高性能AZ31镁合金薄板生产工艺及组织性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金是迄今在工程中应用的最轻的结构材料。同时,镁合金具有比强度和比刚度高、减振性能好、电磁屏蔽效果佳等优点,因此在汽车工业、通讯电子、航空航天工业等领域正得到日益广泛的应用。镁资源非常丰富,在许多传统金属矿产资源趋于枯竭的今天,开发镁合金的应用对保持资源的可持续性发展具有战略意义。大多数镁合金具有密排六方结构,压力加工成形性能差,而大多数镁合金又具有良好的铸造性能,使得目前镁合金产品以铸件居多。然而,铸件的力学性能不够理想,导致镁合金的使用受到很大的限制。因此,变形镁合金的研究已成为世界镁工业发展中的重要方向。
     为了提高AZ31镁合金的综合力学性能,尤其是塑性,本文以实验为基础,选择AZ31镁合金为研究对象,将Φ153mm均匀化处理后的锭坯分别在250℃、300℃和350℃进行挤压,然后分别在330℃和370℃进行轧制和在250℃和400℃进行热处理,通过金相观察、拉伸性能测试、拉伸断口扫描、X射线衍射织构分析,研究了挤压温度、轧制温度和热处理温度对板材力学性能的影响,本文还探讨了冷轧与热轧对镁合金板材力学性能的不同影响,获得了以下结论:
     1.挤压温度对AZ31镁合金板坯的表面质量及力学性能具有重要影响。当在300℃挤压时,可以得到表面质量优良的板坯,且获得的板材力学性能优良,因此,合适的挤压温度为300℃;
     2.轧制温度对AZ31镁合金板材的力学性能也有很大影响。当在370℃轧制时,最大道次压下量可达49.14%,所获得的板材晶粒均匀细小,平均晶粒大小为3-4μm,且获得的板材力学性能优良,因此,合适的轧制温度为370℃;
     3.合适的轧后热处理制度为250℃×20min,热处理后变形过程中所形成的孪晶消失,基本完成再结晶,AZ31镁合金板材的强度有所下降而塑性大幅度提高。抗拉强度由轧制态的305MPa降为热处理后的280MPa(横向),而延伸率由轧制态的18.24%上升到热处理后的21.37%(横向);
     4.通过适当的冷轧工艺及热处理工艺可以大幅度提高AZ31镁合金板材的力学性能。当将2mm厚的AZ31镁合金粗轧板坯冷轧制到0.9mm厚时,AZ31镁合金板材表现出了优良的力学性能,经过250℃×20min热处理后,抗拉强度可达到横向的265MPa和轧向的260MPa,延伸率可达到横向的30.08%和轧向的27.36%;
     5.AZ31镁合金在不同轧制方式下(冷轧和热轧)形成了不同的织构类型,在冷轧板材中,织构强度较弱,主要有(0117)[0772](90°,15°,0°)、和(1129)[1239](75°,20°,30°)织构;在热轧板材中,织构为以基面织构为主的较强板织构。冷轧板材的织构中形成双峰特征,反映出合金的不同变形机制。冷轧具有改变织构主要组分、弱化织构强度的作用,理论上表明冷轧可以提高镁合金板材的成形性能;经过热处理后,AZ31镁合金板材的主要织构组分不变,但强度下降;
     6.晶粒尺寸、孪晶和织构是影响AZ31镁合金板材强度、塑性和各向异性的重要因素,通过控制轧制、热处理等工艺,可以改变晶粒尺寸、孪晶和织构,达到在保证强度的前提下,提高塑性、降低各向异性的目的。
Magnesium alloy is until now the lightest structural material in the project application. At the same time, magnesium alloy is being increasingly wider using in the automobile industry, the communication electron, aviation and aerospace industry and other fields because of its merit, such as high specific strength, good electromagnetic shielding and good damping property. There is abundant storage resource of magnesium on the earth, and at the present time, many of the traditional metal mineral resources become depleting, the development of the application of magnesium alloy to maintain the sustaining development is strategic significance. Most of magnesium alloy has the hexagonal close-packed structure, and formability is not very well, and most of magnesium alloy has the good casting property, so most of magnesium alloy components are mostly produced by die-casting at the present time. However, mechanical properties of the casting products are not very ideal, which restricts the application of AZ31 magnesium alloy. Therefore, research on deforming magnesium alloy become very important in the magnesium industrial fields.
     In order to enhance the comprehensive mechanical properties of AZ31 magnesium alloy, particularly plasticity, in the present study, based on experiments, AZ31 magnesium alloy was chosen as object of material, AZ31 billets with diameters ofΦ153mm, after homogenization treatment, were extruded at 250℃,300℃and 350℃, respectively. AZ31 extruded plates were rough-rolled at 330℃and 370℃, respectively. Finally, AZ31 thin sheets were obtained after finishing rolling, AZ31 thin sheets were annealed at 250℃and 400℃, respectively. In order to study the contribution of extruding temperature, rolling temperature and heat treatment temperature on mechanical properties of AZ31 magnesium alloy sheets, microstructures were examined, tensile property were tested, fractures were scanned and X-ray texture measurement were also performed. Effect of cold-rolling and hot-rolling on AZ31 magnesium alloy sheet was also explored in this article, and the main conclusions are followings:
     1. Extruding temperature has a great influence on surface qualities and mechanical properties of AZ31 magnesium alloy sheet. AZ31 magnesium alloy extruded plate with good surface and mechanical properties can be obtained when ingots was extruded at 300℃. Therefore appropriate extruding temperature is 300℃.
     2. Rolling temperature has also a great influence on mechanical properties of AZ31 magnesium alloy sheet. When AZ31 extruded plates were rolled at 370℃, the maximal reduction reached 49.14%, homogeneous and fine grains were obtained, whose average size is 3-4μm with good mechanical properties. Therefore appropriate rolling temperature is 370℃.
     3. Proper heat treatment system is 250℃×20min, crystal grains of hot-rolled AZ31 magnesium alloy sheet became regular, twin which formed in deforming disappeared, and recrystallization nearly finished, after annealling at 250℃. Tensile strength of AZ31 magnesium alloy sheet was decreased, at the same time, elongation percentage increased largely. The tensile strength of AZ31 magnesium alloy sheet decreased from 305MPa to 280MPa (transverse direction). Meanwhile, the elongation percentage increased from 18.24% to 21.37%(transverse direction).
     4. After annealling at 250℃, the cold-rolled AZ31 magnesium alloy sheet with thickness of 0.9mm has good mechanical properties, whose transverse tensile strength get to 265MPa, while transverse elongation percentage get to 30.08%, and longitudinal tensile strength get to 260MPa, while longitudinal elongation percentage get to 27.36%.
     5. AZ31 magnesium alloy has formed the different texture types under the different rolling ways (cold rolling and hot rolling). In cold-rolled sheet, texture type are mainly (0117) [0772] (90°,15°,0°) and (1129) [1239] (75°,20°,30°). In hot-rolled sheet, texture is basal fiber. In pole figures, two peaks appears in AZ31 cold-rolled sheet, meanwhile one peak appears in AZ31 hot-rolled sheet, which shows different foming mechanisms in cold rolling and hot rolling. Cold rolling changes the texture type and weakens the intensity, which shows cold rollinghas the property of enhancing formobility of AZ31 sheet. Heat treatment can not change texture type, but weaken intensity of texture.
     6. Grain size, twin and texture are three key factors which affect strength, elongation and aeolotropy of AZ31 magnesium alloy sheet. By controlling the parameters of rolling, heat treatment and other technologies, grain size, twin and texture can be changed, the perpose of increasing plasticity and decreasing aeolotropy can be achieved without the decrease of strength.
引文
1. Polmear J. Light Alloys:Metallurgy of light metals 2"d [M], London:Edward Arnold,1989,1-10.
    2. Aghion E, Bronfin B. Magnesium alloys development toward the 21st century [J], Materials Science Forum,2000,17(22):19-28.
    3.陈振华.镁合金[M],北京:化学工业出版社,2002,15-17.
    4.曾荣昌,柯伟,徐永波等.Mg合金的最新发展及应用前景[J],金属学报,2001,37(7):673-685.
    5.肖盼,刘天模.AZ31镁合金的研究进展[J],重庆大学学报(自然科学版),2006,29(11):81-84.
    6.陈振华.变形镁合金[M],北京:化学工业出版社,2005,12-16.
    7. Partridge P. The crystallography and deformation modes of hexagonal close-packed metals [J], Metallurgical Reviews,1967,12(2):169-174.
    8. Staroselsky Anand. A constitutive model for hcp materials deforming by slip and twinning:application to magnesium alloy AZ31B [J], International Journal of Plasticity,2003:37(16):67-69.
    9. Christian J W, Mahajan S. Deformation twinning [J], Progress in materials Science,1995,39(9):1843.
    10.周铁诚.密排六方晶体变形孪晶机制解析[J],材料导报,2002.12(8):12-16.
    11.李章刚.镁合金板材的室温塑性变形机制研究[D],沈阳:中国科学院金属研究所,2007
    12.吕宜振.Mg-Al-Zn合金组织、性能、变形和断裂行为研究[D],上海:上海交通大学,2001
    13.罗承萍,肖晓玲等.AZ91合金中γ-Mg17Al12析出相的多重位向关系及{112}γ伪孪晶关系[J],金属学报,2002,38(7):709-714.
    14.肖晓玲.AZ91合金中β-Mg17Al12析出相的形态及其晶体学特征[J],金属学报,2001,37(1):1-7.
    15.李忠盛,潘复生.AZ31镁合金的研究现状和发展前景[J],金属成形工艺,2004,22(1):54-57.
    16.张诗昌,段汉桥.主要合金元素对镁合金组织和性能的影响[J],铸造,2001,50(9):310-314.
    17.张津,章宗和等.镁合金及应用[M],北京:化学工业出版社,2004,30-34.
    18.温景林.挤压与拉拔[M],沈阳:东北大学出版社,1996,46-52.
    19.谢建新,刘静安.金属挤压理论与技术[M],北京:冶金工业出版社,2001,56-57.
    20. Mukai T, Matsuoka S, Miyamoto S et al. Effects of extrusion conditions on microstructure and mechanical properties of AZ31B magnesium alloy extrusions[J], Journal of Materials Processing Technology,2003,141 (2):207-211.
    21. Brown R E.53rd Annual word Magnesium conference [J], Light metal Age,1996,32(3):50-60.
    22.毛卫民,赵新兵.金属的再结晶与晶粒长大[M],北京:冶金工业出版社,1994,64-105.
    23.杨平,任学平,赵祖德.AZ31镁合金热成形及退火过程的组织与织构[J],材料热处理学报,2003,24(4):12-16.
    24. Wagner F, Bozzolo N, O Van Landuyt. Evolution of recrystalization texture and microstructure in low alloyed titanium sheets [J], Acta Mater,2002,40(21):1245-1259.
    25. Perez-Prado M T, Ruano O A. Texture evolution during annealing of magnesium AZ31 alloy [J], Scripta Materialia,2002,37(16):149-155.
    26. Perez-Prado M T, Ruano O A. Texture evolution during grain growth in annealed MG AZ61 allay [J], Scripta Materialia,2003,48(4):59-64.
    27. Liu Y. Transient plasticity and microstructural evolution of a commercial AZ31 magnesium alloy at elevated temperatures [D], Michigan:Wayne State University,2003,27(9)111-124
    28.杨紫霞,戴中兴.晶体位错[M],武汉:武汉工业大学出版社,1995,150-157.
    29. Kaibyshev, Watanabe H, Mukai T, Ishikawa K, et al. Relization of high-strain-rate huperplasticity at low temperatures in Mg-Zn-Zr Alloy [J], Materials Science and Engineering,2001,307(22):119-120.
    30. Barnett M R. Recrystallization During and Following Hot Work Alloy AZ31 [J], Materials Science Forum,2003,41(12):503-509.
    31.张星,李保成.温变形对AZ31镁合金组织的影响[J],塑性工程学报,2004,11(3):52-55.
    32.王占学.塑性加工金属学[M],沈阳:冶金工业出版社,2003,60-61.
    33. Obara T, Yoshinga H, Morozumi S. Slip system in Magnesium [J], Acta Metall.,1973,21(14):845-853.
    34. Agnew S R, Yoo M H. Using deformation-induced texture as an alloy/process optimization tool [J], The Minerals & Materials Society, Magnesium Technology,2000,25(2):331-339.
    35. Philippe M J. Texture Formation in Hexagonal Materials [J], Mater Sci Forum[C],1994,122(11): 1337-1350.
    36. Mukai T, Yamanoim M, Watanabe H. Ductility Enhancement in AZ31 Magnesium Alloy By Controlling Its Grain Structure [J], Sci Mater,2001,45(4):89-94.
    37. Roberts C S. Magnesium and its alloys [M], New York:John Wiley,1960,70-72.
    38. Humphreys F J, White S H. Acta Metall [M],1982,1909-1920.
    39.张志强.AZ31B镁合金薄板生产工艺与力学性能研究[D],沈阳:东北大学,2005
    40.郭雅萍.试验指导书[M],沈阳:东北大学出版社,2003,79-80.
    41. Murai T, Matsuokua S, et al. Effects of extrusion condition on microstructure and mechanical properties of AZ31B magnesium alloy extrusions [J],2003,141(7):207-212
    42.刘晓菲,严巍.AZ31B镁合金塑性变形动态再结晶的实验研究[J],塑性工程学报2005,25(11):10-13.
    43.翟秋亚.挤压变形对AZ31镁合金组织和性能的影响[J],西安理工大学学报2002,3(11):254-258.
    44.毛卫民,赵新兵.金属的再结晶与晶粒长大[M],北京:冶金工业出版社,1994,197-213.
    45.余琨,黎文献.细晶粒AZ31(Ce)镁合金板材的组织与性能[J],金属热处理,2005,8(4):34-37.
    46. Avedesian M M, Baker H et al. ASM Specialty Hand-book-Magnesium and Magnesium Alloys [M], ASM International,1999,20-22.
    47.程永奇,陈振华,夏伟军,傅定发.退火处理对AZ31镁合金轧制板材组织与冲压性能的影响[J],有色金属,2006,58(1):5-9.
    48. Yin D L, Zhang K F, Wang G F. Warm deformation behavior of hot-rolled AZ31 Mg alloy [J], Materials Science and Engineering,2005,392 (25):320-325.
    49.杨春卫.单向异步冷轧AZ61镁合金的显微组织和织构[D],沈阳:东北大学,2007
    50.林英男.AZ31镁合金晶粒细化及成形性研究[D],中国台湾:国立中央大学,2002
    51.曲家惠,张正贵,王福.AZ31镁合金室温异步轧制的织构演变[J],材料研究学报,2007,21(1):354-358.
    52. Wang Y N, Huang J C. Texture analysis in hexagonal materials[J], Mater. Chem. Phy.,2003,81 (1): 11-13.
    53. Prado M T, Valle J A, Ruano O A. Effect of sheet thickness on the microstructure evolution of an Mg alloy during large strain hot rolling [J], Scripta Materialia,2004,50(11):667-671.
    54. Yang P, Yu Y, Chen L, et al. Experimental deformation and theoretical prediction of twin orientations in magnesium alloy AZ31 [J], Scripta Materialia,2004,50(11):1163-1169.
    55. Kalidindi S R. Introduction of deformation twinning in crystal plasticity model [J], Journal of the Mechanics and Physics of Solids,1998,46(9):267-274.
    56. Hilpert M, Styczynski A, Kiese J, et al. Magnesium alloys and their application. Hamburg: Werkstoff-information gesellshaft [J],1998,14(6):319-325.
    57. Mukai T, Watanabe H, Ishikawa K, et al. Guide for Enhancement of Room Temperature Ductility in Mg Alloys at High Strain Rates [J], Materials Science Forum,2003,171(9):419-422.
    58. Myagchilov S, Dawson P R. Evolution of texture in aggregates of crystals exhibiting both slip and twinning [J], Modeling and Simulation in Materials Science and Engineering,1999,7(11):95-104.
    59. Wagner L, Hilpert M, Wendt J. One method for improving the fatigue performance of the wrought magnesium alloys AZ31 and AZ80 [J], Materials Science Forum,2003,93(9):419-422.
    60. Kalidindi S R. Modeling anisotropic strain hardening and deformation textures in low stacking fault energy materials [J], International Journal of Plasticity,2001,17(7):837-845.
    61. Christian J W, Mahajan S. Deformation twinning [J], Progress in Materials Science,1995,39(5):1-8.
    62. Poss R. Sheet metal production of magnesium [J], Materials Science Forum,2003,327(23):419-422.
    63. Styczynski A, Hartig Ch, Bohlen J. Cold rolling textures in AZ31 wrought magnesium alloy [J], Scripta Materialia,2004,50(17):943-951.
    64. Perez-Prado M T, Valle J A, Contreras J M, et al. Microstructural evolution during large strain hot rolling of an AM60 Mg alloy [J], Scripta Materialia,2004,50(20):661-667.
    65. Valle J A, Prado M T, Ruano O A. Texture evolution during large-strain hot rolling of the AZ61 Mg alloy [J], Materials Science and Engineering A,2003,355(23):68-77.
    66. Prado M T, Ruano O A. Texture Evolution during grain growth in annealed AZ61 Mg alloy [J], Scripta Materialia,2003,48(10):59-68.
    67. Wang Y N, Huang J C. Texture analysis in hexagonal materials [J], Materials Chemistry and Physics, 2003,8(5):11-26.
    68. Wagner F, Bozzolo N, Van Landuyt O, et al. Evolution of Recrystallisation Texture and Microstructure in Low Alloyed Titanium Sheets [J], Acta Materialia,2002,50(11):1245-1249.
    69. Philipe M J, Wagner F, Mellab F E, et al, Wegria. Modeling of texture evolution for materials of hexagonal symmetry Application to zinc-alloys[J], Acta Metallurgica ET Materialia,1994,42(1):239-250.
    70. Philipe M J. International Conference on Texture of Materials ICOTOM-11 [C], Switzerland, Trans Tech Publications,1994,35(24):1337-1350.
    71.王轶农.电场作用下金属再结晶织构的研究[D],沈阳:东北大学,1999
    72. Pyzalla A, Brodmann M, Haeffber D. Microstructure, Texture and residual microstrains in MgAl8Zn deformed at very high strain rates [J], Magnesium alloys and the applications Munich,2000,5(3):285-291.
    73. Koike J. New deformation mechanisms in fine-grain Mg alloys [J], Materials Science forum,2003, 419(22):189-195.
    74. Couling, KIM K H, SEO Y M, YIM C D, et al. The effect of rolling conditions on the microstructure and texture evolution of AZ31 Mg alloy sheets [J], Mater Forum,2005,29(5):530-535.
    75. Agnew S R, YOU B S, YIM C D et al.Texture and microstructure changes in asymmetrically rolled AZ31 magnesium alloy sheets [J], Materials Letters,2005,59(29):3876-3880.
    76.汪凌云、范永革、黄光杰、黄光胜、潘复生、刘正宏.AZ31B镁合金板材的织构[J],材料研究学报,2004,18(6):467-470.
    77.徐永宁.金属学原理[M],北京:冶金工业出版社,2005,94-95.
    78.万玉刚,吕保义,康永林,王朝辉,蔡庆伍,张济山.退火工艺对温轧AZ31板组织、织构及性能的影响[J],稀有金属,2007,31(4):412-415.
    79.宋维锡.金属学[M],北京:冶金工业出版社,1997,212-214.
    80.李超.金属学原理[M],哈尔滨:哈尔滨工业大学出版社,1989,299-302.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700