激光等离子体冲击波与表面吸附颗粒的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光等离子体冲击波清洗是一项前沿性的表面吸附颗粒清除技术,该技术以清洗定位准确、可重复清洗、适用范围广等潜在优势丰富了干法清洗,为半导体工业加工中的基片、掩模板清洗提供了一种新的途径。本论文从理论和实验两方面对该技术中涉及到的气态介质中激光等离子体冲击波传播特性、颗粒移除机制、微米颗粒的移除实验及基片安全工作距离等作了较为系统深入的研究,取得以下创新性成果:
     提出“zig-zag”多光束偏转方法测量激光等离子体冲击波在常压和低压空气介质中的中近场传播;建立了实验装置,在一次实验中获得了同一激光等离子体冲击波的波前传播特性规律,为激光等离子体冲击波清洗颗粒的理论计算和寻找最佳工作压强提供了客观依据。
     基于颗粒吸附平面基片的JKR模型,从冲击波与颗粒作用角度出发,改进颗粒滚动模型,得到了基片上颗粒滚动移除的范围;进而针对滚动模型无法解释凹槽中的颗粒移除,提出了颗粒弹出机制,该机制合理解释了基片上吸附颗粒的移除且给出了颗粒弹出所需冲击波的最低阈值。
     对吸附有10μm、20μm标准聚苯乙烯颗粒的平面基片进行了清洗实验,发现颗粒清洗中冲击波阈值与弹出模型相对应,并研究了工作距离变化、能量变化、粒径变化对基片表面清洗效果的影响。
     针对激光等离子体冲击波清洗过程中的基片宏观和微观破坏,分别通过缩短工作距离和金属探针探测的方法进行了研究,发现了240mJ激光能量下基片宏观安全工作距离应大于0.50mm,并研究了等离子体外射带电粒子空间飞行距离变化规律。
     本论文的研究成果为激光等离子体冲击波清洗这一新兴技术的深入发展提供了有价值的参考。
Laser-induced plasma shock wave cleaning technology is an advancing cleaning method for the removal of adhered particles on surface, which riches the dry cleaning method and provides a new way for wafers and masks cleaning in semiconductor industry fabrication depending on its potential advantages such as high accurate position, repeatability, comprehensive applicability. This paper studies the related fields both in theory and experiment such as: laser-induced plasma shock propagation characteristics in gas medium, particle removal mechanism, experiments on micron particle removal, and safety working gap of wafer, which is a systemic and profound research. The innovation achievements are listed as following:
     Present a new "zig-zag" multiple beam deflection method to study the laser-induced plasma shock waves propagation in the middle and near filed both in standard atmosphere and sub-atmosphere. Based on the experimental equipment, the propagation characteristics of the same laser-induced plasma Shockwave are obtained in one experiment, which provides the objective proof for the particle removal calculation and the research of optimal pressure of laser-induced plasma shock wave cleaning.
     Based on the JKR model of adhered particles, rolling removal model, setting out from the view angle of shockwave-particle interaction, is modified, which shows the removal range of the particles on wafer. Moreover, a new saltation removal model of particle is established due to the failed explain of rolling mechanism on the particle removal in groove, which gives a reasonable explain for particles removal on wafer and shows the minimum shockwave strength threshold of particle saltation model.
     Laser-induced plasma shock wave cleaning method is utilized to remove the 10μm and 20μm particles, in which the Shockwave threshold in particle cleaning corresponds to the saltation model. Moreover, the influences of working gap variation, energy variation, and particle diameter variation are also studied.
     As for the macroscoy and microscopy damage to wafer in cleaning process, varying working gap and probe detection methods are utilized respectively. The macroscopy safety working gap should be larger than 0.50mm with laser energy of 240mJ and the variation rule of flying distance of ejecting charged particles of plasma is also studied.
     The results of this paper can be a valuable reference to the further development of laser-induced plasma Shockwave cleaning.
引文
1. Hattori T. Contamination control and defect reduction in semiconductor manufacturing Ⅲ, Penning'ton, NJ: The electrochemical society 1994:3
    2.Zant P V Microcllip Fabrication.第一版.北京:电子工业出版社,2004
    3.Quirk M,Serda J.Semiconductor Manufacturing Tcchnology.第一版.北京:电子工业出版社,2004
    4. Lithography. International Technology Roadmap for Semiconductors 2005 Edition: 19~20. (http://www.itrs.net/Commom/2005ITRS/Home2005.htm)
    5. Stivers A R, Yah P Y, Zhang G, Liang T, Shu E, Tejnil E, Lieberman B, Nagpal R, Hsia K, Penn M, Lo F C. EUV Mask Pilot Line at Intel Corporation. Proc. of SPIE 2004, 5567: 13~22
    6. Stix G. Getting more from moore's. Sci. Am. 2001, 284:32
    7. Zhang G, Yan P, Liang T, Du Y, Sanchez P, Park S, Lanzendorf E J, Choi C J, Shu E Y, Stivers A R, Farnsworth J, Hsia K, Chandhok M, Leeson M J, Vandentop G. EUV Mask Process Development and Integration. Proc. of SPIE 2006, 6283: 62830G-1~10
    8. Singh R R. Photomask cleaning-areas for future focus. Proc. of SPIE 1994, 2322: 165~177
    9. Kadaksham J, Zhou D, Murthy Peri M D, Varghese I, Eschbach F, Cetinkaya C. Nanoparticle removal from EUV photomask using laser induced plasma shockwaves. Proc. of SPIE 2006, 6283:62833C-1~11
    10. Edens A D, Ditmire T, Hansen J f, Edwards M J, Adams R G, Rambo P, Ruggles L, Smith I C, Porter J L. Study of high Mach number laser driven blast waves. Phys. Plasmas 2004, 11(11): 4968~4972
    11. Matthews M A, Becnel J. Effect of pressure on the static force of micron scale particle adhesion. Ind. Eng. Chem. Res. 2000, 39:4481~4486
    12. Jone R. Pollock H M, Cleaver J A S, Hodges C. Adhesion forces between glass and silicon surfaces in air studied by AFM: effects of relative humidity, particle size, roughness, and surface treatment. Langmuir 2002, 18:8045~8055
    13. Chow T S. Size-dependent adhesion of nanoparticles on rough substrate. J. Phys.: Condens. Matter 2003, 15:83~87
    14. Li Q, Rudolph V, Peukert. London-van der Waals adhesiveness of rough particles. Power Technol. 2006, 161:248~255
    15. Pakarinen O H, Foster A S, Paajanen M, Kalinainen T, Katainen J, Makkonen I, Lahtinen J, Nieminen R M. towards an accurate description of the capillary force in nanoparticle-surface interactions. Modelling Simul. Mater. Sci. Eng. 2005, 13: 1175-1186
    16. Kern W, Puotnen D A. cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology. RCA Rev. 1970,31: 187-206
    17. Qin K, Li Y. Mechanisms of particle removal from silicon wafer surface in wet chemical cleaning process. J. Colloid Interf. Sci. 2003, 261: 569-574
    18. Busnaina A A, Lin H, Moumen N, Feng J W, Taylor J. Particle adhesion and removal mechanisms in post-cmp cleaning processes. IEEE T. Semiconduct. M. 2002, 15(4): 374-382
    19. Zhang F. Submicron particle adhesion and removal I chemical mechanical polishing and waer cleaning processes: [Ph.D dissertation]. New York: Clarkson University, 1999
    20. Busnaina A A, Kashkoush I I, Gale G. W.. An experimental-study of megasonic cleaning of siliconwafers. J. Electrochem. Soc. 1995, 142: 2812
    21. Qi Q, Brereton G J. Mechanisms of removal of micron-sized particles by high-frequency ultrasonic waves. IEEE T. Ultrason. Ferr. 1995,42(4): 619-629
    22. Kapila V, Deymier P A, Shende H, Pandit V, Raghavan S, Eschbach F O. Megasonic cleaning, cavitation, and substrate damage: an atomistic approach. Proc. of SPIE 2006, 6283: 628324-1-12
    23. Young F R. Cavitation. London: McGraw-Hill, 1989
    24. Tarn A C, Leung W P, Zapka W, Ziemlich W. Laser-cleaning techniques for removal of surface particulates. J. Appl. Phys. 1992, 71: 3515-3523
    25. Park H K, Grigoropoulos c P, Leung W P. A practical excimer laser-based cleaning tool for removal of surface contaminants. IEEE T Compon. Pack. T. 1994, 17(4): 631-643.
    26. Wu X, Sacher E, Meunier M. The modeling of excimer laser particle removal from hydrophilic silicon surfaces. J. Appl. Phys. 2000, 87(8): 3618-3627
    27. Meunier M, Wu X, Beaudoin F, Sacher E, Simard-Normandin M, Excimer laser cleaning for microelectronics: modeling, applications and challenges. Proc. of SPIE 3618: 290-301
    28. Mosbacher M, Chaoui N, Siegel J, Dobler V, Solis J, Boneberg J, Afonso C N, Leiderer P. A comparison of ns and ps steam laser cleaning of Si surfaces. Appl. Phys. A 1999, 69:331-334
    29. Lu Y F, Aoyagi Y, Takai M, Namba S. Laser surface cleaning in air: mechanisms and application.Jpn. J. Appl. Phys. 1994, 33: 7138-7143
    29. Lu Y F, Song W D, Ye K D, Hong M H, Liu D M, Chan D S H, Low T S. Removal of submicron particles from nickel-phosphorus surfaces by pulsed laser irradiation. Appl. Surf.Sci. 1997,120: 317-322
    30. Lu Y F, Song W D, Ang B W, Hong M H, Chan D S H, Low T S. A theoretical model for laser removal of particles from solid surfaces. Appl. Phys. A 1997, 65: 9—13
    31. Meunier M, Beaudoin X Wu F, Sacher E, Simard-Normandin M. Excimer laser cleaning for microelectronics: Modeling, applications and challenges. Proc. of SPIE 1999,3618:290-301
    32. Lu Y F, Song W D, Hong M H, Ren Z M, Zheng Y W. Science and engineering in laser surface cleaning, Proc. of SPIE 2000,4065: 588-599
    33. Lu Y F, Song W D, Zhang Y, Zheng Y W. Laser Surface Cleaning — Basic Understanding, Engineering Efforts and Technical Barriers. Proc. of SPIE 2000, 4088: 371-379
    34. Lu Y F, Zheng Y W, Song W D. Laser induced removal of spherical particles from silicon wafers. J. Appl. Phys. 2000, 87(3): 1534-1539
    35. Lu Y F, Zheng Y W, Song W D. Characterization of ejected particles during laser cleaning. J. Appl. Phys. 2000, 87(1): 549-552
    36. Oltra R, Arenholz E, Leiderer P, Kautek W, Fotakis C, Autric M, Afonso C, Wazen P. Modelling and diagnostic of pulsed laser-solid interactions applications to laser cleaning. Proc. of SPIE 2000,499-508
    37. Zheng Y W, Luk'yanchuk B S, Lu Y F, Song W D, Mai Z H. Dry laser cleaning of particles from solid substrates: Experiments and theory. J. Appl. Phys. 2001, 90(5): 2135-2142
    38. Arnold N, Schrems G, MUhiberger T, Bertsch M, Mosbacher M, Leiderer P, Bauerle D. Dynamic Particle Removal by Nanosecond Dry Laser Cleaning: Theory. Proc. of SPIE 2002,4426: 340-346
    39. Song W D, Hong M H, Zhang L, Lu Y F, Chong T C. Laser cleaning technology and its application, Proc. of SPIE 2002,4426: 280-283
    40. Song W D, Hong M H, Koh H L, Wang W J, Zheng Y W, Lu Y F, Chong T C. Laser-induced removal of plate-like particles from solid surfaces. Appl. Surf. Sci. 2002, 186:69-74
    41. Lee J M, Watkins K G, Steen W M. characterization of laser cleaning of copper for soldering processes. J Manuf. Sci. E-T ASME 2001,123: 521-527
    42. Autric M, Oltra R. Basic process of pulsed laser materials initeraction. Application to laser claning of oxidized surface. Proc. of SPIE 2005, 5777: 982-984
    43. Luk'yanchuk B S, Zheng Y W, Lu Y F. Laser cleaning of solid surface: optical resonance and near-field effects. Proc. of SPIE 2000,4065: 576-587
    44. Luk'yanchuk B S, Wang Z B, Song W D, Hong M H. Particle on surface: 3D-effects in dry laser cleaning. Appl. Phys. A 2004, 79: 747-751
    45. Huang S M, Hong M H, Luk'yanchuk B S, Zheng Y W, Song W D, Lu Y F, Chong T C. Pulsed laser-assisted surface structuring with optical near-field enhanced effects. J. Appl. Phys. 2002, 92(5): 2495-2500
    46. Wang Z B, Hong M H, Luk'yanchuk B S, Lin Y, Wang Q F, Chong T C. Angle effect in laser nanopatterning with particle-mask. J. Appl. Phys. 2004, 96(11): 6845-6850
    47. Hong M H, Huang S M, Luk'yanchuk B S, Wang Z B, Lu Y F, Chong T C. Laser assisted nanofabrication. Proc. of SPIE 2003,4977: 142-155
    48. Zhou Y, Hong M H, Fuh JYH, Lu L, Luk'yanchuk B S, Wang Z B, Shi L P, Chong T C. Direct femtosecond laser nanopatterning of glass substrate by particle-assisted near-field enhancement. Appl. Phys. Lett. 2006, 88: 023110-1-3
    49. Leiderer P, Bartels C, Konig-Birk J, Mosbacher M, Boneberg J. Imaging optical near-fields of nanostructures. Appl. Phys. Lett. 2004, 85(22): 5370-5372
    50. Schuppler C, Habenicht A, Guhr I L, Maret M, Leiderer P, Boneberg V, Albrecht M. Control of magnetic anisotropy and magnetic patterning of perpendicular Co/Pt multilayers by laser irradiation. Appl. Phys. Lett. 2006, 88: 012506-1-3
    51. Weibel G L, Ober C K. An overview of supercritical CO2 applications in microelectronics processing. Microelectronic Eng. 2003, 65: 145-152
    52. Anzai S, Takagi N , Kamiyama T, Kawaguchi N, Ishijima M, Watanabe T, Morimoto H. Sulfate-free photomask cleaning technology. Proc. of SPIE 6283: 62830B-1-5
    53. Lee S H, Imen K, Allen S D. Shock wave analysisi of laser assisted particle removal. Appl. Phys. Lett. 1993, 74(12): 7044-7047
    54. Watkins K G Mechanisms of laser cleaning. Proc. of SPIE, 2000, 3888: 165-173
    55. Leiderer P, Olapinski M, Mosbacher M, Boneberg J. Nanoparticle adhesion and removal studied by pulsed laser irradiation. Proc. of SPIE 2006, 6261: 62610F-1-9
    56. Masironi L A, Fish B R. Direct observation of particle reentrainment from surfaces. Surface Contamination (Fish B R ed.). Tennessee: Pergamon Press, 1964, 55-59
    57. Sehmel G A. Particle resuspension: A review. Environ Int., 1980,4: 107-127
    58. Nicholson K W. A review of particle resuspension. Atmos. Environ. 1988, 2: 2639-2651
    59. Braaten D A, Paw U K T, Shaw R H. Particle resuspension in a turbulent boundary layer-observed and modeled. J. Aerosol Sci. 1990,21: 613-628
    60. Wang H C. Reducing uncertainties in particle adhesion and removal measurements. Particles on surfaces 3: Detection, adhesion and removal.(Mittal K L ed.), New York: Plenum Press, 1991, 193-202
    61. Wu Y, Cliff I D, Russell A G. Controlled wind trnnel experiments for particle bounce-off and resuspension. Aerosol Sci. Tech., 1992,17: 245-262
    62. Otani Y, Emi H, Morizane T, Mori J. Removal of fine particles from wafer surface by pulse air jets. Kagaku Kogaku Ronbunshu, 1993, 19: 114-119
    63. Otani Y, Namiki N, Emi H. Removal of fme aprticle form smooth flat surfaces by consecutive pulse air jets. Aerosol Sci. Tech., 1995, 23: 665-673
    64. Masuda H, Gotoh K, Fudkada H, Banba Y. The removal of particles from flat surfaces uring a high-speed air jet. Adv. Power Tech. 1994, 5: 205-217
    65. Gotoh K, Takebe S, Maduda H, Banba Y. The effect of humidity on the removal of fine particles on a solid surface using a high-speed air-jet. Kagaku Kogaku Ronbunshu, 1994, 20: 205-212
    66. Gotoh K, Takebe S, Maduda H. Effect of surface material on particle removal using high speed air jet. Kagakuk Kogaku Ronbunshu, 1994, 20: 685-692
    67. Gotoh K, Takebe S, Maduda H, Banba Y. High-efficiency removal of fine particles deposited on a solid surface. J. Soc. Powder Tech. Jpn. 1994, 31: 726-733
    68. Gotoh K, Takebe S, Maduda H. Mechanism of air jet removal of particles. Kagaku Kogaku Ronbunshu, 1995,21: 723-731
    69. Sehmel G A, Phares D J, Flagan R C. Entrainment of fine particles from surfaces by gas jets impinging at normal incident. Exp. Fluids 1999, 26: 324-334
    70. Ibrahim A H, Dunn P F, Brach R M. Microparticle detachment from surfaces exposed to turbulent air flow: Controlled experiments and modeling. J Aerosol Sci. 2003, 34: 765-782
    71. Ibrahim A H, Dunn P F, Brach R M. Microparticle detachment from surfaces exposed to turbulent air flow: Effects of flow and particle deposition characteristics. J. Aerosol Sci. 2004, 35: 805-821
    72. Mathiesen V, Solberg T, Hjertager B H. An experimental and computational study of multiphase flow behaviour in a circulating fluidised bed. Int. J. Multiphas. Flow 2000, 26: 387-419
    73. Mathiesen V, Solberg T, Hjertager B H. Predictions of gas/particle flow with an E model including a realistic particle size distribution. Powder Technol. 2000,112: 34-45
    74. Kim H. Arastoopour H. Extension of kinetic theory to cohesive particle flow. Powder Technol. 2002, 122: 83-94
    75. Goldschmidt M J V, Kuipers J A M, van Swaaij W P M. Hydrodynamic modelling of dense gas-fluidised beds using the kinetic theory of granular flow: effect of coefficient of restitution on bed dynamics. Chem. Eng. Sci. 2001, 56: 571-578
    76. Goldschmidt M J V, Beestra R, Kuipers J A M. Hydrodynamic modelling of dense gas-fluidised beds: comparison of the kinetic theory of granular flow with 3D hard-sphere discrete particle simulations. Chem. Eng. Sci. 2002, 57: 2059-2075
    77. Ben Dor G Dust entrainment by means of a plannar shock induced vortex over loose dust layers. Shock Waves 1995,4: 285-288
    78. Kosinski P, Hoflmann A C, Klemens R. Dust lifting behind Shockwaves: comparison of two modelling techniques. Chem. Eng. Sci. 2005, 60: 5219- 5230
    79. Emmons L B, Pennerbaker W B. An investigation of dust pickup and transport in a shock tube. Bachelor's project. Lehigh University 1957.
    80. Igra O, Takayama K. Shock tube study of the drag coefficient of a sphere in a nonstationary flow. Proc. R. Soc. London A 1993,442: 231-247
    81. Britan A, Elperin T, Igra O, Jiang J P. Acceleration of a sphere behind planar shock waves. Exp Fluids 1995,20: 84
    82. Suzuki T, Sakamura Y, Adachi T, Kobayashi S. An experimental study on the initial mechanism of particle liftup by a shock passage. Trans. Jpn. Soc. Aero. Space Sci. 1995,38: 243-250
    83. Sun M, Saito T, Takayama K, Tanno H. Unsteady drag on a sphere by shock wave loading. Shock Waves 2004, 00193-004-0235-4
    84. Smedley G T, Phares D J, Flagan. Entrainment of fine particles from surfaces by impinging shock waves. Exp. Fluids 1999, 26: 116-125
    85. Smedley G T, Phares D J, Flagan R C. Entrainment of fine particles from surfaces by gas jets impinging at normal incidence. Exp. Fluids 1999, 26: 324-334
    86. Smedley G T, Phares D J, Flagan R C. Entrainment of fine particles from surface by gas jets impinging at oblique incidence. Exp. Fluids 2001, 30: 135-142
    87. Phares D J, Smedley G T, Flagan R C. Effect of particle size and material properties on aerodynamic resuspension form surface. J. Aerosol. Sci. 2000, 31(11): 1335-1353
    88. Cleaver J W, Yates B. Mechanism of detachment of colloidal particles from a flat substrate in a turbulent flow. J. Colloid Interface Sci. 1973, 44: 464-473
    89. Wen H Y, Kasper G. On the kinetics of particle reentrainment from surfaces. J. Aerosol Sci. 1989, 13:483-498
    90. Lazaridis M, Drossinos Y, Georgopoulos g. Trubulent resuspension of small nondeformable particles. J. Colloid Interface Sci. 1998, 204: 24-32
    91. SoltaniM, Ahmadi G On particle adhesion and removal mechanisms in turbulent flows. J. Adhesion Sci. Technol. 1994, 8: 763-785
    92. Vainstein P, Ziskind G, Fichman M, Gutfinger C. Kinetic model of particle resuspension by drag force. Phys. Rev. Lett. 1997, 78: 551-554
    93. Bratten D A, Shaw R H, Paw U K T. Boundary-layer flow structures associated with particle reentrainment. Boundary-Layer Meteorol. 1993, 65: 255-272
    94. Lee J M, Watkins K G. Removal of small particles on silicon wafer by laser-induced airborne plasma shock waves. J. Appl. Phys. 2001, 89(11): 6496-6500
    95. Cetinkaya C, Vanderwood R, Rowell M. Nanoparticle removal from substrates with pulsed-laser induced plasma and shock waves. J. Adhesion Sci. Technol. 2002, 16(9): 1201-1214
    96. Hooper T, Cetinkaya C. Efficiency studies of particle removal with pulsed-laser induced plasma. J. Adhesion Sci. Technol. 2003, 17(6): 763-776
    97. Vanderwood R, Cetinkaya C. Nanoparticle removal from trenches and pinholes with pulsed-laser induced plasma and shock waves. J. Adhesion Sci. Technol. 2003, 17(1): 129-147
    98. Lee S H, Park J G, Lee J M, Cho S H, Cho H K. Si wafer surface cleaning using laser-induced shock wave: a new dry cleaning methodology. Surface and Coating Technology 2003, 169-170: 178-180
    99. Lee J M, Cho S H, Kim T H, Park J G, Busnaina A A. Nano-particle laser removal from silicon wafers. Proc. of SPIE 2003, 5063: 441-444
    100. Devarapalli V K, Li Y, Cetinkaya C. Post-chemical mechanical polishing cleaning of silicon wafers with laser-induced plasma. J. Adhesion Sci. Technol. 2004, 18(7): 779-794
    101. Kim T, Lee J M, Cho S H, Kim T H. Acoustic emission monitoring during laser sock cleaning of silicon wafers. Opt. Laser Eng. 2005, 43: 1010-1020
    102. Lim H, Jang D, Kim D, Lee J W, Lee J M. Correlation between particle removal an shock-wave dynamics in the laser shock cleaning process. J. Appl. Phys. 2005, 97: 054903-1-6
    103. Murthy Peri M D, Cetinkaya C. Rolling resistance moment of microspheres on surfaces. Philosophical Magazine 2005, 85(13): 1347~1357
    104. Lee S H, Kang Y J, Park J G, Busnaina A A, Lee J M, Kim T H, Zhang G, Eschbach F, Ramamoorthy A. laser shock removal of nanoparticles from Si capping layer extreme ultraviolet lithography masks. Jpn. J. Appl. Phys. 2005, 44(7B): 5560~5564
    105.李维新.一维不定常流与冲击波.第一版.北京:国防工业出版社,2004,330~343
    106.谢多夫.力学中的相似方法与量纲理论.第一版.北京:科学出版社,1982
    107.卞保民,陈建平,杨玲,倪晓武,陆建.空气中激光等离子体冲击波的传输特性研究.物理学报 2000,49(3):445~448
    108.卞保民,杨玲,陈笑,倪晓武.激光等离子体及点爆炸空气冲击波波前运动方程的研究.物理学报 2002,51(4):809~813
    109. 1965, 48:1508~1519
    110. Freeman R A. Variable energy blast waves. J. Phys. D: Appl. Phys. 1968, 1: 1697~1710
    111. Wilson C R, Turcotte T L. Similarity solution for a spherical radiation-driven shock wave. J Fluid Mech. 1970, 43:399~406
    112. Barenblatt G I, Guirguis R H, Kamel M M, Kuhl A L, Oppenheim A K, Zel'dovich Y B. Self-similar explosion waves of variable energy at the front. J. Fluid Mech. 1980, 99:841~858
    113. Steiner H, Gretler W, Hirschler T.Numerical solution for spherical laser-driven shock waves. Shock Waves 1998, 8:139~147
    114. Dabora E K. Variable energy blast waves. AIAA J. 1972, 10:1384~1386
    115. Pitkin E T. Perturbation solutions for variable energy blasts. Acta Astr. 1977, 4: 1137~1158
    116. Director M N, Dabora E K. An Experimental Investigation of Variable Energy Blast Waves. Acta Astr. 1977, 4:391~407
    117.卞保民,侯风,陈建平,倪晓武,陆建.激光等离子体空气冲击波前参量的测定及研究.中国激光 2001,28(2):155~159
    118. Hrovatin R, Moiina J. Effect of plasma shielding in laser ultrasonics: Optoacoustic characterization. J. Appl. Phys. 1994, 75 (12): 8207~8209
    119. Stauter C, Gerard P, Fontaine J, Engel T. Laser ablation acoustical monitoring. Appl. Sur. Sci. 1997, 109/110:174~178
    120. Qin Q, Attenborough K. Characteristics and application of laser-generated acoustic shock waves in air. Appl. Acoust. 2004, 65(4): 325~340
    121. Ni X W, Lu J, He A Z. Interferometric diagnosis of laser-produced plasma on an aluminum target. Micro. Opt. Tech. Lett. 1997, 14(5): 271~271
    122. Sobral H, Villagran-Muniz M, Navarro-Gonzalez R, Raga A. Temporal evolution of the shock wave and hot core air in laser iduced plasma. Appl. Phys. Lett. 2000, 77(20): 3158~3160
    123. Villagran-Muniz M, Sobral H, Camps E. Shadowgraphy and interferometry using a CW laser and a CCD of a laser-induced plasma in atmospheric air. IEEE T. Plasma Sci. 2001,29(4): 613~616
    124. Gatti M, Palleschi V, Salvetti A, Singh D P, Vaselli M. Spherical shock waves in laser produced plasmas in gas. Optics Commun. 1988, 68(2): 141~146
    125. Siano S, Pini R. Analysis of blast waves induced by Q-switched Nd:YAG laser photodisruption of absorbing targets. Optics Commun. 1997, 135:279~284
    126. Marton Zs, Hopp B, T6th Zs, Csete M, Ignacz F, Bor Zs. Velocity measurements in the nanosecond range realized by variably delayed dye laser exposition. Proc. of SPIE 1997, 3407:291~296
    127. Marton Zs, Heszler P, Mechler A, Hopp B, Kantor Z, Bor Zs. Time-resolved shock-wave photography above 193-nm excimer laser-ablated graphite surface. Appl. Phys. A 1999, 69:133~136
    128. Mao S S, Mao X. Greif R, Russo R E. Dynamics of an air breakdown plasma on a solid surface during picosecond laser ablation. Appl. Phys. Lett. 2000, 76(1): 31~33
    129. Mao S S, Mao X. Greif R, Russo R E. Initiation of an early-stage plasma during picosecond laser ablation of solids. Appl. Phys. Lett. 2000, 77(16): 2464~2466
    130. Mori K, Komurasaki K, Arakawa Y. Energy transfer from a laser ulse to a blast wave in reduced-pressure air atmospheres. J. Appl. Phys. 2004, 95(11): 5979~5983
    131. Enloe C L, Gilgenbach R M, Meachum J S. Fast, sensitive laser delfeciton system suitable for transient plasma analysis. Rev. Sci. Instrum. 1987, 58(9): 1597~1600
    132. Jeong S H, Greif R, russo R E. Shock wave and amterial vapour plume propagation during excimer laser ablation of aluminium samples. J. Phys. D: Appl. Phys. 1999, 32: 2578~2585
    133. Sell A J, Heffelfinger D M, Ventzek P L G, and Gilgenbach M. Photoacoustic and photothermal beam deflection as a probe of laser ablation of materials. J. Appl. Phys. 1990, 69(3): 1330~1336
    134. Azzeer A M, AI-Dwayyan A S, A1-Salhi M S, Kamal A M, Harith A. Optical probing of laser-induced shock waves in air. Appl. Phys. B 1996, 63:307~310
    135. Stauter C, Gerarad, Fontaine J. Shock wave generated during laser ablation. Proc. of SPIE 1998, 3343:961~969
    136. Lou Q, Beam-Deflection study of shock wave formation during pulse UV laser surface treatment of C60 films. Proceedings of SPIE 2000, 3888:148~154
    137. Villagran-Muniz M, Sobral H, Navarro-Gonzalez Rafael. Shock and thermal wave study of laser-induced plasmas in air by the probe beam deflection technique. Meas. Sci. Technol. 2003, 14:614~618
    138.李维新.一维不定常流与冲击波.第一版.北京:国防工业出版社.2004,202~212
    139. Taylor G I. The formation of a blast wave by a very intense explosion. Proc. Royal Sco, London, Ser. A201, 1950
    140.卞保民,杨玲,张平,纪运锦,李振华,倪晓武.理想气体球面强冲击波一般自模拟运动模型.物理学报2006,55(8):4181~4187
    141. Yavas O, Maddocks E L, Papantonakis M R, Haglund Jr. R E Planar and spherical shock wave generation during infrared laser ablaton of calcium carbonate. Appl. Sur. Sci. 1998, 127-129:26~32
    142. Harith M A, Palleschi V, Salvetti A,Singh D P, Tropiano G, Vaselli M. Experimental studies on shock wave propagations in laser produced plasmas using double wavelength holography. Opt. Commun. 1989, 71 (2): 76~80
    143. Bowling R A. Particles on surfaces 1: Detection, Adhesion, and Removal (Mittal K L, ed.), 1st ed., New York: Plenum Pressure, 1988, 129~142
    144. Khilnani A. Particles on surfaces 1: Detection, Adhesion, and Removal, (Mittal K L, ed.), 1st ed., New York: Plenum Pressure, 1988, 17~35
    145. Menon V B, Donovan R P. Handbook of semiconductor wafer cleaning technology, (Kern W, ed.), Noyes Publications, Park Ridge, NJ 1993,379~432
    146. Orr F M, Seriven L E, Rivas A P. Pendular Rings Between Solids: Meniscus Properties and Capillary Force. J. Fluid Mech. 1975, 67:723~742
    147. McFarlane J S, Tabor D. Adhesion of solids and the effect of surface films. Proc. R. Soc. Lond. Series A. 1950, 202:224~243
    148. Rerry R H, Chilton C H. Chemical Engineering Handbook, New York: McGra-Hill Book Company, 1963
    149. Ranade M B. Particles on surfaces 1: Detection, Adhesion, and Removal (Mittal K L, ed.). 1st ed. Now York: Plenum Press, 1988, 179~191
    150. Bradley R S. The cohesive force between solid surfaces and the surface energy of solids. Phil. Mag. 1932, 13: 853-862
    151. Hamaker H C. The London-van der Waals attraction between spherical particles Physica 1937,4 (10): 1058-1072
    152. Lifshitz E M. The theory of molecular attractive force between solids. Soviet Phys. 1956,2(1): 73
    153. Rimai D S, Quesnel D J, Bowen R C. Particle Adhesion to Highly Compliant Substrates: Anomalous Power-Law Dependence of the Contact Radius on Particle Radius. Langmuir 2001, 17: 6946-6952
    154. Bradley R S, Trans. Faraday Soc. 1936, 32: 1088
    155. Derjaguin B V. Untersuchungen uber die Reibung und Adhasion, IV. Theorie des Anhaftens kleiner Teilchen, Kolloid Z. 1934, 69: 155-164
    156. Krupp H. Particle Adhesion: Theory and Experiment. Adv. Colloid Interface Sci. 1967,
    1:111-239
    157. Johnson K L, Kendall K, Roberts A D. Surface energy and the contact of elastic solids.
    Proc. Roy.Soc. Lond. A. 1971, 324: 301-313
    158. Deryagin B V, Muller V M, Toporov Yu P. Effect of contact deformation on the adhesion of particles. J. Colloid Interface Sci. 1975, 53(2): 314-326
    159. Maugis D. Adhesion of spheres: the JKR-DMT transition using a Dugdale model. J. Colloid Interface Sci. 1992,150(1): 243-269
    160. Tabor D. Surface forces and surface interactions. J. Colloid Interface Sci. 1977, 58: 2-13
    161. Tabor D. On the role of molecular forces in contact deformations (critical remarks concerning Dr Tabor's report), J. Colloid Interface Sci. 1978, 67 (2): 380
    162. Derjaguin B V, Muller V M, Toporov Yu P, On the role of molecular forces in contact deformations (critical remarks concerning Dr Tabor's report). J. Colloid Interface Sci. 1978, 67(2): 378-379
    163. Derjaguin B V, Muller V M, Toporov Yu P. On different approaches to the contact mechanics. J. Colloid Interface Sci. 1980, 73 (1): 293
    164. Muller V M, Yushchenko V S, Derjaguin B V. On the influence of molecular forces on the deformation of an elastic sphere and its sticking to a rigid plane. J. Colloid Interface Sci. 1980, 77(1): 91-101
    165. Muller V M, Yushchenko V S, Derjaguin B V. General theoretical consideration of the
    influence of surface forces on contact deformations and the reciprocal adhesion of elastic spherical particles. J. Colloid Interface Sci. 1983,92 (1): 92-101
    166. Maugis D, Pollock H M. Surface, formation, and adherence at metal microcontacts. Acta Metall. 1984, 32: 1323-1334
    167. Busnaina A A, Lin H, Moumen N, Feng J W, Taylor J. Particle adhesion and removal mechanisms in post-cmp cleaning process. IEEE Transactions on semiconductor manufacturing 2002,15(4): 374-382
    168. Rimai D S, Quesnel D J, Bowen R C. Particle adhesion to highly compliant substrates: anomalous power-law dependence of the contact radius on particle radius. Langmuir 2001,17:6946-6952
    169. Rimai D S, Demejo Lawrence P., Bowen Ray, Morris Jeffrey D. Particles on surfaces 8: Detection, Adhesion, and Removal (Mittal K L, ed.). 1st ed. Now York: Markcel Dekker 1995: 1-31
    170. Rimai D S, Quesnel D J, Busnaina A A. The adhesion of dry particles in the nanometer to micrometer-size range. Colloids Surfaces A 2000,165: 3-10
    171. Tsai C, Pui D Y H, Liu B Y H. Elastic flattening and particle adhesion. Aerosol Sci. Technol. 1991,15:239-255
    172. Wu X, Sacher E, Meunier M. The modeling of excimer laser particle removal from hydrophilic silicon surfaces. J. Appl. Phys. 2000, 87(8): 3618-3626
    173. Hua M, Shi X, Cheung E, Yuan W. Limit analysis for laser removal of micron contaminant colloidal silicon dioxide particles from the super-smooth optical glass substrate by pulse Nd: YAG laser. Opt. LASER Technol. 2004, 37: 9-20
    174. http://www.istec.com.uy/eng/calculations/YoungModulus.asp
    175. Visser J. Particle adhesion and removal: A review. Particle Science and Technology 1995, 13: 169-196
    176. Arronte M, Neves P, Vilar R. Modeling of laser cleaning of metallic particulate contaminates from silicon surfaces. J. Appl. Phys. 2002, 92(12): 6973-6982
    177. Rabinovich Y I, Adler J J, Ata A, Singh R K, Moudgil B M. Adhesion between nanoparticle rough surfaces. J. Colloid Interf. Sci. 2000,232: 17-24
    178. Rabinovich Y I, Adler J J, Esayanur M S, Ata Ali, singh R, Moudgil B M. Capillary forces between surfaces with nanoscale roughness. Adv. Colloid Interfac. 2002, 96: 213-230
    179. Cetinkaya C, Murthy Peri M D. Non-contact nanoparticle removal with laser induced plasma pulses. Nanotechnology 2004,15: 435-440
    180. Krishna V, Li Y, Cetinkaya C. Post-chemical mechanical polishing cleaning of silicon wafers with laser-induced plasma. J. Adhesion Sci. Technol. 2004, 18(7): 779~794
    181. Leiderer P, Boneberg J, Dobler V, Mosbacher M, Munzer H.-J., Chaoui N, Siegei J, Solis J, Afonso C N, Fourrier T, Schrems G; Bauerle D. Laser-induced Particle Removal from Silicon Wafers. Proc. of SPIE. 2000, 4065:249~259
    182. Mosbacher M, Bertsch M, Munzer H J,, Dobler V, Runger B U, Bauerle D, Boneberg J, Leiderer P. Laser Cleaning of Silicon Wafers: Mechanisms and Efficiencies. Proc. of SPIE 2002, 4426:308~314
    183. Watkins K G, Curran C, Lee J M. Two new mechanisms for laser cleaning using Nd:YAG sources. J. Cultural Heritage 2003, 4:59~64
    184. Hafilal S S, Bindhu C V, Tillack M S, Najmabadi F, Gaeris A C. Internal structure and expansion dynamics of laser ablation plumes into ambient gases. J. Appl. Phys. 2003, 93(5): 2380~2388
    185. Misra A, Mitra A, Thareja R K. Diagnostics of laser ablated plasmas using fast photography. Appl. Phys. Lett. 1999, 74(7): 929~931
    186. Komolov V L. Interferometric measurements of plasma density in microcapillaries and laser sparks. Tech. Phys. 1997, 42 (5): 499~503
    187. Suliyanti M M, Sardy S, Kusnowo A, Hedwig R, Abdulmadjid S N, Hurniawan K H, Lie T J, Pardede M, Kagawa K, Tjia M O. Plasma emission induced by an Nd-YAG laser at low pressure on solid organic sample, its mechanism, and analytical application. J. Appl. Phys. 2005, 97:053305-1~9
    188. Li Y M, Broughton J N, Fedosejevs R. Formation of plasma columns in atmospheric pressure gases by picosecond KrF laser pulses. Optics Commun. 1992, 93:366~377
    189. Lichtman D, Ready J F. Laser Beam Induced Electron Emission. Phys. Rev. Lett. 1963, 10(8): 342~348
    190. Lichtman D, Ready J F. Reverse Photoelectric effect and positive ion emission caused by Nd-in-glass laser radiation. Appl. Phys. Lett. 1963, 3(7): 115~116
    191. Honig R E. Laser-induced emission of electrons and positive ions from metals and semiconductors, Appl. Phys. Lett. 1963, 3(1): 8~11
    192. Ahmad S R. Evidence for reverse photoelectrons in laser-induced current. J. Appl. Phys. 1972 43(1):244~245
    193. Bechtel J H. Franken P A. Laser-induced electron emission. Phys. Rev. B 1975, 11(4): 1359~1364
    194. Kabashin A V, Konov V I, Nikitin P I, Prokhorov A M, Konjevic N, Vikor L. Laser-plasma generation of currents along a conductive target. J. Appl. Phys. 1990, 68(7): 3140-3146
    195. Kabashin A V, Nikitin P I. New method of magnetic field and current generation outside laser plasma. Appl. Phys. Lett. 1996, 68(2): 173-175
    196. Kabashin A V, Nikitin P I. Space-time structure of the magnetic field of a lser plasma and methods for its enhancement outside the plasma. Phys. Rev. E 1997, 55(3): 3393-3399
    197. Kabashin A V, Nikitin P I. Electric fields of a laser spark produced by radiation with various parameters. Quantum Electron. 1997,27: 536-541
    198. Kabashin A V, Nikitin P I, Marine W. Electric fields of a laser plasma formed by optical breakdown of air near various targets. Quantum electrics 1998, 28(1): 24-28
    199. Hansen T N, Schou J, Lunney J G. Angle-resolved energy distributions of laser ablated silver ions in vacuum. Appl. Phys. Lett. 1998, 72(15): 1829-1831
    200. Woryna E, Parys P, Wolowski J, Krasa J, Laska L, Rohlena K, Stockli M P, Winechi S,Walch B. Absolute measurements of characteristics of tantalum ion current from laser-produced plasma. Rev. Sci. Instrum. 1998, 69(2): 1045-1047
    201. Lorusso A, Krasa, Rohlena K, Nassisi V, Belloni F, Doria D. Charge losses in expanding plasma created by an XeCl laser. Appl. Phys. Lett. 2005, 86: 081501-1-081501-2
    202. Issac R C, Gopinath P, Nampoori Geetha K, Varier V P N, Vallabhan C P G, win peak distribution of electron emission profile and impact ionization of ambient molecules during laser ablation of silver target. Appl. Phys. Lett. 1998, 73(2): 163-165
    203. Lu Y F, Song W D, Hong H M, Zheng Y W. Laser surface cleaning and real-time monitoring. Proc. of SPIE 2000,4070: 331-337
    204. Hong M H, Lu Y F. Plasma diagnostics at early stage of laser ablation. Appl. Phys. A 1999,69:605-608
    205. Lu Y F, Hong M H. Electric signal detection at the early stage of laser ablation in air. J.Appl. Phys. 1999, 86(5): 2812-2816
    206. Amoruso S, Armenante M, Bruzzese R, Spinelli N, Velotta R, Wang X. Emission of prompt electrons during excimer laser ablation aluminum targets. Appl. Phys. Lett. 1999, 75(1): 7-9
    207. Hong M H, Lu Y F. Comment on 'Emission of prompt electrons during excimer laser ablation of aluminum targets'" [ Appl. Phys. Lett. 75, 7 (1999)]. Appl. Phys. Lett.2000, 76(2): 248-248
    208. Amoruso S, Armenante M, Bruzzese R, Spinelli N, Velotta R, Wang X. Response to "Comment on 'Emission of prompt electrons during excimer laser ablation of aluminum targets'" [Appl. Phys. Lett. 76, 248 (2000)]. Appl. Phys. Lett. 2000, 76(2): 249~250
    209. Pardede M, Kumiawan H, Lie T J, Tjia M O, Kagawa K. Direct measurement of charge current by employing a mesh Electrode in the laser plasma induced by Nd: YAG laser (Ⅰ). Appl. Spectro. 2002, 56(8): 994~998
    210. Madjid S N, Kitazima I, Kagawa K. Low-cost monitoring system for laser processing. Jpn. J. Appl. Phys. 2002, 41(11A): 6411-6412
    211. Madjid S N, Kitazima I, Kobayashi T, Lee Y I, Kagawa K. Characteristics of induced current due to laser plasma and its application to laser processing monitoring. Jpn. J. Appl. Phys. 2004, 43(3): 1018~1027
    212.纪运锦,张平,童朝霞,卞保民,李振华,陆建.激光烧蚀金属元靶等离子体中电学信号的实验研究.原子与分子物理学报2006.(已接受)
    213、郑贤峰,凤尔银,马靖,杨锐,季学韩,崔执凤.激光诱导等离子体电信号探测.原子与分子物理学报 2002,19(4):390~394

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700