不同价态铬对土壤生物化学活性影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤酶是土壤中非常重要的一个组成部分,在土壤的生化反应中发挥着举足轻重的作用,它基本上参与了土壤中所发生的所有的生物化学反应,同时也在自然界的营养物质循环、能量代谢以及环境污染物监测与治理等等很多方面都发挥着十分重要的作用。重金属通过各种不同的途径进入土壤,可以与土壤酶之间发生作用,因此以目标物作为土壤酶,开展重金属的生态毒理研究,在理论上可以揭示土壤酶与重金属之间的作用机理,为重金属的治理与重金属的监测提供理论依据。而开展这一研究具有十分重要的理论和实践意义。
     本论文通过模拟方法,对我国陕西几种主要类型土壤的脲酶、碱性磷酸酶和脱氢酶与重金属(三价铬、六价铬、三六价复合铬)的关系进行了研究,并借助了动力学的手段对土壤酶与重金属的作用机理进行分析,研究结果表明:
     1.铬加入土壤中后导致土壤pH值下降。随三价铬质量浓度增加,土壤水溶液的pH值持续降低,最大降幅为3.03个pH单位;而加入六价铬,供试土壤pH值降低幅度比三价铬的要小;三、六价铬复合污染土壤后,土壤pH值降幅介于三价铬和六价铬之间。
     2.供试三价铬进入土壤后,被土壤立即强烈吸附,溶液中三价铬含量不超过添加量的1%;六价铬加入土壤中,仅少数含量被土壤直接吸附沉淀,另外一部分六价铬还原为三价铬,其余六价铬主要以水溶态形式存在;三、六价铬复合污染后,部分六价铬被还原为三价铬,并最终很快被土壤吸附,因而在土壤溶液中无法检测到水溶态三价铬,但是可以检测到水溶态六价铬。
     3.铬可以抑制土壤碱性磷酸酶活性,抑制作用强弱为铬复合污染>三价铬>六价铬;采用U=A/(1+B×C)模型较好地表征了土壤碱性磷酸酶活性与铬含量间的关系,并揭示出两者之间的作用机理为完全抑制作用;同一类型土样碱性磷酸酶活性的生态剂量ED10值随土壤有机质含量的降低而减小。三价铬和六价铬对土壤碱性磷酸酶活性具有交互作用。
     4.铬抑制洋刀豆脲酶活性,其中三价铬的抑制作用最强,六价铬抑制作用最弱;计算获得了洋刀豆脲酶溶液受铬轻度污染时,三价铬、六价铬、三、六价铬复合污染的临界浓度分别为0.1、416.1、295.0 mg/kg。铬加入后洋刀豆脲酶Km总体处于同一个数量级,Vmax值随铬浓度增加而降低,揭示出铬对洋刀豆脲酶的作用机理为非竞争抑制。
     5.不同价态铬对土壤脲酶活性影响有所差异,三价铬抑制作用,六价铬却是激活脲酶活性;其中土壤脲酶敏感性顺序为:三价铬>六价铬>三、六价铬复合。三价铬和六价铬对脲酶活性具有交互作用;土壤铬污染后,脲酶Km处于同一个数量级,Vmax随三价铬质量浓度增加而降低,随六价铬质量浓度增加而升高,三价铬对土壤脲酶作用机理为非竞争抑制。
     6.铬抑制土壤脱氢酶活性,抑制作用顺序为六价铬>铬复合污染>三价铬,这一顺序和土壤脱氢酶活性是微生物活性的总体表现有关;采用U=β0-β1×C模型可较好表征酶活性与铬含量之间关系,揭示出脱氢酶在一定程度上可表征土壤铬污染的程度。三价铬和六价铬共存时存在交互效应。
     7.根据剂量越小,反应越敏感的原则,通过比较采用多种土壤生化活性计算获得的生态剂量值,发现土壤受三价铬、六价铬、复合铬轻度污染时的临界浓度为37.90、10.19和33.7 mg/kg,水溶态铬临界浓度为0.08、795.88、191.63 mg·1-1。
With the development of social economy and the growth of world population, the soil, as the natural resource on which human beings live, was more and more unable to withstand the load. Nearly 1/5 of total existing arable land about 1×108hm2 in our country was polluted with different degree. The heavy metal was a major kind of pollutants. So it was one of the most important environmental researches to monitor and remediate soil polluted by heavy metal. Chromium as one of the four major of soil pollution,the biological toxicity of Cr6+ is 100~1000 times larger than Cr3+.but their ecotoxicity are different from that.
     Soil enzyme was one of the principal components in soil, which took part in all of the biochemical reactions in soil and played an impotant part in nutrient circulation, energy metabolism, pollutant monitoring and remediation in nature. Heavy metal entered the soil by various ways, and then reacted with the soil enzyme.The study of ecotoxicological of heavy metals, slecting soil enzyme as the research target, could reveal the mechanism of soil enzymes and heavy metal in theory and provide the theoretical basis for removal, treatment and monitoring of heavy metal in practice. So it was of great theoretical and practical significance to work on this area. However, in the past decade most researches only focused on the relationship between some certain heavy metal and the soil enzyme activity, Rare study on different valence of heavy metals, and the conclusions were not the same, it was seldom to find report on the kinetics and mechanism of soil enzyme.
     By simulative method, we systematically studied not only the relationships between urease, alkaline phosphatase and dehydrogenase and the heavy metals[Cr3+、Cr6+、Combined chromium]in several major soil types of Northern China, but also the reaction mechanism between enzymes and the metal by means of enzymatic kinetics. The results were as follows:
     1. Chromium decreased soil pH remarkably. With the increase of Cr3+ concentration, the pH value of soil solution decreased continuously, the biggest drop was 3.03 units. While, when adding different concentration of Cr6+, the pH value decreased gradually, but the sample No.5, the pH value showed alkaline or alkalescent.
     2. Cr3+could be adsorbed heavily by soil, and there was less than 1%remaining in the soil solution. A small number of Cr6+was adsorbed when adding Cr6+ to soil, apart from part of Cr6+ which were reduced to Cr3+and adsorbed quickly by soil, most of Cr6+ existed mainly in the form of water soluble hexavalent chromium. When adding combined chromium to the soil samples, Cr3+was quickly adsorbed by soil, Part of the Cr6+were reduced to Cr3+and quickly adsorbed by soil, the remaining Cr6+ existed in the form of water soluble. It was hard to detect water soluble Cr3+in the soil solution.
     3. Chromium inhibited the soil alkaline phosphatase activity, The order of inhibition was that:Cr3++Cr6+> Cr3+> Cr6+. The model U=A/(1+B×C) (in which A, B were composite parameters) could describ the relationship better between soil enzyme activity and chromium concentration. The mechanism of different valence state of chromium on the soil alkaline phosphatase was completely inhibition. The ecological dose ED10 of alkaline phosphatase in the same type of soil decreased continuously with the decline of soil organic matter content. There was an interaction between trivalent chromium and hexavalent chromium on the soil alkaline phosphatase.
     4. Chromium inhibited the activities of Jackbean urease, The order of inhibition was that: Cr3+> Cr3++Cr6+> Cr6+. The critical concentrations (ED10) of Cr3++Cr6+、Cr3+and Cr6+in Jackbean urease were 0.1,416.1,295.0 mg/kg respectively. With the increasing of chromium concentration, the kinetic parameter Km of Jackbean urease were kept in the same level, which revealed that the mechanism of chromium on Jackbean urease was noncompetitive inhibition.
     5. Different valence state of chromium had the distinct influence on soil urease activity. Cr3+ inhibited the activities of soil urease, while Cr6+ activated the activities of soil urease. The order of inhibition is Cr3+> Cr6+> Cr3++Cr6*. There were an interaction between Cr3+ and Cr6+ on the soil urease activity, and it showed synergism. within the range of the test chromium concentration, the kinetic parameters Km of soil urease were keep in the same level. The Vmax value falled with the increase of Cr3+concentration, and rised with the increase of Cr6+concentration, the kinetic parameters of lou soil were different from Cinnamon soil and Sandy soil. The reason will be further studyed.. It revealed that the mechanism of Cr3+ on soil urease was noncompetitive inhibition.
     6. chromium inhibited the dehydrogenase activity of soil, The order of inhibition was Crb +> Cr3++Cr6+> Cr3+, Which maybe cause that dehydrogenase activity is the overall performance of microbial activities. The model U=β0-β1×C could describ the relationship between soil dehydrogenase activity and chromium concentration. It revealed that Dehydrogenase can be characterized as an index of chromium contamination in certain extent. There were interaction between trivalent chromium and hexavalent chromium on the soil dehydrogenase activity.
     7. According to the principle of that the smaller ecological dose, the more sensitiv, the critical concentrations (ED10) of Cr3+、Cr6+and Cr3++Cr6+in soils were 37.90.10.19 and 33.7 mg/kg respectively. The critical concentrations (EC10) of water soluble Cr3+、Cr6+and Cr3++ Cr6+ in soils were 0.08、795.88、191.63 mg·l-1 respectively.
引文
鲍士旦.2000.土壤农化分析.北京:中国农业出版社,33-115
    曹慧,孙辉,杨浩,孙波,赵其国.2003.土壤酶活性及其对土壤质量的指示研究进展.应用与环境生物学报,9(1):105~109
    陈英旭,朱祖祥,何增耀.1995.土壤中铬的有效性与污染生态效应.生态学报,15(1):79-84
    崔德杰,张玉龙.2004.土壤重金属污染现状与修复技术研究进展.土壤通报,35(3):366-37
    樊金祥,韩建英,邵宏毅,陈喜庭.1996.一起含Cr6+废水污染饮料厂的报告.环境与健康杂志,13(5):211
    顾学箕.1992.中国医学百科全书.毒理学.上海:科学技术出版社,13~14
    关松荫.1986.土壤酶及其研究法.北京:农业出版社,14;294;309;331
    和文祥,马爱生,武永军,朱铭莪.2004.砷对土壤脲酶活性影响的研究,应用生态学报,15(5):895~898
    和文祥,朱铭莪.1997.陕西土壤腮酶活性与土壤肥力关系分析,土壤学报,34(4):392~398
    胡望均.1993.常见有毒化学品环境事故应急处理技术与监测方法.北京:中国环境科学出版社.75~77,102~109
    李传涵.1993.杉木幼林地土壤酶活性与土壤肥力.林业科学研究,6(3):321-326
    李建文,黄坚.2006.铬的形态分析研究与展望.冶金分析,26(1):38-43
    龙育堂,刘世凡,熊建平.1994.苎麻对稻田土壤汞净化效果研究.农业环境保护,13(1):30~33
    吕国红,周广胜,赵先丽,周莉.2005.土壤碳氮与土壤酶相关性研究进展.辽宁气象,,2005(2):6-7
    孟立君,吴凤芝.2004.土壤酶研究进展.东北农业化学学报,35(5):622-626
    邱莉萍,刘军,和文祥,等.2003.长期培肥对土壤酶活性的影响.干旱地区农业研究,21(4):44~7
    邱莉萍,刘军,王益权,张兴昌.2005.长期施肥对土壤剖面酶活性的分布及其动力学特征研究.植物营养与肥料学报,11(6):737-741
    上海第一医学院.1981.环境卫生学.北京:人民卫生出版社:94-97
    沈佳琴,廖瑞章.1987.重金属、非重金属、矿物油对土壤酶活性的影响.农业环境保护, 6(3):24-27
    宋漳,陈兴族.1994.杉木感染根线虫病后林地土壤微生物及生化活性的研究,土壤酶活性及土壤化学性质.福建林学院学报,14(1)
    王宝桐.1993.镀铬废水污染井水的调查.环境与健康杂志,10(3):122
    王娟.2007.铬和铜对土壤生物化学活性影响的研究.[硕士学位论文].杨凌:西北农林科技大学
    王春茂等.1993.某镀铬厂废水污染抽水井水质调查报告.环境与健康杂志,10(4):160
    肖育贵.1996.不同林型凋落物土壤微生物数量动态的研究.林业科技通讯,17(1):28-29
    徐衍忠,秦绪娜,刘祥红,张乃香,周英莲.2002.铬污染及其生态效应.环境科学与技术.25:增刊
    许嗥,杜孟庸,周健学,李博文,刘树庆.1994.有机物料对土壤酶活性影响的关连度分析.土壤通报,25(2)62-64
    严昶升,周礼恺,张德生.1988.土壤肥力研究法.北京:农业出版社
    杨春璐,孙铁珩,和文祥.2006.汞和两种农药复合污染对土壤转化酶活性的影响.中国环境科学,26(4):486~490
    杨万勤,王开运.1988.森林土壤酶的研究进展.林业科学,2004,40(2)
    杨万勤,王开运.2002.土壤酶研究动态与展望.应用与环境生物学报,8(5):564~570
    杨万勤,王开运.2004.森林土壤酶研究进展.林业科学,40(2):152~159
    杨万勤,钟章成.1999.缙云山森林土壤酶活性的分布特征、季节动态及其与四川大头茶的关系研究.西南师范大学学报(自然科学版),24(3):318~324
    曾思齐等.1998.湘东丘陵区次生林土壤微生物的分布及酶的活性研究.中南林学院学报,18(2):20~23
    曾宪军,刘登魁,朱世民.2005.不同浓度阿特拉津对三种肥力条件土壤过氧化氢酶的影响.湖南农业科学,(6):33-35
    赵振新等.1988.六价铬径口摄入的动物慢性毒性实验研究.环境与健康杂志,(162):28-30
    中华人民共和国国家标准.1987.水质总铬的测定.国家环境保护局.GB 7466-87
    张咏梅,周国逸,吴宁.2004.土壤酶学的研究进展,热带亚热带植物学报,12(1):83~90
    仲维科,樊摇波,王敏建等.2001.我国农作物的重金属污染及其防止对策.农业环境保护,20(4):270-272
    周东美,郝秀珍,薛艳,仓龙,王玉军,陈怀满.2004.污染土壤的修复技术研究进展.生态环境,13(2):234~242
    周礼恺,张志明,曹承绵.1985.土壤的重金属污染与土壤酶活性.环境科学学报,5(2):176-183
    周礼恺.1987.土壤酶学.北京:科学出版社:118—159
    周启星.1995.复合污染生态学.北京:中国环境科学出版社,25-29
    周智彬,徐新文.2004.塔里木沙漠公路防护林土壤酶分布特征及其与有机质的关系.水土保持报,18(5):10~14
    朱建华,王莉莉.1997.不同价态铬的毒性及其对人体影响环境与开发.第12卷.第3期
    朱铭莪,白红英,代伟.1989.陕西几种土壤过氧化氢酶的动力学和热力学特征.西北农业大学学报,17(1):20-25
    朱铭莪,乔安生.1994.不同施肥条件娄土脲酶动力学研究.西北农业大学学报,22(4): 89~91
    Acosta-Martinez V,Tabatabai M A.2002. Inhibition of arylamidnse activity on mils by toluene. Soil Biol Biochem,34:229~237
    Ajwa H A,Dell C J.Rice C W.1999. Changes in enzyme activities and microbial biomass of tall grass prairie soil as related to burning and nitrogen fertilization. Soil Biol& Biochem,31:769-777
    Anderson R A.1997. Regul Toxicol Pharmacol,26:S35
    Bremner, J.M., Mulvancy, R.L.1978. Urease activityin soils.In:Buns, R.G.(Ed),Soil Enzymea. Academic Press,New York
    Briones M J I, Ineson P.1996. Decomposition of eucalyptus leaves in litter mixture.Soil Biol. Biochem, 28(10P11):1381~1388
    Brookes P.1995. The use of microbial parameters in monitoring soil pollutionby heavy metals. Biol&Fert Soils,19:269-279
    Burns R G, Dick R P.2001. Enzymesin the environment:ecology, activity and applications. NewYork: Marcel Dekker, Inc
    Busto M D.Perez-Mateos M.1995. Extinction of humic-B-glucosidase fractions from soil. Biol Fert Soil,20:77-82
    Cacciatore D A.Mcneil MA.1995. Principles of soil biormediation. Biocycle,36 (10):61~64
    Cao z M, Dong S T, Liu C S.1999. Studies on ecological efect of corn under protected condition with plastic sheeting. J Shandong Aniv,30(4):489-492(in Chinese)
    Caplan j A.1993. The worldwide bioremediation industry:prospects for protits. Trends Biotechnol, (11):320~323
    chromium (Ⅵ. Ⅲ) on soil urease activity. Geoderma,122 (224):317-322
    Dai J, Becquer T, Rouiller J H.2004 Heavy metal accumulation by two earthworm species and its relationship to total and DTPA extrable metals in soils. Soil Biochem, (36):91~98
    Dalai.R.C.1985,. Distribution, Salinity, Kinetic and thermodynatnic characteristics of urease activity in a vertical profile. Aust. J. Soil. Res.23:49-60
    Debosz K.Rasmussen P H,Pedersen A R.1999. Temporal variations in microbial biomass C and cellulolytic enzyme activity in arable soils:efr fects of organic matter input.Appl Soil Ecol,13
    Decker KL M.Boerner R EJ.Morris SJ.1999.Scale dependent patterns of soil enzyme activity in a forest landscape. Canadian urnal of Forest Research,29(2):232~241
    Dick R.P.1994.Soil enzyme activities as indicators of soil quality.In:Doran JW et al.eds. Defining Soil Quality for a Sustainable Environment. Madison:Soil Sci.Soc Am Spec Publ,WI,107~124
    Dick R.P.1997.Enzyme activities as integrative indicators of soil healthy.In:Park Hurst CE et al.eds.Bioindicators of Soil Health. United Kingdom, Oxon:CAB International,121~156
    Doelman P, Haanstra L.1989. Short-and long-term effects of heavy metals on phosphatase activity in soils. Biology and Fertility of Soils, (10):235-241
    Doran JW, Parkin TB.1994. Defining Soil Quality for Sustainable Environment. Madison, Wisconsin:Soil Sci.Soc Am Spec Publ,353~324
    Eary L E,Rai D.1988. Chromate removal from aqueous wastesby reduction with ferrousion. Environ Sci Technol,22:972-977
    Eary L E, Rai D.1989. Kinetics of chromate reductuin by ferrousions derived from hematite and biotite at 25℃.AmJ Sci,289:180-213
    Edwards C. A.(ed).1988. Biological Interaction in Soil, in Agriculture, Ecosystem and Environment. London:AcademicPress,24
    Gianfreda L, Sannino F, Ortega N.1994. Activity of free and immobilized urease in soil:effects of pesticides. Soil Bio& Biochem,27:1201-1208
    Gianfreda L, Sannino F, Violante A.1995. Pesticides effects on the activity of free, immobilized and soil invertase. Soil Bio&Biochem,27:1201-1208
    Gianfreda L. Cristofaro A.D.,Rao M.A.1995, Kinetics behavior of synthetic orgaro and organo-mineral urease complexes. Soil Sci. Soc Atn J,59:811-815
    GuanSY.1986. Soil Enzymes and Its Methodology. Beijing:Agricultural Press:3~25. (in Chinese)
    Glenn J, Gold M H.1985. Purification and characterization of an extracellular Mn-dependent peroxidase from the lignindegrading basidiomycetes, Phancerochacte chrysosporium. Arch Biochem Biophys, 242:329-341
    Grabarczyk M, Korolczuk M. Tyszcauk K.2006. Extraction and determination of hexavalent chromium in soil samples. Annl Biolanal Chem,386:357-362
    Grigorydn K V, Galstyan A S.1979. Effect of irrigation water polluted wit h indust rial waste on the enzymatic activity of soils. Soviet Soil Scienee,11 (2):220~228
    Hamann C, Hegemann J, Hildebrandt A.1999. Detection ofpolyeyclic aromatic hydrocarbon degradation genes in diferent soil bacteria bypolymerase chain reaction and DNA hybridization. FEIMS Micro Lctt,173:255-263
    Hang Q.Shindo H.2000. Effects of copper on the activity and kinetics of free and immobilized acid phosphatase.Soil Biol& Biochem,32:1885~1892
    He W X, Chert H M, Feng G Y.2000. Study on soil enzyme in dexinrail polluted by mercury, chromium and aic. Acta Sci Circums,20(3):338-343(in Chinese)
    He w x, Lai H x, Wu Y J.2001. Study on soil enzyme activities efected by fertilizing cultivation. ZhejiangUniv(Agri Life Sci),27(3):265-268(in Chinese)
    Henriksen T M, Breland T A.1999. Nitrogen availability efects on carbon inerlization,fiingal and bacterial growth.and enzyme activities during decompo sition ofwheat straw in soil. Soil Biol Biochem,31: 1121-1134
    Ilym AV,TatarinovaN Y,VarlamovV P.1999. The preparation of wmolecular weight chitosan using chitinolytic complex from Streptomyces kurssaztovii. Proc Biochem,34:875~878
    James B R.Bartlett R J.1983. Behavior of chromium in soils:VI:Interaction between oxidation and organic complexation. J Environ Qual,12:173-176
    James B R.Bartlett R J.1983. Behavior of chromium in soils:Ⅶ. Adsorption and reduction of hexavalent forms. J Environ Qual,12:177-181.
    James B R, Bartlett R J.1983, Behavior of chromium in soils:Ⅵ. Interaction between oxidation and organic complexation. J Environ Qual,12:173~ 176
    Kimbrough. D.E., Cohen, Y., Winer, A.M., Creelman, L., Mabuni, C.,1999. A critical assessment of chromium in the environment. Environ. Sci. Technol.29,1 ~46
    M.K. Banks, A.P. Schwab, Carlos Henderson.2006. Leaching and reduction of chromium in soil as affected by soil organic content and plants. Chemosphere,62:255~264
    Malgorzata Grabarczyk, Mieczyslaw Korolczuk, Katarzyna Tyszcauk.2006. Extraction and determination of hexavalent chromium in soil samples. Annl Biolanal Chem, (386):357~362
    Marx M C, Wood M, Jarvis SC.2001. A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biol& Biochem,33:1633 ~ 1640
    Moreno Jose L, Hernandez Teresa, Perez Aurelia.2002. Toxicity of cadmium to soil microbial activity: effect of sewage sludge addition to soil on the ecological dose. Applied Soil Ecology,21(2):149-158
    Morenoa J L, Garcfa C,Landib L, et al.2001. The ecological dose value (ED50) for assessing Cd toxicity on ATP content and dehydrogenase and urease activities of soil. Soil Biol&Biochem,33:483~489
    Parthsarathi Ranganathan L S.1999. Longevity ofmicrobial and enzyme activity and their influence on NPK content in pressmud vermicasts. Eur J Soil Biol,35(3):107~108
    Poly F.Monrozier L J, Ballyl L.2001. Improvement in the RFLP procedure for studying the diversity of Hgenes in communities of nitrogen fixers in soil. Res Microbiol,152:95 ~ 103
    Rampazzo N, Blum W E H.1992. Changes in chemistry and mineralogy of forest soils by acid rain. Water Air and Soil Pollution,61 (324):209-220
    Rao M A.Gianfreda L.2000. Properties of acid phosphatase tannic acid complexes formed in the presence ofFeandMn. Soil Biol Biochem,32:1921~ 1926
    Rihani M,BoRon B,Villemin G,et al.2001. Ultrastructural patterns of beech leaf degradation by St orotriehum pulverulemum. Eur J So il Biol,37:75~84
    Robert E. H. Alleman,B. C. Hoeppel,R.E.1994. and N filler, Hydro carbon iore mediation. Lewis
    Sail Trasar CepedaM C.CarballasT.1998. SoilP statusand phosphomonocsmra activity of recently burnt and unburnt soil followinglaboratoryincubation. Soil Biol Biochem,30(3):419~428
    Samborska A. StepniewskaZ. Stepniewski W.2004. Influence of different oxidation states of Sannino F. Gianfreda L.2001. Pesticide influence on soil enzymatic activities. Chemosphere,45:417-425
    Sarkar J M.1986. Formation of [14C]-cellulase-humic complexes and their stability in soils. Soil Biol Biochem,18:251-254
    Senwo Z N,Tabatabai M.1999. Aspartase activity in soils;effects of trace elements and relationships to other amidohydrolases. Soil Biol&Biochem,31:213~219
    Senwo ZN, Tabatabai M.2000. Aspartase activity in soils; effects of trace elements and relationships to other amidohydrolases. Soil Biol& Biochem,1999,3:213~219
    Shen B, Li S P,Zhao S w,Liu J J.1997. Efect of chlorobenzene and nitrophenol on soil biological activity. Acta Podologica Sinica,34(3):309~314(in Chinese)
    Siegel B Z.1993. Plant peroxidases—all organismic perspective, Plant Grow Regul,12:303~312
    Speir T W, Kettles H A, Parshotam A, Searle P L, Vlaar L N C.1999. Simple kinetic approach to eteomine the toxicity of As (V) to soil biological properties. Soil Biol&Biochem,31:705~713
    Speir T W, Kettles H A, Parshotam A, Searle P L, Vlaar L N C.1995. Simple kinetic approach to derive the ecological dose value, ED50.for the assessment of Cr (VI) toxicity to soil biological properties. Soil Biol& Biochem,27:801~810
    Stohs S J, Bagchi D.1995. Free Rdical Biol& Med,18:321
    Szanski P'Smith C L, CantorC R.1997.Cloningand analysis of the drun gene encoding Pseudomonas putda DNA primasc. Biochim Biophys Acta,1352:243~248
    TabatabaiMPuM. Extraction ofe41zymes from mils[A]. In Stoty G, BollagJM.1992. Soil Biochemistry, Vol.7[C]. NewYork:Marcel Dekker,197~227
    Vepsalainen M, Kukkonen S, Vestberg M, siviE H, Maarit Niemi R.2001. Application of soil enzyme activity test kit in a field experiment. Soil Biol& Biochem,33:1665 ~ 1672
    Xu J w, wang w D, Li C.2000.The correlation among soil microorganism,enzyme an d rail nutrient in diferent types of mixed stands of Panus thunbergi. Shandong For Sci Tecim,(2):1 ~6(in Chinese)
    Yang W Q, Li R Z, Han Y P.1999. Distribution and dynamics of soil enzymatic activities in natural secondaryforests on Mt. Jinyun, Chongqing. China. In:Dong M, Werger MJA eds. A Spectrum of Ecological Studies. Chongqing, China:Southwest China Normal University Press,171 ~179
    Yang W Q, Zhong Z C, Han Y P.1999. Study on the distribution characteristics and seasonal dynamics of forest soil enzymatic activities and its relation with Gordonia acumi nata on Mt.Junyun. J Southwest China Univ,24 (3):318~324
    Yang W Q, Zhong Z C, Tao J P, He W M.2001.Study on relationship between soil enzymic activities and plant species diversity in forest ecosystem of Mt. Jinyun. Sci Silvae Sin,37(4):124~128
    Yang W Q.2001. Studies on soil ecological degradation and its ecological adaptability of biremediationa case from dry and hot valley of the Jinsha River:[Ph. D. Dissertation]. Chongqing, China:Southwest Agricultural University

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700