Third International Conference on Computer Vision, 1990: 406-415.
    [18] J.F. Haddon, J.F. Boyce, Unification of Image Segmentation and Edge Detection, IEE Proceedings I , Communications, Speech and Vision, 1990,137(3):129-135.
    [19] 郑南宁,计算机视觉与模式识别,国防工业出版社,1998。
    [20] 姚海根,图像的灰度变换与层次校正,中国印刷,1997,2: 37-41,45.
    [21] L.H. Sobel, B.L. Agarwal, Buckling of Eccentrically Stringer-Stiffened Cylindrical Panels Under Axial Compression, Computers and Structures, 1976, 6(3):193-198.
    [22] W.J. Rucklidge, Efficient Guaranteed Search for Gray-Level Patterns, Proceeding of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1997: 717-723.
    [23] C.F. Olson, L.H. Matthies, Maximum-Likelihood Rover Localization by Matching Range Maps, Proceedings of the IEEE International Conference on Robotics and Automation, 1998,1: 272-277.
    [24] S.H. Chang, F.H. Cheng, H.H. Wen et al., Fast Algorithm For Point PatternMatching: Invariant to Translations, Rotations and Scale Changes,Pattern Recognition, 1997,29(5): 311-319.
    [25] R.D. Arnold, T.O. Binford, Geometric Constraints in Stereo Vision, In Image Processing for Missile Guidance, 1980:281-292.
    [26] R.C. Bolles, H.H. Baker, D.H. Marimont, Epipolar-Plane Image Analysis: An Approach to Deterning Structure From Motion, Computer vision, 1987,1(1).
    [27] R. Horaud, T. Skordas, Stereo Correspondence Through Feature Grouping and Maximal Cliques, IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989,11(11):1168-1180.
    [28] S.C. Pei, L.G. Liou, Finding the Motion, Position and Orientation of a Planar Patch in 3D Space From Scaled-Orthographic Projection, Pattern Recognition, 1994, 27(1): 9-25.
    [29] C.H. Lo, H.S. Don, Representation and Recognition of 3D Curves, Proceedings CVPR '89 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1989: 523-528.
    [30] A. Konrad, R. Saldanha, S.Y. Lee, et al., Application of the Point-Matched Time Domain Finite Element Method to the Analysis of Transmission Line Transients, Applied Physics, Materials Science, Fluids, Plasma and Instrumentation, 1992, 2(11): 2139-2154.
    [31] D. Geiger, J.A. Vlontzos, Matching Elastic Contours, Proceedings 1993 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1993: 602-604.
    [32] Y. Ohta, T. Kanade, Stereo by Intra-and Inter-Scanline Search Using Dynamic Programming, IEEE Transactions on Pattern Analysis and Machine Intelligence, 1985, PAMI-7(2):139-154.
    [33] S.A. Lloyd, A Paraller Binocular Stereo Algorithm Utilized Dynamic Programming and Relaxation Labelling, CVGIP, 1987,39:202-225.
    [34] D. Marr, T. Poggio, A Computational Theory of Human Stereo Vision, Proceeding Royal Soc. London, 1979,B204: 301-328.
    [35] J.E.W. Mayhew, J.P. Frisby, Psychophysical and Computational Study towards a Theory of Human Stereopsis, Art. Intell., 1981,17:349-385.
    [36] W.E.L. Grimson, Surface Consistency Constraints in Vision, CVGIP, 1983, 24:28-51.
    [37] H.H. Baker, T.O. Binford, Depth From Edge and Intensity Based Stereo, Proceedings of the 7th International Joint Conference on Artificial Intelligence, 1981: 631-636.
    [38] Y. Ohta, T. Kanade, T. Sakai, Color Information for Region Segmentation, Computer Graphics and Image Processing, 1980, 13(3): 222-241.
    [39] S.B. Pollard, J. Porrill, J.E.W. Mayhewn, J.P. Frisby, Disparity Grasient, Lipschitz Continuity, and Computing Binocular Correspondences, MIT Press,1986:19-26.
    [40] Nicolas Alvertos, Dragana Brzakovic, Rafael C. Gonzalez, Camera Geometries for Image Matching in 3-D Machine Vision, IEEE Transaction on Pattern Analysis and Machine Intelligence, 1989, 11(9): 897-914.
    [41] 陈宁江,李介谷,用归一化灰度组合法进行图像匹配,红外和激光工程,2000,29(5): 5-9.
    [42] M.J. Hannah, A System for Digital Stereo Image Matching, PE&RS, 1989, 55(12):1765-1770.
    [43] R. Mohan, G. Medioni, Stereo Error Detection, Correction, and Evaluation, IEEE Transaction PAMI, 1989,11(2): 113-120.
    [44] 贾波,章毓晋,林行刚,视差图误差检测与校正的通用快速算法,清华大学学报,2000,40(1):28-31.
    [45] R. Y. Tsai, Multiframe Image Point Matching and 3-D Surface Reconstruction, IEEE Transaction on Pattern Analysis and Machine Intelligence, 1983,5(2).
    [1] H.D. Fair, Electromagnetic Launch: A Review of the U.S. National Program, IEEE Transactions on Magnetics, 1997, 33(1): 11-17.
    [2] B. Reck, First Design Study of An Electrical Catapult for Unmanned Air Vehicles in the Several Hundred Kilogram Range, IEEE Transactions on Magnetics, 2003, 39(1):310-313.
    [3] 刘群华,施浣芳,阎秉先等,红外光幕靶测速系统和精度分析,光子学报,2004,33(11):1409-1411.
    [4] Y.P. Wang, Image Representations Using Multiscale Differential Operators, IEEE Transactions on Image Processing, 1999,8(12): 1757-1771.
    [5] D.E. Zhang, H.C. Zhou, G. Wang, Laser Screen Measuring System for Gun Velocity, Proceedings of the International Symposium on Test and Measurement, 2003,5: 3520-3522.
    [6] 冯太林,周克栋,谭东汉,霰弹飞行速度的测量方法与结果分析,南京理工大学学报,1998,22(3):201-204.
    [7] T. Ruotsalainen, P. Palojarvi, T. Peltola, et al., Proceedings of the 22nd European Solid-State Circuits Conference on Laser pulse timing detector, SSCIRC, 1996: 108-111.
    [8] R.L. Kermens, J.T. Canosa, D. Brown, et al., OMEGA Laser Electronic Timing System, Review of Scientific Instruments, 1997, 68(1):943.
    [9] S. Bopp, F. Darst, Small Laser Doppler Anemometers Using Semiconductor Laser and Avalanch Photodiodes, Proceeding 4th International Symp. on Appl. of LDA to Fluid Mechanics, Lisbon,1988.
    [10] A.E. Barbour, Scanning Laser Doppler Anemometer System, Proceedings of the Society of Photo-Optical Instrumentation Engineers, 1980, 227:85-90.
    [11] 蒋诚志,光栅位移激光多普勒遥测技术的研究,光学学报,1998,18(7):923-927.
    [12] BQB-0093 兵工情报研究报告,火炮全弹道测量雷达,兵器工业情报研究所,1990。
    [13] 苏广飞,钱涓,光栅法激光测速的研究,华南理工大学学报,1989,17(3):81-97。
    [14] M. Gaster, J.F.M. Maybrey, An Optical Instrument for Measuring Fluctuating Velocities in Highly Turbulent Flows, Aeronautical Quarterly, 1978, 29(2):98-113.
    [15] A. Yoshihisa, U. Tsuyoshi, A. Toshimitsu, App. Opt., 1985, 24,627.
    [16] A. Yoshihisa, U. Tsuyoshi, A. Toshimitsu, App. Opt., 1985, 24,638.
    [17] 贾维敏,韦荫康,精确计算飞行目标速度的几种方法,导弹与航天运载技术,1998,3:33-38.
    [18] [苏] B.? .日丹纽克著,阮崇德等译,无线电外弹道测量结果统计处理基础,宇航出版社,1984。
    [19] 刘同现,宋卫东,宋丕极等,线阵 CCD 用于飞行弹丸攻角测定的研究,光电子技术,2002,22(4):228-230.
    [20] 任国民,采用针孔照相法测量炮弹飞行姿态,高速摄影与光子学,1989,18(2):186-192.
    [21] F.R. Wen, B.Z. Yuan, Least-Squares Fitting for Deformable Superquadric Model Based on Orthogonal Distance, Pattern Recognition Letters, 2004, 25(8):933-941.
    [22] 于起峰, 孙祥一, 陈国军,用光测图像确定空间目标俯仰角和偏航角的中轴线法,国防科技大学学报, 2000,22 (2): 15-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700