腺苷A_(2A)受体基因敲除对慢性低灌注白质损伤的影响及其与炎性效应调控的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
供应脑实质深穿支小动脉的广泛病变,或颈部大动脉及其颅内分支动脉的狭窄,导致大脑半球深部白质血流量降低,持续的低灌注状态可造成白质疏松,即缺血性白质脑病。缺血性白质脑病可以引起神经功能缺失,主要表现包括认知功能损害,是中老年血管性认知损害的主要病理类型之一。目前缺血性白质脑病的治疗方式主要是对症治疗和控制心脑血管疾病的危险因素,但治疗效果不满意,不能阻止疾病的进一步发展。因此,迫切需要探索缺血性白质脑病新的治疗策略和途径。
     缺血性白质脑病的分子病理机制仍不明确,对于慢性脑血流低灌注导致的脑组织能量代谢障碍和神经活性物质代谢障碍造成以白质损伤为主的病理损害的分子机制仍然缺乏清楚认识。以往研究发现慢性脑血流低灌注造成的白质损伤,同时伴有胶质细胞增生活化、白质区域炎性细胞浸润、某些炎性因子表达增加以及一氧化氮合成增加等,提示白质损伤与炎性病理过程有关,确切的机制尚需进一步研究阐明。
     腺苷是能量代谢的中间产物,也是中枢神经系统重要的神经调质。腺苷与其受体(A1、A2A、A2B和A3)结合后调节机体重要的生理活动,并参与多种致病因素引起的疾病过程。其中A2A受体参与机体多种生理活动的调节和某些疾病的病理过程,在某些疾病的动物实验研究中发现其治疗效应较明确,因此格外受到重视。许多研究已发现A2A受体拮抗剂或A2A受体基因敲除抑制了细胞外谷氨酸浓度的异常升高从而显著减轻急性缺血造成的脑损伤,提示对腺苷A2A受体的干预有可能成为治疗缺血性脑损伤的新途径。慢性低灌注性白质损伤的组织病理改变及病理机制与急性脑缺血性损伤有显著差异,腺苷A2A受体在慢性低灌注性白质损伤发生发展中的作用仍不清楚。此外,A2A受体也存在于外周血液中的炎性细胞和免疫细胞,研究证实A2A受体激活显著抑制外周炎性细胞和免疫细胞的黏附和迁移,减少炎性因子的分泌,从而产生抗炎效应,减轻多种致炎因子造成的炎性病理损伤,那么A2A受体是否通过对炎性效应的调控从而对慢性低灌注性白质损伤的结局产生影响?
     为了阐明A2A受体对慢性低灌注性白质损伤的影响及其可能机制,首先,我们参照Shibata等方法用内径为0.18mm的微型弹簧圈套双侧颈总动脉建立小鼠慢性脑血流低灌注模型,在建模第30d采用八臂迷宫实验对模型小鼠进行认知功能评价;在建模第7d、14d和30d分别采用Kluver-Barrera染色、抗GFAP、CD11b免疫组织化学染色观察模型小鼠在建模后不同时间点白质区域的神经纤维损伤程度及胶质细胞增生程度;同时,在建模后第14d采用抗CD3免疫组织化学染色及伊文氏蓝荧光显微镜观察来评价模型小鼠白质区域淋巴细胞浸润情况及血脑屏障的完整性。
     其次,我们采用腺苷A2A受体基因敲除技术,观察A2A受体缺失对慢性低灌注性白质损伤的影响。A2A受体基因敲除小鼠及其同窝野生型小鼠分别制作慢性脑血流低灌注模型,采用八臂迷宫实验评价A2A受体基因敲除小鼠及同窝野生型小鼠在建模第30d时认知功能的变化;在建模第7d、14d和30d分别采用Kluver-Barrera染色、抗GFAP、CD11b免疫组织化学染色观察A2A受体基因敲除小鼠及同窝野生型小鼠在建模后不同时间点白质区域的神经纤维损伤程度及胶质细胞增生程度;采用抗CD3免疫组织化学染色观察A2A受体基因敲除小鼠及同窝野生型小鼠在建模第14d白质区域淋巴细胞浸润情况;同时,采用PCR及western blot方法检测A2A受体基因敲除小鼠及同窝野生型小鼠在建模第7d、14d和30d胼胝体的TNF-α、IL-1β和IL-6 mRNA和蛋白水平。
     最后,我们将雌性A2A受体基因敲除小鼠的骨髓细胞通过尾静脉注射入γ射线全身照射后的雄性C57BL/6小鼠体内,从而建立选择性骨髓来源细胞A2A受体缺失模型,观察外周骨髓来源细胞A2A受体在慢性低灌注性白质损伤发生发展中的作用及其机制。骨髓细胞成功移植后的嵌合子小鼠制作慢性脑血流低灌注模型,在建模第7d、14d和30d分别采用Kluver-Barrera染色、抗GFAP、CD11b免疫组织化学染色观察嵌合子小鼠白质区域神经纤维损伤程度及胶质细胞增生程度;采用western blot方法检测嵌合子小鼠在建模第7d、14d和30d胼胝体的TNF-α和IL-1β蛋白水平。
     经过以上实验研究,我们得到一下结果:
     一、小鼠慢性脑血流低灌注模型的建立
     1.采用特制微型弹簧圈套小鼠双侧颈总动脉成功建立慢性脑血流低灌注小鼠模型。建模后小鼠死亡率为18.9%。建模后30d各个检测时间点模型小鼠的平均体重与假手术组比较无差异。
     2.在建模第30d模型小鼠八臂迷宫实验的平均工作记忆错误显著增多。
     3.在建模第7d时模型小鼠白质区域未见组织病理改变。在建模第14d和30d时模型小鼠白质区域可见神经纤维排列紊乱、稀疏,有空泡形成,同时星型胶质细胞和小胶质细胞增生,以胼胝体最为显著,内囊次之,视束最轻。模型小鼠随着建模时间延长,白质损伤程度分级逐渐增加,白质区域胶质细胞数目显著增多。
     4.在建模第14d模型小鼠胼胝体区域可见散在单个的CD3阳性细胞分布,其余白质区域则未见。并且模型小鼠胼胝体CD3阳性细胞数目显著多于相同时间点的假手术小鼠。在建模第14d模型小鼠胼胝体区域小血管边缘毛糙,成锥形突触,提示存在伊文蓝外渗现象。
     二、腺苷A2A受体基因敲除对慢性低灌注性白质损伤的影响及其与炎性效应调控的关系
     1.在建模后A2A受体基因敲除小鼠的死亡率为22.3%,野生型小鼠死亡率为16.7%。建模后30d各个检测时间点A2A受体基因敲除小鼠的平均体重与野生型小鼠无显著差异。
     2.在建模第30d时A2A受体基因敲除小鼠八臂迷宫实验平均工作记忆错误比相同时间点的野生型小鼠显著增多。
     3.在建模第7d时2组小鼠白质区域均未见显著组织病理改变。在建模第14d和30d时2组小鼠白质区域可见神经纤维稀疏、空隙增加、空泡形成,同时星型胶质细胞和小胶质细胞增生,A2A受体基因敲除小鼠在建模第30d白质区域可见胞体增大变圆,突起变短的活化小胶质细胞。在建模第14d和30d时A2A受体基因敲除小鼠白质损伤程度分级显著高于同时间点的野生型小鼠,同时A2A受体基因敲除小鼠白质区域胶质细胞数目显著多于相同时间点的野生型小鼠。
     4.在建模第14d时2组小鼠胼胝体区域均可见到CD3阳性细胞分布,并且A2A受体基因敲除小鼠在建模第14d胼胝体区域CD3阳性细胞数目显著多于相同时间点的野生型小鼠。
     5.在建模第7d、14d和30d时A2A受体基因敲除小鼠胼胝体TNF-α和IL-1β的mRNA水平与相同时间点的野生型小鼠比较显著增高,在建模第30d时A2A受体基因敲除小鼠胼胝体IL-6的mRNA水平显著高于相同时间点的野生型小鼠。在建模第30d时A2A受体基因敲除小鼠胼胝体TNF-α和IL-6蛋白水平显著高于相同时间点的野生型小鼠,在建模第14d和30d时A2A受体基因敲除小鼠胼胝体IL-1β蛋白水平显著高于相同时间点的野生型小鼠。
     三、骨髓来源细胞A2A受体对慢性低灌注白质损伤的影响
     1.选择性骨髓细胞腺苷A2A受体缺失模型的建立和评价
     (1)骨髓细胞移植前雄性受体小鼠性染色体相关基因PCR产物电泳结果有330bp和300bp两条条带,但骨髓细胞移植后雄性受体小鼠性染色体相关基因PCR产物电泳结果仅有330bp一条带,与雌性小鼠性染色体PCR产物电泳结果相符。
     (2)野生型小鼠骨髓细胞移植入C57BL/6小鼠体内的嵌合子小鼠(WT→WT组)外周血白细胞A2A受体免疫细胞荧光染色发现A2A受体阳性细胞率为(93.82±11.24)%,A2A受体基因敲除小鼠骨髓细胞移植入C57BL/6小鼠体内的嵌合子小鼠(KO→WT组)外周血白细胞A2A受体阳性细胞率下降至(9.73±2.05)%。
     2.骨髓来源细胞A2A受体对慢性低灌注白质损伤的影响
     (1) WT→WT组建模后小鼠死亡率为10.0%,KO→WT组建模后小鼠死亡率为21.05%。
     (2)在建模第7d时2组白质区域均未见明显的组织病理学改变,在建模第14d和30d时2组胼胝体、尾状核/壳核纤维束可见神经纤维排列紊乱、稀疏,内囊和视束均未见明显改变。在建模后第14d和30d,KO→WT组胼胝体和尾状核/壳核纤维束的神经纤维损伤级数与同时相点WT→WT组比较显著性增加。
     (3)在建模第7d、14d和30d时KO→WT组胼胝体和尾状核/壳核纤维束可见显著星型胶质细胞和小胶质细胞增生,WT→WT组胼胝体和尾状核/壳核纤维束仅在建模第14d和30d观察到胶质细胞增生,2组内囊和视束未见显著胶质细胞增生。在建模第7d、14d和30d时KO→WT组胼胝体和尾状核/壳核纤维束的胶质细胞数目显著多于相同时间点的WT→WT组。
     (4)与相同时间点的WT→WT组比较,KO→WT组胼胝体的TNF-α蛋白水平仅在建模第14d时显著升高;KO→WT组胼胝体的IL-1β蛋白水平在建模第14d和30d时均显著升高。
     综上所述,我们利用特制的微型弹簧成功建立了小鼠慢性脑血流低灌注模型,从行为学及组织病理学方面进行评价,证实了该模型是研究慢性低灌注白质损伤的可靠动物模型。腺苷A2A受体基因敲除加重慢性低灌注白质损伤,促进局部胶质细胞增生,促使白质区域炎性因子产生增多,提示A2A受体缺失可能是通过增强炎症反应而发挥影响。选择性骨髓来源细胞A2A受体基因敲除同样加重慢性低灌注白质损伤,促进局部胶质细胞增生和炎症因子的产生,表明骨髓来源的外周白细胞A2A受体可能在对慢性低灌注白质损伤的影响中发挥主导作用。
Due to dismissed microangiopathy in the hemispheres or cerebral hypoperfusion induced by the stenosis of carotid arteries, white matter lesion is one of the major causes of vascular cognitive impairment and constitutes the core pathology of Binswanger disease. Until now, the therapies available of white matter lesions induced by chronic cerebral hypoperfusion include symptomatic treatment and controlling risk factors of cardiovascular and cerebrovascular diseases. In spite of extensive efforts and investigations, no efficient neuroprotective therapy is currently available for ischemic white matter lesions. Therefore, it is important to explore the new and effective strategies to cure ischemic white matter lesions.
     Much less is known about the moleculor pathomechanisms of ischemic white matter lesions. It must be elucidated the pathomechanism of white matter lesions induced by chronic cerebral hypoperfusion due to the dysmetabolism of energy and signaling moleculors. Previous studies support that there are a series of pathophysiological events including white matter lesions, proliferation of glial, periphery inflammatory cell infiltration and increased production of several inflammatory cytokines in the white matter regions after chronic cerebral hypoperfusion. These evidences indicate that inflammatory reaction is correlated to the white matter lesions induced by chronic cerebral hypoperfusion.
     As an intermediate product of energy metabolism, adenosine is an important neuromodulator in the central nervous systerm. Adenosine acting at it receptors regulates many physiological events and is involved in the development of the diseases. Importantly, A2A receptor is related to the provoke and development of numerous central nervous systerm diseases. Growing evidences show that A2A receptor antagonist or A2A receptor knock out attenuates the acute ischemic brain damages on account of reducing the glutamate outflow. Hence, these findings show that A2A receptor will be a new target to cure the ischemic brain injury. There are markedly differences in the neuropathological features and pathomechanisms between white matter lesions induced by chronic cerebral hypoperfusion and acute ischemic brain injury. The role of A2A receptor in the development of chronic cerebral hypoperfusion-induced white matter lesions has not yet been elucidated. In addition, the A2A receptor expression is detected in the periphery blood inflammatory cells and immune cells. Previous data show that activated A2A receptor significantly attenuates the inflammatory tissue damages by inhibiting the adhesion and migration of inflammatory cells and immune cells, reducing the production of inflammatory cytokines. Whether is the modulation of A2A receptor in the neuroinflammation involved in the role of A2A receptor in the white matter lesions induced by chronic cerebral hypoperfusion or not?
     In order to elucidate the effect of A2A receptor on the white matter lesions induced by chronic cerebral hypoperfusion, firstly, the mouse model of chronic cerebral hypoperfusion was established by stenosis of bilateral carotid artery using 0.18mm diameter microcoils. We evaluated the cognitive function of model mice by 8-radial maze test at 14d after the surgery. The white matter lesions and glial proliferation were examined by Kluver-Barrera staining and anti-GFAP or anti-CD11b immunohistochemistry at 7d, 14d and 30d after the surgery. We also examined the leukomonocyte infiltration in the white matter regions by anti-CD3 immunohistochemistry and integrality of blood brain barrier by Evans blue at 14d after the surgery.
     Secondly, A2A receptor knock out mice and their littermates were subjected to the surgery of bilateral carotid artery stenosis. We compared the cognitive function of A2A receptor knock out mice and wild type mice by 8-radial maze test at 30d after the surgery. The white matter lesions and glial proliferation of A2A receptor knock out mice and wild type mice were compared by Kluver-Barrera staining and anti-GFAP or anti-CD11b immunohistochemistry at 7d, 14d and 30d after the surgery. We also compared the leukomonocyte infiltration in the white matter regions by anti-CD3 immunohistochemistry at 14d after the surgery. Moreover, the mRNA and protein levels of TNF-α、IL-1βand IL-6 in corpus callosum were investigated by PCR and western blot at 7d, 14d and 30d after the surgery.
     Thirdly, the selective bone marrow cells A2A deficits model was estsblished by transplanting the female A2A receptor knock out mice bone marrow cells into the male C57BL/6 mice. At 8 weeks after successful transplantation, the chimeric mice were subjected to the surgery of bilateral carotid actery stenosis. The white matter lesions and glial proliferation of the chimeric mice were compared by Kluver-Barrera staining and anti-GFAP or anti-CD11b immunohistochemistry at 7d, 14d and 30d after the surgery. The protein levels of TNF-αand IL-1βin corpus callosum were investigated by western blot at 7d, 14d and 30d after the surgery.
     ⅠEstablishment of mouse model of chronic cerebral hypoperfusion
     1. After the surgery of bilateral carotid artery stenosis, the death rate of the model mice was 18.9%. There was no difference in the average weight between the model mice and the sham-operated mice within 30d after the surgery.
     2. The average working memory errors in 8-radial maze of model mice markedly increased at 30d after the surgery.
     3. The white matter rarefaction and proliferation of astrocytes and microglia were observed in the white matter regions of model mice at 14d and 30d after the surgery. The most significant changes were observed in the corpus callosum. Moderate changes were found in the internal capsule, and less severe changes were observed in the optic tract. More long the bilateral carotid artery stenosis, more severe the white matter lesions and glial proliferation.
     4. The CD3 positive cells were observed in the corpus callosum of model mice at 14d after the surgery. The number of CD3 positive cells in the corpus callosum of model mice was much more than that of sham-operated mice. We also found that Evans blue extravasation of small vessels in corpus callosum of model mice at 14d after the surgery.
     ⅡEffect of adenosine A2A receptor knock out on whiter matter lesions induced by chronic cerebral hypoperfusion and the role of A2A receptor in the modulation of inflammatory reaction
     1. After the surgery of bilateral carotid artery stenosis, the death rate of A2A receptor knock out mice was 22.3%, the death rate of wild type mice was 16.7%. There was no difference in the average weigh between A2A receptor knock out mice and wild type mice within 30days after the surgery.
     2. The average working memory errors in 8-radial maze of A2A receptor knock out mice were markedly higher than that of wild type mice at 30d after the surgery.
     3. The white matter rarefaction and proliferation of astrocytes and microglia were observed in the white matter regions of A2A receptor knock out mice and wild type mice at 14d and 30d after the surgery. The activated microglia with swollen and hypertropic cell bodies as well as thick and short processes was found in the white matter regions of A2A receptor knock out mice at 30d after the surgery. The severity of white matter lesions and number of glial cells of A2A receptor knock out mice were much higher than that of wild type mice at 14d and 30d after the surgery.
     4. The CD3 positive cells were observed in the corpus callosum of both two model mice at 14d after the surgery. The number of CD3 positive cells in the corpus callosum of A2A receptor knock out mice was much more than that of wild type mice at 14d after the surgery.
     5. The TNF-αand IL-1βmRNA levels in the corpus callosum of A2A receptor knock out mice was much higher than that of wild type mice at 7d, 14d and 30d after the surgery. Compared with wild type mice, the IL-6 mRNA level in the corpus callosum of A2A receptor knock out mice significantly increased at 30d after the surgery. The TNF-αand IL-6 protein levels in the corpus callosum of A2A receptor knock out mice was much higher than that of wild type mice at 30d after the surgery. Compared with wild type mice, the IL-1βprotein level in the corpus callosum of A2A receptor knock out mice significantly increased at 14d and 30d after the surgery.
     ⅢEffect of bone marrow cells A2A receptor on the white matter lesions induced by chronic cerebral hypoperfusion
     1. Establishment and evaluation of selective bone marrow cells A2A receptor deficits mice
     ①Before the transplantation, the electrophoresis of sexual chromagene gene PCR product on periphery blood white cells of male recipient mice included 330bp and 300bp bands. After the successful transplantation, the electrophoresis of sexual chromagene gene PCR product on periphery blood white cells of male recipient mice included 330bp band.
     ②The A2A receptor positive cells rate of wild type mice that received bone marrow cells derived from wild type mice (WT→WT group) was (93.82±11.24)%. The A2A receptor positive cells rate of wild type mice that received bone marrow cells derived from A2A receptor knock out mice (KO→WT group) decreased to (9.73±2.05)%.
     2. Effect of bone marrow cells A2A receptor on the white matter lesions induced by chronic cerebral hypoperfusion
     ①The death rate of WT→WT group was 10.0% after the surgery of bilateral carotid artery stenosis. The death rate of KO→WT group was 21.05% after the surgery of bilateral carotid artery stenosis.
     ②The white matter rarefaction was observed in the corpus callosum and fibers bund of caudoputamen of WT→WT group and KO→WT group at 14d and 30d after the surgery. The white matter lesions were not observed in internal capsule and optical tract. Compared with WT→WT group, the white matter lesions in the corpus callosum and fibers bund of caudoputamen of KO→WT group significantly increased at 14d and 30d after the surgery.
     ③The glial proliferation was observed in the corpus callosum and fibers bund of caudoputamen of KO→WT group at 7d, 14d and 30d after the surgery. The glial proliferation was observed in the corpus callosum and fibers bund of caudoputamen of WT→WT group at 14d and 30d after the surgery. The glial proliferation was not observed in internal capsule and optical tract.
     The number of glial cells in the corpus callosum and fibers bund of caudoputamen of KO→WT group was much higher than that of WT→WT group at 7d, 14d and 30d after the surgery.
     ④Compared with WT→WT group, the TNF-αprotein levels in the corpus callosum of KO→WT group markedly increased at 30d after the surgery, the IL-1βprotein levels significantly increased at 14d and 30d after the surgery.
     In a word, the mouse model of chronic cerebral hypoperfusion was successfully established using the 0.18mm diameter microcoils. We evaluated the cognitive function and histopathological changes of the model mice and confirmed that this model is a powerful tool to study the pathomechanisms of white matter lesions induced by chronic cerebral hypoperfusion. Adenosine A2A receptor deficits exacerbated white matter lesions and glial proliferation, promoted the production of inflammatory cytokines. These findings indicated that increased inflammation was associated with the exacerbation of white matter lesions by inactivation of A2A receptor. Selective bone marrow cells A2A receptor inactivation exacerbated white matter lesions and glial proliferation, promoted the production of inflammatory cytokines. These findings showed that A2A receptor in bone marrow cells may be an important contributor to the white matter lesions induced by chronic cerebral hypoperfusion.
引文
1. Hachinski VC, Potter P, Merskey H. Leuko-araiosis. Arch Neurol 1987; 44: 21-23.
    2. Garde E, Mortensen EL, Krabbe K, Rostrup E, Larsson HB. Relation between age-related decline in intelligence and cerebral white-matter hyperintensities in healthy octogenarians: a longitudinal study. Lancet 2000; 356: 628-634.
    3. Magaki S, Mueller C, Dickson C, Kirsch W. Increased production of inflammatory cytokines in mild cognitive impairment. Exp Gerontol 2007; 42: 233-240.
    4. Kalvach P, Gregova D. Cerebral microangiopathy in the mosaic of new discoveries. J Neurol Sci 2005; 229-230: 7-12.
    5. Cunha RA. Adenosine as a neuromodulator and as a homeostatic regulator in the nervous system: different roles, different sources and different receptors. Neurochem Int 2001; 38: 107-125.
    6. Moreau JL, Huber G. Central adenosine A2A receptors: an overview. Brain Res Brain Res Rev 1999; 31: 65-82.
    7. Fredholm BB, Chen JF, Masino SA, Vaugeois JM. Actions of adenosine at its receptors in the CNS: insights from knockouts and drugs. Annu Rev Pharmacol Toxicol 2005; 45: 385-412.
    8. Chen JF, Sonsalla PK, Pedata F, Melani A, Domenici MR, Popoli P et al. Adenosine A2A receptors and brain injury: broad spectrum of neuroprotection, multifaceted actions and "fine tuning" modulation. Prog Neurobiol 2007; 83: 310-331.
    9. Melani A, Turchi D, Vannucchi MG, Cipriani S, Gianfriddo M, Pedata F. ATP extracellular concentrations are increased in the rat striatum during in vivo ischemia. Neurochem Int 2005; 47: 442-448.
    10. Laghi Pasini F, Guideri F, Picano E, Parenti G, Petersen C, Varga A et al. Increase in plasma adenosine during brain ischemia in man: a study during transient ischemic attacks, and stroke. Brain Res Bull 2000; 51: 327-330.
    11. Chen JF, Huang Z, Ma J, Zhu J, Moratalla R, Standaert D et al. A2A adenosine receptor deficiency attenuates brain injury induced by transient focal ischemia in mice. JNeurosci 1999; 19: 9192-9200.
    12. Melani A, Gianfriddo M, Vannucchi MG, Cipriani S, Baraldi PG, Giovannini MG et al. The selective A2A receptor antagonist SCH 58261 protects from neurological deficit, brain damage and activation of p38 MAPK in rat focal cerebral ischemia. Brain Res 2006; 1073-1074: 470-480.
    13. Pedata F, Gianfriddo M, Turchi D, Melani A. The protective effect of adenosine A2A receptor antagonism in cerebral ischemia. Neurol Res 2005; 27: 169-174.
    14. Melani A, Pantoni L, Bordoni F, Gianfriddo M, Bianchi L, Vannucchi MG et al. The selective A2A receptor antagonist SCH 58261 reduces striatal transmitter outflow, turning behavior and ischemic brain damage induced by permanent focal ischemia in the rat. Brain Res 2003; 959: 243-250.
    15. Nishizaki T, Nagai K, Nomura T, Tada H, Kanno T, Tozaki H et al. A new neuromodulatory pathway with a glial contribution mediated via A2A adenosine receptors. Glia 2002; 39: 133-147.
    16. Hasko G, Pacher P, Deitch EA, Vizi ES. Shaping of monocyte and macrophage function by adenosine receptors. Pharmacol Ther 2007; 113: 264-275.
    17. Munoz DG. Leukoaraiosis and ischemia: beyond the myth. Stroke 2006; 37: 1348-1349.
    18. Shibata M, Ohtani R, Ihara M, Tomimoto H. White matter lesions and glial activation in a novel mouse model of chronic cerebral hypoperfusion. Stroke 2004; 35: 2598-2603.
    19. Wakita H, Tomimoto H, Akiguchi I, Kimura J. Glial activation and white matter changes in the rat brain induced by chronic cerebral hypoperfusion: an immunohistochemical study. Acta Neuropathol 1994; 87: 484-492.
    20. de la Torre JC. Vascular basis of Alzheimer's pathogenesis. Ann N Y Acad Sci 2002; 977: 196-215.
    21. Kurumatani T, Kudo T, Ikura Y, Takeda M. White matter changes in the gerbil brain under chronic cerebral hypoperfusion. Stroke 1998; 29: 1058-1062.
    22. Cao D, Li M, Xue R, Zheng W, Liu Z, Wang X. Chronic administration of ethyl docosahexaenoate decreases mortality and cerebral edema in ischemic gerbils. Life Sci2005; 78: 74-81.
    23. Farkas E, Luiten PG, Bari F. Permanent, bilateral common carotid artery occlusion in the rat: a model for chronic cerebral hypoperfusion-related neurodegenerative diseases. Brain Res Rev 2007; 54: 162-180.
    24. Pittman HW, Gain DD. Bilateral occlusion of the carotid artery. Ariz Med 1963; 20: 32-37.
    25. Shang Y, Cheng J, Qi J, Miao H. Scutellaria flavonoid reduced memory dysfunction and neuronal injury caused by permanent global ischemia in rats. Pharmacol Biochem Behav 2005; 82: 67-73.
    26. de Bortoli VC, Zangrossi Junior H, de Aguiar Correa FM, Almeida Sde S, de Oliveira AM. Inhibitory avoidance memory retention in the elevated T-maze is impaired after perivascular manipulation of the common carotid arteries. Life Sci 2005; 76: 2103-2114.
    27. Cho KO, La HO, Cho YJ, Sung KW, Kim SY. Minocycline attenuates white matter damage in a rat model of chronic cerebral hypoperfusion. J Neurosci Res 2006; 83: 285-291.
    28. Watanabe T, Zhang N, Liu M, Tanaka R, Mizuno Y, Urabe T. Cilostazol protects against brain white matter damage and cognitive impairment in a rat model of chronic cerebral hypoperfusion. Stroke 2006; 37: 1539-1545.
    29. Tomimoto H, Ihara M, Wakita H, Ohtani R, Lin JX, Akiguchi I et al. Chronic cerebral hypoperfusion induces white matter lesions and loss of oligodendroglia with DNA fragmentation in the rat. Acta Neuropathol 2003; 106: 527-534.
    30. Stevens WD, Fortin T, Pappas BA. Retinal and optic nerve degeneration after chronic carotid ligation: time course and role of light exposure. Stroke 2002; 33: 1107-1112.
    31. Farkas E, Donka G, de Vos RA, Mihaly A, Bari F, Luiten PG. Experimental cerebral hypoperfusion induces white matter injury and microglial activation in the rat brain. Acta Neuropathol 2004; 108: 57-64.
    32. Wakita H, Tomimoto H, Akiguchi I, Matsuo A, Lin JX, Ihara M et al. Axonal damage and demyelination in the white matter after chronic cerebral hypoperfusion in the rat.Brain Res 2002; 924: 63-70.
    33. Lenzser G, Kis B, Bari F, Busija DW. Diazoxide preconditioning attenuates global cerebral ischemia-induced blood-brain barrier permeability. Brain Res 2005; 1051: 72-80.
    34. Farkas E, Luiten PG. Cerebral microvascular pathology in aging and Alzheimer's disease. Prog Neurobiol 2001; 64: 575-611.
    35. Ribeiro JA, Sebastiao AM, de Mendonca A. Adenosine receptors in the nervous system: pathophysiological implications. Prog Neurobiol 2002; 68: 377-392.
    36. Cassada DC, Tribble CG, Long SM, Laubach VE, Kaza AK, Linden J et al. Adenosine A2A analogue ATL-146e reduces systemic tumor necrosing factor-alpha and spinal cord capillary platelet-endothelial cell adhesion molecule-1 expression after spinal cord ischemia. J Vasc Surg 2002; 35: 994-998.
    37. Ohta A, Sitkovsky M. Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature 2001; 414: 916-920.
    38. Roman GC, Erkinjuntti T, Wallin A, Pantoni L, Chui HC. Subcortical ischaemic vascular dementia. Lancet Neurol 2002; 1: 426-436.
    39. Pantoni L, Garcia JH. Pathogenesis of leukoaraiosis: a review. Stroke 1997; 28: 652-659.
    40. Cummings JL. Frontal-subcortical circuits and human behavior. Arch Neurol 1993; 50: 873-880.
    41. Mega MS, Cummings JL. Frontal-subcortical circuits and neuropsychiatric disorders. J Neuropsychiatry Clin Neurosci 1994; 6: 358-370.
    42. Vicente E, Degerone D, Bohn L, Scornavaca F, Pimentel A, Leite MC et al. Astroglial and cognitive effects of chronic cerebral hypoperfusion in the rat. Brain Res 2009; 1251: 204-212.
    43. Shibata M, Yamasaki N, Miyakawa T, Kalaria RN, Fujita Y, Ohtani R et al. Selective impairment of working memory in a mouse model of chronic cerebral hypoperfusion. Stroke 2007; 38: 2826-2832.
    44. Higashi H, Meno JR, Marwaha AS, Winn HR. Hippocampal injury and neurobehavioral deficits following hyperglycemic cerebral ischemia: effect of theophylline and ZM 241385. J Neurosurg 2002; 96: 117-126.
    45. Hettinger BD, Lee A, Linden J, Rosin DL. Ultrastructural localization of adenosine A2A receptors suggests multiple cellular sites for modulation of GABAergic neurons in rat striatum. J Comp Neurol 2001; 431: 331-346.
    46. Rosin DL, Hettinger BD, Lee A, Linden J. Anatomy of adenosine A2A receptors in brain: morphological substrates for integration of striatal function. Neurology 2003; 61: S12-18.
    47. Li XX, Nomura T, Aihara H, Nishizaki T. Adenosine enhances glial glutamate efflux via A2A adenosine receptors. Life Sci 2001; 68: 1343-1350.
    48. Phillis JW. Adenosine and adenine nucleotides as regulators of cerebral blood flow: roles of acidosis, cell swelling, and KATP channels. Crit Rev Neurobiol 2004; 16: 237-270.
    49. Von Lubitz DK, Lin RC, Jacobson KA. Cerebral ischemia in gerbils: effects of acute and chronic treatment with adenosine A2A receptor agonist and antagonist. Eur J Pharmacol 1995; 287: 295-302.
    50. Dirnagl U, Iadecola C, Moskowitz MA. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 1999; 22: 391-397.
    51. Liu HX, Zhang JJ, Zheng P, Zhang Y. Altered expression of MAP-2, GAP-43, and synaptophysin in the hippocampus of rats with chronic cerebral hypoperfusion correlates with cognitive impairment. Brain Res Mol Brain Res 2005; 139: 169-177.
    52. Wang X, Zhu S, Drozda M, Zhang W, Stavrovskaya IG, Cattaneo E et al. Minocycline inhibits caspase-independent and dependent mitochondrial cell death pathways in models of Huntington's disease. Proc Natl Acad Sci U S A 2003; 100: 10483-10487.
    53. Wu DC, Jackson-Lewis V, Vila M, Tieu K, Teismann P, Vadseth C et al. Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-t etrahydropyridine mouse model of Parkinson disease. J Neurosci 2002; 22: 1763-1771.
    54. Wang X, Barone FC, Aiyar NV, Feuerstein GZ. Interleukin-1 receptor and receptorantagonist gene expression after focal stroke in rats. Stroke 1997; 28: 155-161; discussion 161-152.
    55. Uno H, Matsuyama T, Akita H, Nishimura H, Sugita M. Induction of tumor necrosis factor-alpha in the mouse hippocampus following transient forebrain ischemia. J Cereb Blood Flow Metab 1997; 17: 491-499.
    56. Seilhean D, Kobayashi K, He Y, Uchihara T, Rosenblum O, Katlama C et al. Tumor necrosis factor-alpha, microglia and astrocytes in AIDS dementia complex. Acta Neuropathol 1997; 93: 508-517.
    57. Bruce AJ, Boling W, Kindy MS, Peschon J, Kraemer PJ, Carpenter MK et al. Altered neuronal and microglial responses to excitotoxic and ischemic brain injury in mice lacking TNF receptors. Nat Med 1996; 2: 788-794.
    58. Deckert-Schluter M, Bluethmann H, Rang A, Hof H, Schluter D. Crucial role of TNF receptor type 1 (p55), but not of TNF receptor type 2 (p75), in murine toxoplasmosis. J Immunol 1998; 160: 3427-3436.
    59. Lucas R, Juillard P, Decoster E, Redard M, Burger D, Donati Y et al. Crucial role of tumor necrosis factor (TNF) receptor 2 and membrane-bound TNF in experimental cerebral malaria. Eur J Immunol 1997; 27: 1719-1725.
    60. Takahashi JL, Giuliani F, Power C, Imai Y, Yong VW. Interleukin-1beta promotes oligodendrocyte death through glutamate excitotoxicity. Ann Neurol 2003; 53: 588-595.
    61. Sherwin C, Fern R. Acute lipopolysaccharide-mediated injury in neonatal white matter glia: role of TNF-alpha, IL-1beta, and calcium. J Immunol 2005; 175: 155-161.
    62. Hasko G, Kuhel DG, Chen JF, Schwarzschild MA, Deitch EA, Mabley JG et al. Adenosine inhibits IL-12 and TNF-[alpha] production via adenosine A2A receptor-dependent and independent mechanisms. FASEB J 2000; 14: 2065-2074.
    63. Cassada DC, Tribble CG, Long SM, Kaza AK, Linden J, Rieger JM et al. Adenosine A2A agonist reduces paralysis after spinal cord ischemia: correlation with A2A receptor expression on motor neurons. Ann Thorac Surg 2002; 74: 846-849; discussion 849-850.
    64. Klein MA, Moller JC, Jones LL, Bluethmann H, Kreutzberg GW, Raivich G. Impaired neuroglial activation in interleukin-6 deficient mice. Glia 1997; 19: 227-233.
    65. Russell JM, Stephenson GS, Yellowley CE, Benton HP. Adenosine inhibition of lipopolysaccharide-induced interleukin-6 secretion by the osteoblastic cell line MG-63. Calcif Tissue Int 2007; 81: 316-326.
    66. Odashima M, Otaka M, Jin M, Horikawa Y, Matsuhashi T, Ohba R et al. A selective adenosine A2A receptor agonist, ATL-146e, prevents concanavalin A-induced acute liver injury in mice. Biochem Biophys Res Commun 2006; 347: 949-954.
    67. Day YJ, Li Y, Rieger JM, Ramos SI, Okusa MD, Linden J. A2A adenosine receptors on bone marrow-derived cells protect liver from ischemia-reperfusion injury. J Immunol 2005; 174: 5040-5046.
    68. Yang Z, Day YJ, Toufektsian MC, Xu Y, Ramos SI, Marshall MA et al. Myocardial infarct-sparing effect of adenosine A2A receptor activation is due to its action on CD4+ T lymphocytes. Circulation 2006; 114: 2056-2064.
    69. Peirce SM, Skalak TC, Rieger JM, Macdonald TL, Linden J. Selective A2A adenosine receptor activation reduces skin pressure ulcer formation and inflammation. Am J Physiol Heart Circ Physiol 2001; 281: H67-74.
    70. Reece TB, Ellman PI, Maxey TS, Crosby IK, Warren PS, Chong TW et al. Adenosine A2A receptor activation reduces inflammation and preserves pulmonary function in an in vivo model of lung transplantation. J Thorac Cardiovasc Surg 2005; 129: 1137-1143.
    71. Yu L, Huang Z, Mariani J, Wang Y, Moskowitz M, Chen JF. Selective inactivation or reconstitution of adenosine A2A receptors in bone marrow cells reveals their significant contribution to the development of ischemic brain injury. Nat Med 2004; 10: 1081-1087.
    72. Marcoli M, Raiteri L, Bonfanti A, Monopoli A, Ongini E, Raiteri M et al. Sensitivity to selective adenosine A1 and A2A receptor antagonists of the release of glutamate induced by ischemia in rat cerebrocortical slices. Neuropharmacology 2003; 45: 201-210.
    73. Popoli P, Pintor A, Domenici MR, Frank C, Tebano MT, Pezzola A et al. Blockade of striatal adenosine A2A receptor reduces, through a presynaptic mechanism, quinolinic acid-induced excitotoxicity: possible relevance to neuroprotective interventions in neurodegenerative diseases of the striatum. J Neurosci 2002; 22: 1967-1975.
    74. Lisle TC, Gazoni LM, Fernandez LG, Sharma AK, Bellizzi AM, Schifflett GD et al. Inflammatory lung injury after cardiopulmonary bypass is attenuated by adenosine A2A receptor activation. J Thorac Cardiovasc Surg 2008; 136: 1280-1287; discussion 1287-1288.
    75. Day YJ, Marshall MA, Huang L, McDuffie MJ, Okusa MD, Linden J. Protection from ischemic liver injury by activation of A2A adenosine receptors during reperfusion: inhibition of chemokine induction. Am J Physiol Gastrointest Liver Physiol 2004; 286: G285-293.
    76. Odashima M, Otaka M, Jin M, Komatsu K, Wada I, Horikawa Y et al. Attenuation of gastric mucosal inflammation induced by aspirin through activation of A2A adenosine receptor in rats. World J Gastroenterol 2006; 12: 568-573.
    77. Odashima M, Otaka M, Jin M, Komatsu K, Wada I, Matsuhashi T et al. Selective adenosine A2A receptor agonist, ATL-146e, attenuates stress-induced gastric lesions in rats. J Gastroenterol Hepatol 2005; 20: 275-280.
    78. Sipka S, Kovacs I, Szanto S, Szegedi G, Brugos L, Bruckner G et al. Adenosine inhibits the release of interleukin-1beta in activated human peripheral mononuclear cells. Cytokine 2005; 31: 258-263.
    79. Tofovic SP, Zacharia L, Carcillo JA, Jackson EK. Inhibition of adenosine deaminase attenuates endotoxin-induced release of cytokines in vivo in rats. Shock 2001; 16: 196-202.
    80. Masumura M, Hata R, Nagai Y, Sawada T. Oligodendroglial cell death with DNA fragmentation in the white matter under chronic cerebral hypoperfusion: comparison between normotensive and spontaneously hypertensive rats. Neurosci Res 2001; 39: 401-412.
    81. Institoris A, Farkas E, Berczi S, Sule Z, Bari F. Effects of cyclooxygenase (COX) inhibition on memory impairment and hippocampal damage in the early period of cerebral hypoperfusion in rats. Eur J Pharmacol 2007; 574: 29-38.
    82. Lee JH, Park SY, Shin YW, Hong KW, Kim CD, Sung SM et al. Neuroprotection by cilostazol, a phosphodiesterase type 3 inhibitor, against apoptotic white matter changesin rat after chronic cerebral hypoperfusion. Brain Res 2006; 1082: 182-191.
    83. Wakita H, Tomimoto H, Akiguchi I, Lin JX, Ihara M, Ohtani R et al. Ibudilast, a phosphodiesterase inhibitor, protects against white matter damage under chronic cerebral hypoperfusion in the rat. Brain Res 2003; 992: 53-59.
    84. Huang QY, Wei C, Yu L, Coelho JE, Shen HY, Kalda A et al. Adenosine A2A receptors in bone marrow-derived cells but not in forebrain neurons are important contributors to 3-nitropropionic acid-induced striatal damage as revealed by cell-type-selective inactivation. J Neurosci 2006; 26: 11371-11378.
    1. A CR. Adenosine as a neuromodulator and as a homeostatic regulator in the nervous system: different roles, different sources and different receptors. Neurochem Int 2001; 38: 107-125.
    2. Zimmermann H BN, Nocken F. Extracellular hydrolysis of ATP and formation of adenosine in the nervous system. In: Adenosine and Adenine Nucleotides: from Molecular Biology to Integrative Physiology Eds Belardinelli L, Pelleg A, Kluwer Acad Publ, Boston 1995: 179-187.
    3. Patel BT TN. Localization of S-adenosylhomocysteine hydrolase and adenosine deaminase immunoreactivities in rat brain. Brain Res 1986; 370: 250-264.
    4. Thorn JA JS. Adenosine transporters. Gen Pharmacol 1996; 27: 613-620.
    5. Koos BJ KL, Murray TF. Source of extracellular brain adenosine during hypoxia in fetal sheep. Brain Res 1997; 778: 439-442.
    6. Melani A PL, Corsi C, Bianchi L, Monopoli A, Bertorelli R, Pepeu G, Pedata F. Striatal outflow of adenosine, excitatory amino acids, gamma-aminobutyric acid, and taurine in awake freely moving rats after middle cerebral artery occlusion: correlations with neurological deficit and histopathological damage. Stroke 1999; 30: 2448-2454.
    7. Fredholm BB IA, Jacobson KA, Linden J, Stiles GL. Adenosine receptors. In: IUPHAR Compendium of Receptor Characterization and Classification IUPHAR Media, London 1998: 48-57.
    8. Hill-Eubanks D BE, Spalding TA, Br?uner-Osborne H, Brann MR. Structure of a G-protein-coupling domain of a muscarinic receptor predicted by random saturation mutagenesis. J Biol Chem 1996; 271: 3058-3065.
    9. Impagnatiello F BE, Ongini E, Monopoli A. Adenosine receptors in neurological disorders. Emerg Ther Targets 2000; 4: 635-664.
    10. Rebola N PP, Oliveira CR, Malva JO, Cunha RA. Subcellular localization of adenosine A(1) receptors in nerve terminals and synapses of the rat hippocampus. Brain Res 2003; 987: 49-58.
    11. Svenningsson P HH, Sedvall G, Fredholm BB. Distribution of adenosine receptors in the postmortem human brain: an extended autoradiographic study. Synapse 1997; 27: 322-335.
    12. Augood SJ EP. Adenosine A2A receptor mRNA is expressed by enkephalin cells but not by somatostatin cells in rat striatum: a co-expression study. Brain Res Mol Brain Res 1994; 22: 204-210.
    13. Schiffmann SN JO, Vanderhaeghen JJ. Striatal restricted adenosine A2 receptor (RDC8) is expressed by enkephalin but not by substance P neurons: an in situ hybridization histochemistry study. J Neurochem 1991; 57: 1062-1067.
    14. Richardson PJ DA, Lee K, Bell MI, Cox PJ, Williams R, Pinnock RD, Freeman TC. Correlating physiology with gene expression in striatal cholinergic neurones. J Neurochem 2000; 74: 839-846.
    15. Hettinger BD LA, Linden J, Rosin DL. Ultrastructural localization of adenosine A2A receptors suggests multiple cellular sites for modulation of GABAergic neurons in rat striatum. J Comp Neurol 2000; 431: 331-346.
    16. Linden J TH, Robeva AS, Tucker AL, Stehle JH, Rivkees SA, Fink JS, Reppert SM. Molecular cloning and functional expression of a sheep A3 adenosine receptor with widespread tissue distribution. Mol Pharmacol 1993; 44: 524-532.
    17. Wittendorp MC BH, Biber K. Adenosine A3 receptor-induced CCL2 synthesis in cultured mouse astrocytes. Glia 2003; 46: 410-418.
    18. Gubitz AK, Widdowson L, Kurokawa M, Kirkpatrick KA, Richardson PJ. Dual signalling by the adenosine A2a receptor involves activation of both N- and P-type calcium channels by different G proteins and protein kinases in the same striatal nerve terminals. J Neurochem 1996; 67: 374-381.
    19. Jones PA SR, Stone TW. Protection against hippocampal kainate excitotoxicity by intracerebral administration of an adenosine A2A receptor antagonist. Brain Res 1998; 800: 328-335.
    20. Jones PA SR, Stone TW. Protection against kainate-induced excitotoxicity by adenosine A2A receptor agonists and antagonists. Neuroscience 1998; 85: 229-237.
    21. Gao Y PJ. CGS 15943, an adenosine A2 receptor antagonist, reduces cerebral ischemic injury in the Mongolian gerbil. Life Sci 1994; 55: PL61-65.
    22. JW P. The effects of selective A1 and A2a adenosine receptor antagonists on cerebral ischemic injury in the gerbil. Brain Res 1995; 705: 79-84.
    23. Monopoli A LG, Forlani A, Mattavelli A, Ongini E. Blockade of adenosine A2A receptors by SCH 58261 results in neuroprotective effects in cerebral ischaemia in rats. Neuroreport 1998; 9: 3955-3959.
    24. Chen JF HZ, Ma J, Zhu J, Moratalla R, Standaert D, Moskowitz MA, Fink JS, Schwarzschild MA. A2A adenosine receptor deficiency attenuates brain injury induced by transient focal ischemia in mice. J Neurosci 1999; 19: 9192-9200.
    25. Dirnagl U IC, Moskowitz MA. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 1999; 22: 391-397.
    26. Corsi C MA, Bianchi L, Pedata F. Striatal A2A adenosine receptor antagonism differentially modifies striatal glutamate outflow in vivo in young and aged rats. Neuroreport 2000; 11: 2591-2595.
    27. Melani A PL, Bordoni F, Gianfriddo M, Bianchi L, Vannucchi MG, Bertorelli R, Monopoli A, Pedata F. The selective A2A receptor antagonist SCH 58261 reduces striatal transmitter outflow, turning behavior and ischemic brain damage induced by permanent focal ischemia in the rat. Brain Res 2003; 959: 243-250.
    28. Corsi C PA, Gianfriddo M, Melani A, Morelli M, Pedata F. Adenosine A2A receptor antagonism increases striatal glutamate outflow in dopamine-denervated rats. Eur J Pharmacol 2003; 464: 33-38.
    29. Saura J AE, Ejarque A, CasadóV, Tusell JM, Moratalla R, Chen JF, Schwarzschild MA, Lluis C, Franco R, Serratosa J. Adenosine A2A receptor stimulation potentiates nitric oxide release by activated microglia. J Neurochem 2005; 95: 919-929.
    30. Nishizaki T NK, Nomura T, Tada H, Kanno T, Tozaki H, Li XX, Kondoh T, Kodama N, Takahashi E, Sakai N, Tanaka K, Saito N. A new neuromodulatory pathway with a glial contribution mediated via A(2a) adenosine receptors. Glia 2002; 39: 133-147.
    31. Melani A GM, Vannucchi MG, Cipriani S, Baraldi PG, Giovannini MG, Pedata F. Theselective A2A receptor antagonist SCH 58261 protects from neurological deficit, brain damage and activation of p38 MAPK in rat focal cerebral ischemia. Brain Res 2006; 1073-1074: 470-480.
    32. Fiebich BL BK, Lieb K, van Calker D, Berger M, Bauer J, Gebicke-Haerter PJ. Cyclooxygenase-2 expression in rat microglia is induced by adenosine A2A-receptors. Glia 1996; 18: 152-160.
    33. Li Y OR, Day YJ, Rieger JM, Liu L, Kern JA, Linden J. Mouse spinal cord compression injury is reduced by either activation of the adenosine A2A receptor on bone marrow-derived cells or deletion of the A2A receptor on non-bone marrow-derived cells. Neuroscience 2006; 141: 2029-2039.
    34. Yu L HZ, Mariani J, Wang Y, Moskowitz M, Chen JF. Selective inactivation or reconstitution of adenosine A2A receptors in bone marrow cells reveals their significant contribution to the development of ischemic brain injury. Nat Med 2004; 10: 1081-1087.
    35. Pedata F CC, Melani A, Bordoni F, Latini S. Adenosine extracellular brain concentrations and role of A2A receptors in ischemia. Ann N Y Acad Sci 2001; 939: 74-84.
    36. Ross GW AR, Petrovitch H, Morens DM, Grandinetti A, Tung KH, Tanner CM, Masaki KH, Blanchette PL, Curb JD, Popper JS, White LR. Association of coffee and caffeine intake with the risk of Parkinson disease. JAMA 2000; 283: 2674-2679.
    37. Benedetti MD BJ, Maraganore DM, McDonnell SK, Peterson BJ, Ahlskog JE, Schaid DJ, Rocca WA. Smoking, alcohol, and coffee consumption preceding Parkinson's disease: a case-control study. Neurology 2000; 55: 1350-1358.
    38. Ascherio A ZS, Hernán MA, Kawachi I, Colditz GA, Speizer FE, Willett WC. Prospective study of caffeine consumption and risk of Parkinson's disease in men and women. Ann Neurol 2001; 50: 56-63.
    39. Chen JF XK, Petzer JP, Staal R, Xu YH, Beilstein M, Sonsalla PK, Castagnoli K, Castagnoli N Jr, Schwarzschild MA. Neuroprotection by caffeine and A2A adenosine receptor inactivation in a model of Parkinson's disease. J Neurosci 2001; 21: RC143.
    40. Oztas E XK, Kalda A, Irrizary M, Schwarzschild M A, Chen JF. Caffeine attenuates MPTP-induced loss of dopaminergic neurons in substantia nigra in mice. Paper presented at the Society for Neuroscience Annual Meeting, Orlando, Florida 2001.
    41. Gevaerd MS TR, Silveira R, Da Cunha C. Caffeine reverses the memory disruption induced by intra-nigral MPTP-injection in rats. Brain Res Bull 2001; 55: 101-106.
    42. El Yacoubi M LC, Parmentier M, Costentin J, Vaugeois JM. Adenosine A2A receptor knockout mice are partially protected against drug-induced catalepsy. Neuroreport 2001; 12: 983-986.
    43. Alfinito PD WS, Manzino L, Rijhsinghani S, Zeevalk GD, Sonsalla PK. Adenosinergic protection of dopaminergic and GABAergic neurons against mitochondrial inhibition through receptors located in the substantia nigra and striatum, respectively. J Neurosci 2003; 23: 10982-10987.
    44. Chen JF SR, Xu K, Beilstein M, Sonsalla P, Schwarzschild MA. Novel neuroprotection by A2a adenosine receptor inactivation in the MPTP model of Parkinson’s disease. Soc Neurosci Abs 2000; 26: 1921(1478.1921).
    45. Ikeda K KM, Aoyama S, Kuwana Y. Neuroprotection by adenosine A2A receptor blockade in experimental models of Parkinson's disease. J Neurochem 2002; 80: 262-270.
    46. Xu K XY, Chen JF, Schwarzschild MA. Caffeine's neuroprotection against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity shows no tolerance to chronic caffeine administration in mice. Neurosci Lett 2002; 322: 13-16.
    47. Grondin R BP, Hadj Tahar A, Grégoire L, Mori A, Kase H. Antiparkinsonian effect of a new selective adenosine A2A receptor antagonist in MPTP-treated monkeys. Neurology 1999; 52: 1673-1677.
    48. Bara-Jimenez W SA, Dimitrova T, Favit A, Bibbiani F, Gillespie M, Morris MJ, Mouradian MM, Chase TN. Adenosine A2A receptor antagonist treatment of Parkinson's disease. Neurology 2003; 61: 293-296.
    49. Pinna A FS, Morelli M. Motor stimulant effects of the adenosine A2A receptor antagonist SCH 58261 do not develop tolerance after repeated treatments in6-hydroxydopamine-lesioned rats. Synapse 2001; 39: 233-238.
    50. Lorist MM TM. Caffeine, fatigue, and cognition. Brain Cogn 2003; 53: 82-94.
    51. Angelucci ME VM, Cesário C, Zadusky CR, Rosalen PL, Da Cunha C. The effect of caffeine in animal models of learning and memory. Eur J Pharmacol 1999; 373: 135-140.
    52. Corodimas KP PJ, Stieg JM. Acute exposure to caffeine selectively disrupts context conditioning in rats. Psychopharmacology (Berl) 2000; 152: 376-382.
    53. Jin ZL WJ, Wang WP, He WT. The role of theophylline in the improvement of scop-induced learning and memory impairment. Sheng Li Xue Bao 2000; 52: 390-394.
    54. Dall'Igna OP PL, Souza DO, Cunha RA, Lara DR. Neuroprotection by caffeine and adenosine A2A receptor blockade of beta-amyloid neurotoxicity. Br J Pharmacol 2003; 138: 1207-1209.
    55. Dall'Igna OP FP, Gomes MW, Souza DO, Cunha RA, Lara DR. Caffeine and adenosine A2A receptor antagonists prevent beta-amyloid (25-35)-induced cognitive deficits in mice. Exp Neurol 2007; 203: 241-245.
    56. Almeida T RR, de Mendon?a A, Ribeiro JA, Cunha RA. Purinergic P2 receptors trigger adenosine release leading to adenosine A2A receptor activation and facilitation of long-term potentiation in rat hippocampal slices. Neuroscience 2003; 122: 111-121.
    57. Popoli P BP, Rimondini R, Reggio R, Pézzola A, Ricciarello G, Fuxe K, FerréS. Age-related alteration of the adenosine/dopamine balance in the rat striatum. Brain Res 1998; 795: 297-300.
    58. Rebola N RR, Lopes LV, Richardson PJ, Oliveira CR, Cunha RA. Adenosine A1 and A2A receptors are co-expressed in pyramidal neurons and co-localized in glutamatergic nerve terminals of the rat hippocampus. Neuroscience 2005; 133: 79-83.
    59. Angelucci ME CC, Hiroi RH, Rosalen PL, Da Cunha C. Effects of caffeine on learning and memory in rats tested in the Morris water maze. Braz J Med Biol Res 2002; 35: 1201-1208.
    60. Fredholm BB BK, Holmén J, Nehlig A, Zvartau EE. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev1999; 51: 83-133.
    61. Green PJ SJ. The effects of caffeine on ambulatory blood pressure, heart rate, and mood in coffee drinkers. J Behav Med 1996; 19: 111-128.
    62. Florio C PA, Papaioannou A, Vertua R. Adenosine A1 receptors modulate anxiety in CD1 mice. Psychopharmacology (Berl) 1998; 136: 311-319.
    63. El Yacoubi M LC, Parmentier M, Costentin J, Vaugeois JM. The anxiogenic-like effect of caffeine in two experimental procedures measuring anxiety in the mouse is not shared by selective A(2A) adenosine receptor antagonists. Psychopharmacology (Berl) 2000; 148: 153-163.
    64. Deckert J, Nothen MM, Franke P, Delmo C, Fritze J, Knapp M et al. Systematic mutation screening and association study of the A1 and A2a adenosine receptor genes in panic disorder suggest a contribution of the A2a gene to the development of disease. Mol Psychiatry 1998; 3: 81-85.
    65. Minor TR, Winslow JL, Chang WC. Stress and adenosine: II. Adenosine analogs mimic the effect of inescapable shock on shuttle-escape performance in rats. Behav Neurosci 1994; 108: 265-276.
    66. Hunter AM, Balleine BW, Minor TR. Helplessness and escape performance: glutamate-adenosine interactions in the frontal cortex. Behav Neurosci 2003; 117: 123-135.
    67. Barcellos CK, Schetinger MR, Dias RD, Sarkis JJ. In vitro effect of central nervous system active drugs on the ATPase-ADPase activity and acetylcholinesterase activity from cerebral cortex of adult rats. Gen Pharmacol 1998; 31: 563-567.
    68. Lara DR, Dall'Igna OP, Ghisolfi ES, Brunstein MG. Involvement of adenosine in the neurobiology of schizophrenia and its therapeutic implications. Prog Neuropsychopharmacol Biol Psychiatry 2006; 30: 617-629.
    69. De Freitas B, Schwartz G. Effects of caffeine in chronic psychiatric patients. Am J Psychiatry 1979; 136: 1337-1338.
    70. Ferre S. Adenosine-dopamine interactions in the ventral striatum. Implications for the treatment of schizophrenia. Psychopharmacology (Berl) 1997; 133: 107-120.
    71. Sills TL, Azampanah A, Fletcher PJ. The adenosine A2A agonist CGS 21680 reverses the reduction in prepulse inhibition of the acoustic startle response induced by phencyclidine, but not by apomorphine and amphetamine. Psychopharmacology (Berl) 2001; 156: 187-193.
    72. Sollevi A. Adenosine for pain control. Acta Anaesthesiol Scand Suppl 1997; 110: 135-136.
    73. Poon A, Sawynok J. Antinociception by adenosine analogs and inhibitors of adenosine metabolism in an inflammatory thermal hyperalgesia model in the rat. Pain 1998; 74: 235-245.
    74. Virus RM, Djuricic-Nedelson M, Radulovacki M, Green RD. The effects of adenosine and 2'-deoxycoformycin on sleep and wakefulness in rats. Neuropharmacology 1983; 22: 1401-1404.
    75. Satoh S, Matsumura H, Koike N, Tokunaga Y, Maeda T, Hayaishi O. Region-dependent difference in the sleep-promoting potency of an adenosine A2A receptor agonist. Eur J Neurosci 1999; 11: 1587-1597.
    1. Garde E, Mortensen EL, Krabbe K, Rostrup E, Larsson HB. Relation between age-related decline in intelligence and cerebral white-matter hyperintensities in healthy octogenarians: a longitudinal study. Lancet. 2000; 356: 628-634.
    2. Pantoni L, Garcia JH. Pathogenesis of leukoaraiosis: a review. Stroke. 1997; 28: 652-659.
    3. Deng Y, Lu J, Sivakumar V, Ling EA, Kaur C. Amoeboid microglia in the periventricular white matter induce oligodendrocyte damage through expression of proinflammatory cytokines via MAP kinase signaling pathway in hypoxic neonatal rats. Brain Pathol. 2008; 18: 387-400.
    4. Wakita H, Tomimoto H, Akiguchi I, Lin JX, Miyamoto K, Oka N. A cyclooxygenase-2 inhibitor attenuates white matter damage in chronic cerebral ischemia. Neuroreport. 1999;10: 1461-1465.
    5. Chen JF, Huang Z, Ma J, Zhu JM, Moratalla R, Standaert D, et al. A2A adenosine receptor deficiency attenuates brain injury induced by transient focal ischemia in mice. Journal of Neuroscience. 1999; 19: 9192-9200.
    6. Ikeda K, Kurokawa M, Aoyama S, Kuwana Y. Neuroprotection by adenosine A2A receptor blockade in experimental models of Parkinson's disease. J Neurochem. 2002; 80:262-270.
    7. Cunha GM, Canas PM, Oliveira CR, Cunha RA. Increased density and synapto-protective effect of adenosine A2A receptors upon sub-chronic restraint stress. Neuroscience. 2006; 141: 1775-1881.
    8. Pedata F, Gianfriddo M, Turchi D, Melani A. The protective effect of adenosine A2A receptor antagonism in cerebral ischemia. Neurol Res. 2005; 27:169-174.
    9. Mayne M, Fotheringham J, Yan HJ, Power C, Del Bigio MR, Peeling J, et al. Adenosine A2A receptor activation reduces proinflammatory events and decreases cell death following intracerebral hemorrhage. Ann Neurol. 2001; 49:727-735.
    10. Day YJ, Huang L, McDuffie MJ, Rosin DL, Ye H, Chen JF, et al. Renal protection from ischemiamediated by A2A adenosine receptors on bone marrow-derived cells. J Clin Invest. 2003; 112:883-891.
    11. Yu L, Huang Z, Mariani J, WangY, Moskowitz M, Chen JF. Selective inactivation or reconstitution of adenosine A2A receptors in bone marrow cells reveals their significant contribution to the development of ischemic brain injury. Nat Med. 2004; 10:1081-1087.
    12. Shibata M, Ohtani R, Ihara M, Tomimoto H. White matter lesions and glial activation in a novel mouse model of chronic cerebral hypoperfusion. Stroke. 2004; 35:2598-2403.
    13. Hof PR, Young WG, Bloom FE, Belichenko PV, Celio MR. Comparative cytoarchitectonic atlas of the C57BL/6 and 129/SV mouse brain. Elsevier Science: Amsterdam, 2000.
    14. Wakita H, Tomimoto H, Akiguchi I, Kimura J. Glial activation and white matter changes in the rat brain induced by chronic cerebral hypoperfusion: an immunohistochemical study. Acta Neuropathol. 1994; 87:484-492.
    15. Cassada DC, Tribble CG, Long SM, Kaza AK, Linden J, Rieger JM, et al. Adenosine A2A agonist reduces paralysis after spinal cord ischemia: correlation with A2A receptor expression on motor neurons. Ann Thorac Surg. 2002; 74:846-849.
    16. Melani A, Pantoni L, Bordoni F, Gianfriddo M, Bianchi L, Vannucchi MG, et al. The selective A2A receptor antagonist SCH 58261 reduces striatal transmitter outflow, turning behavior and ischemic brain damage induced by permanent focal ischemia in the rat. Brain Res. 2003; 959:243-250.
    17. Huang QY, Wei C, Yu L, Coelho JE, Shen HY, Kalda A, et al. Adenosine A2A receptors in bone marrow-derived cells but not in forebrain neurons are important contributors to 3-nitropropionic acid-induced striatal damage as revealed by cell-type-selective inactivation. J Neurosci. 2006; 26:11371-11378.
    18. Korematsu K, Goto S, Nagahiro S, Ushio Y. Microglial response to transient focal cerebral ischemia: an immunocytochemical study on the rat cerebral cortex using anti-phosphotyrosine antibody. J Cereb Blood Flow Metab. 1994; 14:825-830.
    19. Ivacko JA, Sun R, Silverstein FS. Hypoxic-ischemic brain injury induces an acute microglial reaction in perinatal rats. Pediatr Res. 1996; 39:39-47.
    20. Abrahám H, Lázár G. Early microglial reaction following mild forebrain ischemia induced by common carotid artery occlusion in rats. Brain Res. 2000; 862:63-73.
    21. Dheen ST, Kaur C, Ling EA. Microglial activation and its implications in the brain diseases. Curr Med Chem. 2007; 14:1189-1197
    22. Kaur C, Wu CH, Wen CY, Ling EA. The effects of subcutaneous injections of glucocorticoids on amoeboid microglia in postnatal rats. Arch Histol Cytol. 1994; 57:449-459.
    23. Choi SH, Lee DY, Chung ES, Hong YB, Kim SU, Jin BK. Inhibition of thrombin-induced microglia activation and NADPH oxidase by minocycline protects dopaminergic neurons in the substantia nigra in vivo. J Neurochem. 2005; 95:1755-1765.
    24. Wu DC, Jackson-Lewis V, Vila M, Tieu K, Teismann P, Vadseth C, Choi DK, Ischiropoulos H, Przedborski S. Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J Neurosci. 2002; 22:1763-1771.
    25. Saura J, Angulo E, Ejarque A, Casado V, Tusell JM, Moratalla R, et al. Adenosine A2A receptor stimulation potentiates nitric oxide release by activated microglia. J Neurochem. 2005; 95:919-929.
    26. Popoli P, Pintor A, Domenici MR, Frank C, Tebano MT, Pezzola A, et al. Blockade of striatal adenosine A2A receptor reduced, through a presynaptic mechanism, quinolinic acid-induced excitotoxicity: possible relevance to neuroprotective interventions in neurodegenerative diseases of the striatum. J Neurosci. 2002; 22:1967-1975.
    27. Sherwin C, Fern R. Acute lipopolysaccharide-mediated injury in neonatal white matter glia: role of TNF-alpha, IL-1beta, and calcium. J Immunol. 2005;175:155-161.
    28. Takahashi JL, Giuliani F, Power C, Imai Y, Yong VW. Interleukin-1beta promotes oligodendrocyte death through glutamate excitotoxicity. Ann Neurol. 2003;53:588-595.
    29. Benveniste EN, Kwon J, Chung WJ, Sampson J, Pandya K, Tang LP. Differetial modulation of astrocyte cytokine gene expression by TGF-beta. J Immunol. 1994; 153:5210-5221.
    30. Chiang CS, Stalder A, Samimi A, Campbell IL. Reactive gliosis as a consequence of interleukin-6 expression in the brain: studies in transgenic mice. Dev Neurosci. 1994; 16:212-221.
    31. Ravaglia G, Forti P, Maioli F, Chiappelli M, Montesi F, Tumini E, et al. Bloodinflammatory markers and risk of dementia: The Conselice Study of Brain Aging. Neurobiol Aging. 2007; 28:1810-1820.
    32. Sitkovsky MV, Lukashev D, Apasov S, Kojima H, Koshiba M, Caldwell C, et al. Physiological control of immune response and inflammatory tissue damage by hypoxia-inducible factors and adenosine A2A receptors. Annu Rev Immunol. 2004; 22:657-682.
    33. Lenzsér G., Kis B, Bari F, Busija DW. Diazoxide preconditioning attenuates global cerebral ischemia-induced blood– brain barrier permeability. Brain Res. 2005; 1051:72-80.
    34. Nakaji K, Ihara M, Takahashi C, Itohara S, Noda M, Takahashi R, et al. Matrix metalloproteinase-2 plays a critical role in the pathogenesis of white matter lesions after chronic cerebral hypoperfusion in rodents. Stroke; 37:2816-2823.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700