中低纬顶部电离层O~+场向扩散通量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要包括两部分的内容,第一部分为顶部电离层O+场向扩散通量研究,分别利用CHAMP卫星和COSMIC星座的资料研究了太阳活动高年和太阳活动低年中低磁纬扩散通量的统计特征,还利用非相干散射雷达数据分析了磁暴时中纬顶部电离层扩散通量的变化特征;第二部分分析了CHAMP卫星的就地观测资料,包括大气密度、电子密度、电子温度,介绍了大气密度的反演方法,并进行了密度模式方面的初步探索,这部分有较强的应用价值。
     第一部分:顶部电离层O+场向扩散通量研究。
     扩散通量的研究,对电离层和等离子体层/内磁层动力学和质量耦合的研究非常重要,对电离层和热层的动力学耦合研究也有重要的意义,而且还有助于人们分析清楚双极扩散作用和中性风、电场以及化学过程等各种物理过程对电离层结构的相对影响大小。扩散通量还是很多全球电离层-热层模式必需的上边界条件之一,如NCAR-TIEGCM和TING模式。
     (1)利用CHAMP卫星资料研究太阳活动高年顶部电离层O+场向扩散通量的统计特征。本文从等离子体运动方程出发,用CHAMP卫星的电子浓度剖面数据,结合经验模式IRI2007和NRLMSISE00,计算顶部电离层的O+场向扩散速度和扩散通量,并分析了2002年1月~2003年12月期间中低磁纬扩散速度和扩散通量的变化特征。结果表明,在中低磁纬地区,hmF2+100 km高度以下,平均扩散速度大约为-15 ms-1~25 ms-1;白天等离子体扩散速度的方向随高度增加由向下(极向)逐步变为向上(赤道向),方向转变的高度在hmF2+50 km左右。在中磁纬,向上的扩散通量和扩散速度在中午最大。白天,在磁纬±25°左右的区域存在着最大的向上等离子体扩散通量,而磁赤道区的等离子体通量很小。在分点O+扩散通量基本关于磁赤道对称,而冬季半球的等离子体扩散通量明显大于夏季半球的。
     (2)利用COSMIC卫星资料研究太阳活动低年顶部电离层O+场向扩散通量的统计特征。利用COSMIC掩星数据计算了2006年第300天至2007年第300天顶部电离层O+场向扩散速度和扩散通量,并分析其全球分布和日变化特征。在白天的较高高度(hmF2+80 km以上),各纬度等离子体扩散速度都向上;在夜间,扩散速度的方向向下。在白天的较高高度,在南北磁纬10°~20°左右存在着方向向上的最大扩散速度和扩散通量;而在夜间,在南北磁纬30°~40°左右,存在方向向下的最大扩散速度和扩散通量。在分点时,南北半球的扩散通量和扩散速度大致对称,而在至点,扩散通量存在着明显的南北半球不对称的现象,在白天的较高高度上(如hmF2+80 km以上),夏季半球中低纬度的扩散速度和扩散通量明显高于冬季半球的,而在至点的较低高度上(如hmF2+50 km),没有这样的特征,甚至冬季半球的扩散速度还高于夏季半球的。另外,不同纬度的扩散速度有着不同的日变化特征。通过对CHAMP资料和COSMIC资料研究结果的对比,发现太阳活动低年的最大扩散通量值要小于太阳活动高年的值。
     (3)利用非相干散射雷达资料研究磁暴时O+扩散通量的变化特征。本文利用Millstone Hill非相干散射雷达(288.5°E, 42.6°N)观测的电子密度、电子温度和离子温度剖面来计算扩散通量,并对2002年10月份两次磁暴期间的电离层扩散通量、扩散速度以及相关参数的变化特征进行了分析。发现在500 km高度上,两次磁暴的主相期间,白天向上的扩散通量有明显的减小,夜间向下的扩散通量明显增大;在两次磁暴的恢复相期间,夜间观测到比平静期更小的扩散速度,在某些时段其方向甚至转为向上。
     第二部分:利用CHAMP卫星的就地观测数据进行热层和电离层方面的研究。
     (1)大气密度研究。介绍了利用CHAMP卫星的加速度计数据和相关测量反演高层大气密度的方法,并尝试利用该数据建立大气密度的经验模式。随着越来越多载有加速度计的卫星开始运行,该研究结果有着广阔的应用前景。
     (2)电子温度和电子密度研究。利用CHAMP卫星朗缪尔探针的观测数据,分析了电子温度和电子密度年内变化特征以及它们与太阳活动的关系。
This thesis includes two parts. One part is the study of O+ field-aligned diffusive fluxes in the topside ionosphere. In this part, the statistical characteristics of the diffusive fluxes in the mid- and low-latitude topside ionosphere are analyzed under low and high solar activity conditions from radio occultation measurements by CHAMP and COSMIC, respectively. The characteristics of diffusive fluxes during two geomagnetic storms are analyzed using the measurements by incoherent scatter radar. In the other part, the in-situ measurements, including atmospheric densities, electron densities and electron temperatures, are analyzed. A method of retrieving atmospheric density is introduced. The preliminary result of atmospheric density model is given. The study in this part has important applied values.
     1. The study of field-aligned O+ diffusive fluxes.
     The knowledge of plasma diffusive fluxes is not only important to the study of the dynamical and mass coupling between the ionosphere and plasmasphere/inner magnetosphere, but it is helpful to the research of the dynamical coupling between the ionosphere and thermosphere. It also helps to elucidate the relative contributions of each physical process, including neutral wind, electric field, chemistry and ambipolar diffusion, to variations of the global ionosphere during both storm and quite times. Topside diffusive fluxes are also one of the primary top boundary conditions for many global thermosphere/ionosphere models, such as the NCAR-TIEGCM and TING model.
     (1) The statistical characteristics of diffusive fluxes under high solar activity conditions are analyzed. O+ field-aligned diffusive velocities and fluxes in the topside ionosphere are calculated from electron density profiles retrieved from CHAMP radio occultation measurements and empirical predicts from IRI2007 and NRLMSISE00 models. The velocities and fluxes from January 2002 to December 2003 at low- and mid-latitudes have been statistically analyzed. The results show that the averaged velocities were between -15ms-1~25 ms-1. The diffusive fluxes during the daytime changed gradually from downwardto upward as altitude increases. The transition heights from downward flows to upward flows were about hmF2+50 km. The largest values of the upward diffusive fluxes and velocities occurred at around±25o geomagnetic latitude. The diffusive fluxes near the equator were small. During solstices the plasma fluxes in the winter hemisphere were larger than those in the summer hemisphere.
     (2) The statistical characteristics of diffusive fluxes under low solar activity conditions are analyzed. O+ field-aligned diffusive velocities and fluxes in the topside ionosphere have been calculated from electron density profiles retrieved from COSMIC radio occultation measurements. The diffusive velocities and fluxes from October 2006 to October 2007 at low- and mid-latitudes have been statistically analyzed. The results show that the directions of diffusive fluxes are upward in the daytime, but downward at night. The largest values of the upward diffusive fluxes and velocities during daytime occur at at geomagnetic latitudes from 10°to 20°above hmF2+80 km , whereas for the nighttime the maximum downward fluxes occur at geomagnetic latitudes from 30°to 40°. Diffusive fluxes are roughly symmetric around the magnetic equator during equanoxes. But they are asymmetric during solstices, the winter hemisphere has smaller fluxes than the summer hemisphere does above hmF2+80 km. In addition, the diurnal variations have latitudinal dependences. The values from CHAMP data are compared with those from COSMIC data, and the results show that during the daytime the maximum diffusive fluxes under low solar activity conditions are less than those under high solar activity conditions.
     (3) The variations of diffusive fluxes during geomagnetic storms are analyzed. A 30-day ISR experiment was conducted at Millstone Hill (288.5°E, 42.6°N) from 4 October to 4 November 2002. O+ field-aligned diffusive velocities and fluxes in the topside ionosphere have been calculated from the altitude profiles of electron density, ion and electron temperature during this experiment. The characteristics of Vd,Фd and some other ionospheric parameters are analyzed during two geomagnetic storms. Upward Vd andФd during the storm main phases were significantly less than the averaged values in quiet time at 500 km height. In the nighttime of the storm main phases, downward Vd was larger than the averaged value sometimes. During the recovery phases, the decrease of Vd andФd, and the changes of their directions in the nighttime are observed.
     2. The thermospheric and ionospheric parameters are analyzed using in-situ measurements by CHAMP.
     (1) A method of retrieving the upper-atmospheric densities using the measurements from the accelerometer is introduced. A test model is constructed. Since many satellites will carry accelerometers, this method can be widely used in the future.
     (2) The annual and semiannual variations of electron densities and electron temperatures from Langmuir probe and their dependences of the solar activity are analyzed.
引文
Amayenc P, Vasseur G. Neutral winds deduced from incoherent scatter observations and their theoretical interpretation. J. Atmos. Terr. Phys., 34, 351.
    Bailey G J, Moffett R J, and Swartz W E. Effects of photoelectron heating and interhemisphere transport on day-time plasma temperatures at low latitudes. Planet. Space Sci., 23, 599-610, 1975.
    Bailey G J, and Balan N. A low-latitude iononosphere-plasmasphere model. STEP Hand Book, edited by Schunk R W, 173-206, 1996.
    Bailey G J. The topside ionosphere above Arecibo during summer at sunspot minimum and the influence of an interhemispheric flow of thermal protons. J. Geophys. Res., 87, 7557-7567, 1982.
    Balan, N, and Bailey G J. Modeling studies of equatorial plasma fountain and equatorial anomaly. Adv. Space Res., 18 (3), 107-116, 1996.
    Banks P M and Kockarts G. Aeronomy, Parts B. Academic Press, Inc. New York and London, 1973.
    Bates D R. Some problems concerning the terrestrial atmosphere above about the 100 km level. Proc. Roy. Soc., Ser. A, 253, 451-462, 1959.
    Benson R F, and Osherovich V A. Application of ionospheric topside-sounding results to magnetospheric physics and astrophysics. Radio Sci., 39, RS1S28, doi:10.1029/2002RS002834, 2004.
    Berger C, Biancale R, Ill M, and Barlier F. Improvement of the empirical thermospheric model DTM: DTM-94 - a comparative review of various temporal variations and prospects in space geodesy applications. J. Geodesy, 72(3), 161-178, 1998.
    Bilitza D, Truhlik V, Richards P, Abe T, and Triskova L. Solar cycle variations ofmid-latitude electron density and temperature: Satellite measurements and model calculations. Adv. Space Res., 39, 779-789, 2007.
    Bilitza D, and Reinish B W. International Reference Ionosphere 2007: Improvement and new parameters. Adv. Space Res., 42(4), 599-609, 2008.
    Brace L H, and Theis R F. Global empirical models of ionospheric electron temperature in the upper F-region and plasmasphere based on in situ measurements from Atmosphere explorer C, ISIS 1 and ISIS 2 satellites. J. Atmos. Terr. Phys., 43, 1317-l 343, 1981.
    Bradbury N E, Fundamental Mechanisms in the Ionosphere Publications of the Astronomical Society of the Pacific, 49(290), 206, 1937
    Brekke A. Physics of the upper polar atmosphere. John Wiley and Sons, Chichester, U.K , 1997.
    Bruinsma S, Thuillier G, and Barlier F. The DTM-2000 empirical thermosphere model with new data assimilation and constraints at lower boundary: accuracy and properties. J. Atmos. Sol. Terr. Phys., 65(9), 1053-1070, 2003.
    Bruinsma S, Tamagnan D, and Biancale R. Atmospheric densities derived from CHAMP/STAR accelerometer observations. Planet. Space Sci., 52, 297-312, 2004.
    Bruinsma S, and Biancale R. Total densities derived from accelerometer data. J. Spacecraft Rockets, 40 (2), 230-236, 2003.
    Buonsanto M J, and Titheridge J E. Diurnal variations in the flux of ionosation above the F2 peak in the northern and southern hemisphere. J. Atmos. Sol. Terr. Phys., 49, 1093-1105, 1987.
    Buonsanto M, Foster J, and Sipler D. Observations from Millstone Hill During geomagnetic disturbances of March and April 1990. J. Geophys. Res., 97, 1225-1243, 1992.
    Buonsanto M J. Ionospheric storms—A review. Space Sci. Rev., 88, 563, 1999.
    Buneman O. Scattering of radiation by the fluctuations in a nonequilibrium plasma. J. Geophys. Res., 67(5), 2050-2053, 1962.
    Chapman S. The absorption and dissociatival or ionising effect of monochromatic radiation in atmosphere on a rotating earth. Proc. Phys. Soc., 43, 26-45, 1931a.
    Chapman S. The absorption and dissociatival or ionising effect of monochromatic radiation in atmosphere on a rotating earth part II. Grazing incidence. Proc. Phys. Soc., 43, 483-501, 1931b.
    Chen G-M, Xu J, Wang W, Lei J, and Deng Y. Field-aligned plasma diffusive fluxes in the topside ionosphere from radio occultation measurements by CHAMP. Journal of Atmospheric and Solar-terrestrial Physics, 71 (8-9), 967-974, 2009.
    Chao C K, Su S-Y, and Yeh H C. Ion temperature crests and troughs in the morning sector of the low-latitude and midlatitude topside ionosphere. J. Geophys. Res., 109, A11303, doi:10.1029/2003JA010360, 2004.
    Cook G E. The effect of aerodynamic lift on satellite orbits. Planet. Space Sci., 12 (11), 1009-1020, 1964.
    Cook G E. Satellite drag coefficients. Planet. Space Sci., 13, 929-946, 1965.
    Cook G E, and Scott D W. Exospheric densities near solar minimum derived from the orbit of Echo 2. Planetary and Space Science, 14, 1149, 1966.
    Evans J V. Observations of F-region vertical velocities at Millstone Hill, 3, Determination of altitude distribution of H+. Radio Sci., 6, 855-861, 1971a.
    Evans J V. Observations of F region vertical velocities at Millstone Hill, 1, Evidence for drifts due to expansion, contraction, and winds. Radio Sci., 6, 609-626, 1971b.
    Evans J V. Observations of F region vertical velocities at Millstone Hill, 2, Evidence for fluxes into and out of the protonsphere. Radio Sci., 6, 843-854, 1971c.
    Evans J V. Seasonal and sunspot cycle variations of F region electron temperatures and protonospheric heat fluxes. J. Geophys. Res., 78, 2344– 2349, 1973.
    Evans J V. Some post-war developments in ground-based radio wave sounding of the ionosphere. J. Atmos. Terr. Phys., 36(12), 2183-2234, 1974.
    Evans J V. A study of F2 region daytime vertical ionization fluxes at Millstone Hill during 1969. Planet. Space Sci., 23, 1461-1482, 1975.
    Evans J V, and Holt J M. Night proton fluxes at Millstone Hill. Planet. Space Sci., 26, 727-744, 1978.
    Farley D T. A Theory of Incoherent Scattering of Radio Waves by a Plasma 4. The effect of unequal ion and electron temperatures. J. Geophys. Res., 71 (17), 4091-4098, 1966.
    Falin J L, Barlier F, and Kockarts G. Densities from the CACTUS accelerometer as an external test of the validity of the thermospheric models. Adv. Space Res., 1(12), 221-225, 1981.
    Field P R, Rishbeth H, Moffett R J, Idenden D W, Fuller-Rowell T J, Millward G H, and Aylward A D. Modeling composition changes in F-layer storms. J. Atmos. Sol. Terr. Phys., 60, 523-543, 1998.
    Flury J, Bettadpur S, and Tapley Byron D. Precise accelerometry onboard the GRACE gravity field satellite mission. Adv. Space Res., 42(8), 1414-1423, 2008.
    Forbes J M, Roble R G, and Marcos F A. Magnetic activity dependence of high-latitude thermospheric winds and densities below 200 km. J. Geophys. Res., 98, 13, 693-13, 702, 1993.
    Forbes J, Marcos F, and Kamalabadi F, Wave Structures in Lower Thermosphere Density from Satellite Electrostatic Triaxial Accelerometer Measurements, J. Geophys. Res., 100(A8), 14693-14701, 1995.
    Forbes J M, Lu G, Bruinsma S, Nerem S, and Zhang X. Thermosphere densityvariations due to the 15-24 April 2002 solar events from CHAMP/STAR accelerometer measurements. J. Geophys. Res., 110, A12S27, doi:10.1029/ 2004JA010856, 2005.
    Foster J C. Storm time plasma transport at middle and high latitude. J. Geophys. Res., 98, A2, 1675-1689, 1993.
    Friis-Christensen E, Lühr H, Knudsen D, and Haagmans R. Swarm– An Earth Observation Mission investigating Geospace. Adv. Space Res., 41(1), 210-216, 2008.
    Greenspan M E, Burke W J, Richs F J, Hughes W J, and Heelis R A. DMSP F8 observations of the mid-latitude and low-latitude topside ionosphere near solar minimum. J. Geophys. Res., 99(A3), 3817-3826, 1994.
    Guerra V, and Tapia R A. A local procedure for error detection and data smoothing. MRC Technical Summary Report, 1452, Mathematics Research Center, University of Wisconsin, Madison, 1974.
    Hagan M E, Quiet-Time Upper Thermospheric Winds Over Millstone Hill Between 1984 and 1990, J. Geophys. Res., 98, 3731-3739, 1993.
    Hajj G A, and Romans L J. Ionospheric electron density profiles obtained with the Global Positioning System: Results from the GPS/MET experiment. Radio Sci., 33, 175-190, 1998.
    Hajj G A, Lee L C, Pi X, Romans L J, Schreiner W S, Straus P R, and Wang C. COSMIC GPS ionospheric sensing and space weather. Terr. Atmos. Oceanic. Sci., 11(1), 235-272, 2000.
    Hajj G A, Ao C O, Iijima B A, et al. CHAMP and SAC-C atmospheric occultation results and intercomparisons. J. Geophys. Res., 109, D06109, doi:10.1029/2003JD003909, 2004.
    Hargreaves J K. The solar-terrestrial environment. Cambridge University Press, 1992.
    Hedin A E. A revised thermospheric model based on mass spectrometer and incoherent scatter data - MSIS-83. J. Geophys. Res., 88, 10170-10188, 1983.
    Hedin A E. MSIS-86 thermospheric model. J. Geophys. Res., 92, 4649-4662, 1987.
    Hedin A E, Spencer N W, and Killeen T L. Empirical global model of upper thermosphere winds based on atmosphere and dynamics explorer satellite data. J. Geophys. Res., 93(A9), 9959-9978, 1988.
    Hedin A E. Extension of the MSIS thermosphere model into the middle and lower atmosphere. J. Geophys. Res., 96, 1159-1172, 1991.
    Hedin A E, Fleming E L, Manson A H, et al. An empirical wind model for the upper, middle and lower atmosphere. J. Atmos. Terr. Phys., 58(13), 1421-1447, 1996.
    Hernandez-Pajares M, Juan J M, and Sanz J. Improving the Abel inversion by adding ground GPS data to LEO radio occultations in ionospheric sounding. Geophys. Res. Lett., 27(16), 2473-2476, 2000.
    Ho M C, and Moorcroft D R. Composition and temperatures of the topside ionosphere over Arecibo. Planet. Space Sci., 23, 315-322, 1975.
    H?eg P, Larsen G B, Benzon H-H, Grove-Rasmussen J, Syndergaard S, Mortensen M. D., Christensen J, and Schultz K. GPS atmosphere profiling methods and error assessments, Scientific Report 98-7, Danish Meteorological Institute, Copenhagen, Denmark, 1998.
    Hoffmeyer P. The ?rsted satellite project. Air & Space Europe, 2 (5), 74-79, 2000.
    Holt J M, Zhang S, and Buonsanto M J. Regional and local ionospheric models based on Millstone Hill incoherent scatter radar data. Geophys. Res. Lett., 29(8), 1207, doi:10.1029/2002GL014678, 2002.
    Huba J D, Joyce G, and Fedder J A. The formation of an electron hole in the topside equatorial ionosphere. Geophys. Res. Lett., 27, 181-184, 2000.
    Jacchia L G. Atmospheric models in the region from 110 to 2000 km. in Stickland, A.C.(ed.) CIRA. Akademie-Verlag, Berlin, 1972
    Janchesa D, Closeb S and Fentzke J T, A comparison of detection sensitivity between ALTAIR and Arecibo meteor observations: Can high power and large aperture radars detect low velocity meteor head-echoes Icarus, 193 (1), 105-111, 2008.
    Jakowski N, Heise S, Wehrenpfennig A, et al. Ionospheric radio occultation measurements and space weather. In: Kirchengast, G, Foelsche, U, Steiner, A (Eds.), Occultations for Probing Atmosphere and Climate. Springer, Berlin, 441-446, 2004.
    Jakowski N, Wehrenpfennig A, Heise S, Reigber C, Luhr H, Grunwaldt L, and Meehan T K. GPS radio occultation measurements of the ionosphere from CHAMP: Early results. Geophys. Res. Lett., 29(10), 457, doi:10.1029/2001GL014364, 2002.
    Kawamura S, Balan N, Otsuka Y, and Fukao S. Annual and semiannual variations of the midlatitude ionosphere under low solar activity. J. Geophys. Res., 107, A8, 1166, 10.1029/2001JA000267, 2002.
    Kelley M C, and Heelis R A. The Earth's Ionosphere: Plasma Physics and Electrodynamics. Academic Press, 1989.
    Kil H, Paxton L J, Pi X, Hairston M R, and Zhang Y. Case study of the 15 July 2000 magnetic storm effects on the ionosphere-driver of the positive ionospheric storm in the winter hemisphere. J. Geophys. Res., 108, A11, 1391, doi:10.1029/2002JA009782, 2003.
    Kursinski E R, Hajj G A, Leroy S S, Herman B. The GPS Radio Occultation Technique , Terrestrial, Atmospheric and Oceanic Sciences, 11(1), 53-114, 2000.
    Kutiev I S, Marinov P G, and Watanabe S. Model of topside ionosphere scale height based on topside sounder data. Adv. Space Res., 37, 943-950, 2006.
    Lastovicka J. Monitoring and forecasting of ionospheric space weather-effects of geomagnetic storms. J. Atmos. Sol. Terr. Phys., 64, 697-705, 2002.
    Lathuillère C, Menvielle M, Marchaudon A, and Bruinsma S. A statistical study of theobserved and modeled global thermosphere response to magnetic activity at middle and low latitudes. J. Geophys. Res., 113, A07311, doi:10.1029/2007JA012991, 2008.
    Lei J, Liu L, Wan W, and Zhang S-R. Modeling the behavior of ionosphere above Millstone Hill during the September 21–27, 1998 storm. J. Atmos. Sol. Terr. Phys., 66, 1093-1102, 2004.
    Lei J, Liu L, Wan W, and Zhang S-R. Variations of electron density based on long-term incoherent scatter radar and ionosonde measurements over Millstone Hill. Radio Sci., 40, RS2008, doi:10.1029/2004RS003106, 2005a.
    Lei J, Liu L, Wan W, Zhang S-R, and Van Eyken A P. Comparison of the first long-duration IS experiment measurements over Millstone Hill and EISCAT Svalbard radar with IRI2001. Adv. Space Res., 37, 1102-1107, 2006.
    Lei J, Syndergaard S, Burns A G, Solomon S C, Wang W, Zeng Z, Roble R G, Wu Q, Kuo Y-H, Holt J M, Zhang S-R, Hysell D L, Rodrigues F S, and Lin C H. Comparison of COSMIC ionospheric measurements with ground-based observations and model predictions: Preliminary results. J. Geophys. Res., 112, A07308, doi:10.1029/2006JA012240, 2007a.
    Lei J, Roble R G, Wang W, Emery B A, and Zhang S-R. Electron temperature climatology at Millstone Hill and Arecibo. J. Geophys. Res., 112, A02302, doi:10.1029/2006JA012041, 2007b.
    Liu H, Lühr H, Henize V, et al. Global distribution of the thermospheric total mass density derived from CHAMP. J. Geophys. Res., 110, A04301, doi:10.1029/2004JA010741, 2005.
    Liu H, Stolle C, and Watanabe S. Evaluation of the IRI model using CHAMP observations in polar and equatorial regions. Adv. Space Res., 39, 904-909, 2007a.
    Liu L, Wan W, Zhang M-L, Ning B, Zhang S-R, and Holt J M. Variations of topsideionospheric scale heights over Millstone Hill during the 30-day incoherent scatter radar experiment. Ann. Geophys., 25, 2019-2027, 2007b.
    Liu L, He M, Wan W, and Zhang M–L. Topside ionospheric scale heights retrieved from Constellation Observing System for Meteorology, Ionosphere, and Climate radio occultation measurements. J. Geophys. Res., 113, A10304, doi:10.1029/2008JA013490, 2008.
    Lockwood M, and Titheridge J E. Departures from diffusive equilibrium in the topside F-layer from satellite soundings. J. Atmos. Sol. Terr. Phys., 44, 425-440, 1982.
    Lockwood M. Field-aligned plasma flow in the quiet, mid-latitude ionosphere deduce from topside soundings. J. Atmos. Sol. Terr. Phys., 45, 1-14, 1983.
    Marcos F. Accuracy of atmospheric drag models at low satellite altitudes. Adv. Space Res., 10 (3), 417-422, 1990.
    Ma S, Liu P, Liu H, Xu j, and Schlegel K. A reversed plasma convection flow in the polar ionosphere observed with EISCAT radar. Chin. J. Geophys., 44(4), 446-453, 2001. in Chinese (马淑英,刘鹏,刘会欣,徐继生,Schlegel K, EISCAT雷达观测到的极区电离层等离子体反常对流,地球物理学报, 44(4), 446-453, 2001)
    Martyn D F. Atmospheric Tides in the Ionosphere. I. Solar Tides in the F2 Region. Proc. Roy. Soc. (London). A 189 (1017), 241-260.
    Maus S, Macmillan S, and Chernova T. The 10th generation international geomagnetic reference field. Physics of the Earth and Planetary Interiors 151. 320-322, 2005.
    Mendillo M, Baumgardner J, Pi X, Sultan P J, and Tsunoda R, Onset Conditions for Equatorial Spread F, J. Geophys. Res., 97(A9), 13865–13876, 1992.
    Mendillo M. Storms in the ionosphere: Patterns and processes for total electron content. Rev. Geophys., 44, RG4001, doi:10.1029/2005RG000193, 2006.
    Moe K, Moe M M, and Wallace S D. Improved satellite drag coefficient calculations from orbital measurements of energy accommodation. J. Spacecraft Rockets, 35(3),266-272, 1998.
    Moorcroft D. On the Determination of Temperature and Ionic Composition by Electron Backscattering from the Ionosphere and Magnetosphere. J. Geophys. Res., 69(5), 955-970, 1964.
    Oliver W L, Alcayde D, Bauer P. Incoherent scatter radar contributions. Adv. Space Res., 8 (5), 119-147, 1988.
    Omidvar K, Menard R, and Buonsanto M J. Empirical determination of the O+ O collision frequency. J. Atmos. Sol. Terr. Phys., 60(15), 1485-1496, 1998.
    Oyama K-I, and Schlegel K. Observations of electron temperature anisotropyin the ionosphere: A review. Ann. Geophys., 6, 389, 1988.
    Park C G. Whistler observations of the depletion of the plasmasphere during a magnetospheric substorm. J. Geophys. Res., 78, 672-683, 1973.
    Pelz D T, Reber C A, Hedin A E, and Carignan G R. A neutral-atmosphere composition experiment for the atmosphere explorer-C, -D, -E. Radio Sci. 8, 277-283, 1973.
    Pesnell W D, Omidvar K, and Hoegy W R. Momentum transfer collision frequency of O+-O. Geophys. Res. Lett., 20, 1343-1346, 1993.
    Picone J M, Hedin A E, Drob D P, et al. Enhanced empirical models of the thermosphere. Physics and Chemistry of the Earth Part C, 25(5-6), 531-542, 2000.
    Picone J M, Hedin A E, Drob D P, and Aikin A C. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J. Geophys. Res., 107(A12), 1468, 2002
    Qin G, Qiu S, Ye H, He A, Sun L, Li H, Zhu Y, Lin X, and Xu X. New results by SZ-4 atmospheric compositions measurement. Chin. J. Space Sci., 24 (6): 448-454, 2004a. in Chinese(秦国泰,邱时彦,叶海华,贺爱卿,孙丽琳,李宏,祝义强,林宪文, 徐学培,空间科学学报,神舟4号大气成分探测的新结果,24(6): 448-454,2004a)
    Qin G, Qiu S, He A, et al. Changes of the atmospheric density at SZ-3 orbit altitude. Chin. J. Space Sci., 24 (6): 269-274, 2004b. in Chinese(秦国泰,邱时彦,贺爱卿, 祝义强,孙丽琳,林宪文,李宏,徐学培,叶海华, "神舟3号"运行高度上大气密度的变化,空间科学学报, 24 (4): 269-274, 2004b).
    Reigber C, Lühr H, and Schwintzer P. Announcement of Opportuity for CHAMP. GeoForschungsZentrum Potsdam. Http://www-app2.gfz-potsdam.de/pb1/op/champ// docs_CHAMP/CH-GFZ-AO-001.PDF, 2001.
    Reigber C, Lühr H, and Schwintzer P. First CHAMP Mission Results for Gravity. Magnetic and Atmospheric Studies. Springer-Verlag Berlin Heidelberg, New York, 2002.
    Rishbeth H, and Garriott O K. Introduction to ionospheric physics. International Geophysical Series, Academic Press, New York, 1969.
    Rishbeth H, F-region storms and thermospheric circulation, J. Atmos. Terr. Phys., 37, 1055-1064, 1975.
    Rishbeth H, Ganguly S, and Walker J C G. Field-aligned and field-perpendicular velocities in the ionospheric F2-layer. J. Atmos. Terr. Phys., 40, 767-784, 1978.
    Rishbeth H, and Edwards R. The isobaric F2-layer. J. Atmos. Terr. Phys., 51, 321-338, 1989.
    Rishbeth H, and Edwards R. Modeling the F2 layer peak height in terms of atmospheric pressure. Radio Sci., 25, 757-769, 1990.
    Rishbeth H, How the thermospheric circulation affects the ionospheric F2 layer. J. Atmos. Sol. Terr. Phys., 60, 1385-1402, 1998.
    Rishbeth H, and Muller-Wodarg I C F. Vertical circulation and thermospheric composition: A modeling study. Ann. Geophys., 17, 794-805, 1999.
    Schreiner W, Rocken C, Sokolovskiy, Syndergaard S, and Hunt D. Estimates of the precision of GPS radio occultations from the COSMIC/FORMOSAT-3 mission.Geophys. Res. Lett., 34, L04808, doi:10.1029/2006GL027557, 2007.
    Schreiner W S, Sokolovskiy S V, Rocken C, and Hunt D C. Analysis and validation of GPS/MET radio occultation data in the ionosphere. Radio Sci., 34(4), 949-966, 1999.
    Schunk R W, Banks P M, and Raitt W J. Effects of electric fields and other processes upon the nighttime high-latitude F layer. J. Geophys Res., 81, 3271-3282, 1976.
    Showen R L, and Kim D M, Time variations of HF-induced plasma waves. J. Geophys. Res., 83(A2), 623-628, 1978.
    Skoblin M G. Ionosphere-protonosphere thermal plasma fluxes estimated from Magion2 and ionosonde data in August-September 1990. J. Geophys. Res., 101(A12), 26971-26980, 1996.
    Spencer N W, and Carignan G R. In situ measurements of thermospheric composition, temperature and winds by mass spectrometry. Adv. Space Res., 8 (5), 107-117, 1988.
    Spynev B G, Potekhin A P, Tashchilin AV, Kurkin V I, Zavorin A V, and Zherebtsov G A. The comparison of incoherent scatter data with IRI-2001 in East-Siberian region. Adv. Space Res., 37, 1108-1112, 2006.
    Sutton E K, Forbes J M, and Nerem R S. Global thermospheric neutral density and wind response to the severe 2003 geomagnetic storms from CHAMP accelerometer data. J. Geophys. Res., 110, A09S40, doi:10.1029/2004JA010985, 2005.
    Sutton E K, Nerem R S, and Forbes J M. Density and winds in the thermosphere deduced from accelerometer data. J. Spacecraft Rockets, 44 (6), 2007.
    Su Y Z, Oyama K I, Bailey G J, Takahashi T, and Watanabe S, Comparison of satellite electron density and temperaturem easurementast low latitudes with a plasmasphere-ionosphere model. J. Geophys. Res., 100, 14591, 1995.
    Syndergaard S. A new algorithm for retrieving GPS radio occultation total electron content. Geophys. Res. Lett., 29(16), 1808, doi:10.1029/2001GL014478, 2002.
    Syndergaard S, Kursinski E R, Herman B M, Lane E M, and Flittner D E. A Refractive Index Mapping Operator for Assimilation of Occultation data. Mon. Weather Rev., 133 (9), 2650, 2004.
    Tascione, T. F., Introduction to the pace environment, Krieger Publication Company, Malabar, Florida, 1994
    Tobiska W K. Validating the solar EUV proxy, E10.7. J. Geophys. Res., 106 (A12), 29969-29978, 2001.
    Tobiska W K, Bouwer S D, and Bowman B R. The development of new solar indices for use in thermospheric density modeling. J. Atmos. Sol. Terr. Phys., 70(5), 803-819, 2008.
    Truhlik V, Triskova L, Smilauer J, and Afonin V V. Global empirical model of electron temperature in the outer ionosphere for period of high solar activity based on data of three Intercosmos satellites. Adv. Space Res., 25 (1), 163-169, 2000.
    Tsai L-C, and Tsai W-H. Improvement of GPS/MET ionospheric profiling and validation using Chung-Li ionosonde measurements and the IRI model. Terr. Atmos. Oceanic Sci., 15(4), 589-607, 2004.
    Van H T, Doornbos E, and Visser P. CHAMP and GRACE accelerometer calibration by GPS-based orbit determination. Adv. Space Res., In Press, Corrected Proof, Available online 9 March 2009.
    Vassuer G. Dynamics of the F-region observed with Thomson scatter-II. Influence of neutral air winds on the ionospheric F-region. J. Atmos. Terr. Phys., 32, 775, 1969.
    Vickrey J F, Swartz W E, and Farley D T. Ion transport in the topside ionosphere at Arecibo. J. Geophys. Res., 84, 7307-7314, 1979.
    Visser P N A M. GOCE gradiometer: estimation of biases and scale factors of all six individual accelerometers by precise orbit determination. J. Geodesy, 83 (1), 69-85, 2009.
    Vlasov M N, Kelley M C, Makela1 J J, and Nicolls M J. Intense nighttime flux from the plasmasphere during a modest magnetic storm. J. Atmos. Sol. Terr. Phys., 65, 1099-1105, 2003.
    Xu T, and Yang Y, Use and precision evaluation of CHAMP rapid science orbit.,Journal of Geodesy and Geodynamics. in Chinese (徐天河,杨元喜. CHAMP卫星快速科学轨道数据的使用及精度评定,大地测量与地球动力学, 2004, 24 (01), 81-84).
    Yeh H C, and Foster J C. Storm time heavy ion outflow at mid-latitude. J. Geophys. Res., 95, 7881-7891, 1990.
    Wang W. A thermosphere-ionosphere nested grid (TING) model Thesis (PhD), University of Michigan, Source DAI-B 59/10, 5409, 1998.
    Wang W, Killeen T L, Burns A G., and Roble R G. A high resolution, three-dimensional, time dependent, nested grid model of the coupled thermosphere-ionosphere. J. Atmos. Sol. Terr. Phys., 61, 385-397, 1999.
    Wang W, Burns A G, and Killeen T L. A numerical study of the response of ionospheric electron temperature to geomagnetic activity. J. Geophys. Res., 111, A11301, doi:10.1029/2006JA011698, 2006.
    Watanabe S, and Oyama K-I. Effects of neutral wind on the electron temperature at a height of 600 km in the low latitude region. Ann. Geophys., 1, 290, 1996.
    Ware R, Exner M, Feng D, et al. GPS sounding of the atmosphere from low earth orbit: Preliminary results. Bull. Amer. Meteor. Soc., 77, 19–40, 1996.
    Wu X-C, Hu X, Zhang X-X, Wickert J. A calibrated TEC method for inversion of ionospheric GPS occultation data. Chinese Journal of Geophysics, 49 (2), 328-334,
    2006. (吴小成,胡雄,张训械, Jens Wickert.电离层GPS掩星观测改正TEC反演方法.地球物理学报, 49 (2), 328-334, 2006.)
    Zhang S-R, and Holt J M. Ionospheric plasma temperatures during 1976–2001 over Millstone Hill. Adv. Space Res., 33, 963-969, 2004.
    Zhang S-R, Holt J M, Zalucha A M, and Amory-Mazaudier C. Midlatitude ionospheric plasma temperature climatology and empirical model based on Saint Santin incoherent scatter radar data from 1966 to1987. J. Geophys. Res., 109, A11311, doi:10.1029/2004JA010709, 2004.
    Zhang S-R, Holt J M, Erickson P J, et al. October 2002 30-day incoherent scatter radar experiments at Millstone Hill and Svalbard and simultaneous GUVI/TIMED observations. Geophys. Res. Lett., 32, L01108, doi:10.1029/2004GL020732, 2005.
    Zhang S-R, et al. Multiple-site comparisons between models of incoherent scatter radar and IRI. Adv. Space Res., 39, 910-917, 2007.
    Zhou Y L, Ma S Y, Luehr H, Wang H, Reigber, C. Changes of thermospheric mass density and their relations with Joule heating and ring current index during Nov. 2003 superstorm——CHAMP Observations. Chin J Geophys, 50 (4), 986-994, 2007
    (周云良,马淑英,Lühr H.,王慧,党戈. 2003年11月超强磁暴热层大气密度扰
    动及其与焦耳加热和环电流指数的关系-CHAMP卫星观测.地球物理学报,50 (4),986-994,2007).
    陈光明,利用CHAMP资料反演高层大气密度研究,南京理工大学硕士论文,2005.
    拉特克利夫(Raticliffe J. A.).电离层研究五十年.武汉大学空间物理系,科学出版社, 1983.
    黄昌理,吴健.非相干散射雷达系统设计考虑.中国空间科学学会空间探测专业委员会第十一次学术会议论文集, 1998.
    熊年禄,唐存琛,李行健.电离层物理概论.武汉大学出版社, 1999.
    刘鹏,高纬电离层中电离槽的EISCAT雷达观测.武汉大学博士论文, 2000.
    曹晋滨,李磊,吴季.太空物理学导论.科学出版社, 2001.
    焦维新.空间探测.北京大学出版社. 2002.
    王鑫,薛震刚,杜晓勇,严卫. GPS-LEO掩星探测地球大气的方法.全球定位系统, 27, 5, 2002.
    周忠谟,易杰军,周琪. GPS卫星测量原理与应用.测绘出版社, 2004.
    陈光明,薛震刚,严卫,艾未华. GNSS掩星探测大气的进展.气象仪器装备, 4, 2004.
    雷久侯.中纬电离层的统计分析与模式化研究.中国科学院研究生院博士论文,2005b.
    吴小成.电离层无线电掩星技术研究.中国科学院研究生院博士论文,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700