p53在滑膜成纤维细胞炎症和增生中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【目的】深入探讨p53在滑膜成纤维细胞(FLS)炎症与增生中的作用,包括p53与NF-κB、p38、JNK及其下游促炎症性细胞因子和基质金属蛋白酶(MMP)之间的关系,以及p53对FLS增生相关信号通路的影响,揭示p53在类风湿关节炎(RA)发病机制中的重要作用。【材料与方法】取人膝关节滑膜组织体外培养FLS。(1)分别与0.1 ng/ml、1 ng/ml、10ng/ml IL-1β或TNF-α共同孵育24小时,收集培养上清行ELISA检测细胞因子IL-6、IL-1β以及MMP-1和MMP-13的水平;同时裂解细胞收获蛋白,利用Western Blot方法检测p53和p21等蛋白的表达;(2)用电转法将p53 siRNA(small interfering RNA)转入FLS细胞并设立对照。3日后,或在这些细胞中重复步骤(1),或与IL-1β(2ng/ml)共同孵育15分钟后裂解细胞收集蛋白,用Western Blot方法检测信号通路NF-κB、p38、JNK和ERK激活情况。【结果】(1)TNF-α和IL-1β可以抑制FLS p53表达,并刺激FLS分泌IL-6、MMP-1显著增加(P<0.001);(2)p53 siRNA可以有效抑制FLS p53表达。在加或不加IL-1β刺激时,p53表达显著下降的FLS分泌IL-6和MMP-1均较对照组显著增加(P值均<0.05);在IL-1β刺激下,p53 si RNA抑制p53引起P-IκBα、P-JNK和P-p38表达增高;(3)抑制p53引起p21的表达随之而下降;在IL-1β刺激下,p53低表达的FLS P-ERK较对照组增高。【结论】(1)FLS中p53缺陷对滑膜炎症可以产生重要影响:抑制p53表达可以使NF-κB、p38、JNK活性显著增高,进而促进FLS分泌促炎症性细胞因子和MMPs,并且FLS p53缺陷可能对以上分子各自发挥功能存在易化作用;而促炎症性细胞因子增高可进一步抑制p53表达。由此构成的反馈循环可能是RA进展和维持的关键因素。(2)FLS中p53缺陷还可能对滑膜增生可以产生重要影响:除了通过影响细胞因子分泌以调控FLS增生,p53还可能通过影响细胞周期途径的重要分子p21和ERK调控FLS增生。
Objective.To investigate the role of p53 on inflammation and proliferation of fibroblast-like synoviocytes(FLS),including the relationship between p53 and NF-κB, p38,JNK and their downstream pro-inflammatory cytokines and matrix metalloproteinases(MMPs),as well as the influence of p53 on synovial proliferation and related signal transduction pathway.
     Materials and Methods.Synovial tissues were obtained from patients at joint replacement surgery,and FLS were cultured in vitro.(1) FLS was co-incubated with TNF-αor IL-1βat the concentration of 0.1 ng/ml,1 ng/ml,10ng/ml respectively for 24 hours.The supernatant was then collected for ELISA assay to detect cytokines and MMPs,while the cells were lysed for Western blot to evaluate the expression of p53 and p21.(2) p53 small interfering RNA(siRNA) or scrambled siRNA(sc siRNA) were electrotransfected into FLS.Three days later,step(1) was repeated,or FLS was co-incubated with IL-1β2ng/ml for 15 minutes and then lyzed for Western Blot to identify the activation of signal transduction pathways like NF-κB,p38,JNK and ERK.
     Results.(1) TNF-αand IL-1βcan inhibit expression of p53,and they both can stimulate FLS overexpressing IL-6 and MMP-1(P<0.001)(2) p53 siRNA can effectively knockdown p53,leading to significant increase of IL-6 and MMP-1 secretion (P<0.05).When IL-1βwas introduced,suppression of p53 by p53 siRNA provokes activation of P-JNK,P-p38 and P-IκBα,compared with control group.(3) Transfection of p53 siRNA into FLS induces p21 decline along with the suppression of p53.When coincubated with IL-1β,suppression of p53 results in elevated P-ERK in FLS.
     Conclusions.(1) p53 defect in FLS may play an essential role in synovitis.Inhibition of p53 leads to activation of signal transduction pathways like NF-κB,p38 and JNK, results in subsequent elevation of downstream expression of pro-inflammatory cytokines as well as MMPs.Meanwhile,cytokines further downregulate expression of p53.This feedback loop involving p53 may well explain the development and propagation of synovitis.(2) In addition to promote FLS proliferation by inducing elevated cytokines, suppression of p53 also contributes to FLS proliferation via p21 and ERK in the pathway of cell cycle.
引文
[1] A Mor, S B.Abramson, M H. Pillinger. The fibroblast-like synovial cell in rheumatoid arthritis: a key player in inflammation and joint destruction. Clinical Immunology 2005,115:118-128.
    [2] GS.Firestein, F.Echeverri, M.Yeov. Somatic mutations in p53 tumor suppressor gene in rheumatoid arthritis synovium. Proc. Natl. Acad. Sci. 1997,94:353-358.
    
    [3] L.S.Angelo, M Talpaz, R Kurzrock. Autocrine Interleukin-6 Production in Renal Cell Carcinoma:Evidence for the Involvement of p53. Cancer Research. 2002, 62: 932-940.
    [4] Zheng SJ, Seddine Lamhamedi-Cherradi,et al.Tumor Suppressor p53 Inhibits Autoimmune Inf lamination and Macrophage Function. Diabetes,2005, 54:1423-1428.
    [5] Yubo Sun, Yi Sun, Leonor Wenger, et al. p53 Down-regulates Human Matrix Metalloproteinase-1 (Collagenase-1) Gene Expression. Journal of biological chemistry. 1999,274(17):11535-11540.
    [6] Yubo Sun, Jamie M. Cheung, Joanne Martel-Pelletier, et al. Wild Type and Mutant p53 Differentially Regulate the Gene Expression of Human Collagenase-3 (hMMP-13). Journal of biological chemistry., 2000,275(15): 11327-11332.
    [7] Faour WH, He QW, Mancini A, et al. Prostaglandin E2 Stimulates p53 Transactivational Activity through Specific Serine 15 Phosphorylation in Human Synovial Fibroblasts:Role in suppression of c/EBP/NF-kB-mediated MEKK1-induced MMP-1 expression. Journal of biological chemistry. 2006,281(29): 19849-19860.
    [8] Liu J, Zhan MC, Jonathan A.F. Hannay, et al. Wild-type p53 Inhibits Nuclear Factor-KB-Induced Matrix Metalloproteinase-9 Promoter Activation: Implications for Soft Tissue Sarcoma Growth and Metastasis. Mol Cancer Res 2006;4(11):803-10.
    [9] A Marchetti, B Cecchinelli,M D'Angelo, et al. p53 can inhibit cell proliferation through caspase-mediated cleavage of ERK2/MAPK. Cell Death and Differentiation. 2004,11:596-607.
    [10] Wu GS. The functional interactions between the p53 and MAPK signaling pathways. Cancer Biology & Therapy, 2004,3(2):156-161.
    
    [11] Mclnnes LB, Schett G. Cytokines in the pathogenesis of rheumatoid arthritis. Immunology, 2007,7:429-442.
    [12] Asquith DL, Mclnnes LB. Emerging cytokines targets in rheumatoid arthritis. Current Opinion in Rheumatology, 2007,19:246-251.
    [13] Cronstein BN. Interleukin-6: A Key Mediator of Systemic and Local Symptoms in Rheumatoid Arthritis. Bulletin of the NYU Hospital for Joint Diseases 2007;65(Suppl
    [14] Park JY, Pillinger MH. Interleukin-6 in the Pathogenesis of Rheumatoid Arthritis. Bulletin of the NYU Hospital for Joint Diseases 2007;65(Suppl 1):S4-10.
    [15] Scheller J, Ohnesorge N, John R. Interleukin-6 Trans-Signalling in Chronic Inflammation and Cancer. Journal of Immunology 2006, 63:321-329.
    [16] Kishimoto T. Interleukin-6: discovery of a pleiotropic cytokine. Arthritis Research & Therapy 2006, 8(Suppl 2):S2.
    [17] Lipsky PE. Interleukin-6 and rheumatic diseases. Arthritis Research & Therapy 2006, 8(Suppl 2):S4.
    [18] Smolen JS, Maini RN. Interleukin-6: a new therapeutic target. Arthritis Research & Therapy 2006, 8(Suppl 2):S5.
    [19] Goriely S, Goldman M. The interleukin-12 family: new players in transplantation immunity? American Journal of Transplantation 2007; 7: 278-284.
    [20] Gaffen SL. Biology of recently discovered cytokines: Interleukin-17 - a unique inflammatory cytokine with roles in bone biology and arthritis. Arthritis Res Ther 2004, 6:240-247.
    [21] Deenick EK, Tangye SG IL-21:a new player in Th17-cell differentiation. Immunology and Cell Biology. 2007,85:503-505.
    [22]Young DA, Hegen M, Ma HLM, et al. Blockade of the Interleukin-21/Interleukin-21 Receptor Pathway Ameliorates Disease in Animal Models of Rheumatoid Arthritis. Arthritis Rheum, 2007,56(4) 1152-1163.
    [23] Ikeuchi H, Kuroiwa T, Hiramatsu N, et al. Expression of Interleukin-22 in Rheumatoid Arthritis: Potential Role as a Proinflammatory Cytokine. Arthritis Rheum, 2005,52(4): 1037-1046.
    [24] Joosten LAB, Netea MG, Kim SH, et al. IL-32, a proinflammatory cytokine in rheumatoid arthritis. Proc Natl Acad Sci, 2006,103 :93298-93303.
    [25] Pakozdi A, Amin MA, Haas CS, et al. Macrophage migration inhibitory factor: a mediator of matrix metalloproteinase-2 production in rheumatoid arthritis. Arthritis Res Ther 2006, 8:R132.
    [26] Liu M, Sun HJ, Wang XF, et al. Association of Increased Expression of Macrophage Elastase (Matrix Metalloproteinase 12) With Rheumatoid Arthritis. Arthritis Rheum, 2004,50:3112-3117.
    [27] Yoshihara Y, Nakamura H, Obata K, et al. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in synovial fluids from patients with rheumatoid arthritis or osteoarthritis. Ann Rheum Dis 2000;59:455-461.
    [28] Wang XF, Liang JY, Koike T, et al. Overexpression of Human Matrix Metalloproteinase-12 Enhances the Development of Inflammatory Arthritis in Transgenic Rabbits. American Journal of Pathology, 2004,165(4):1375-1383.
    [29] Chen YE. MMP-12, An Old Enzyme Plays a New Role in the Pathogenesis of Rheumatoid Arthritis? American Journal of Pathology, 2004,165(4): 1069-1070.
    [30] Catrina A.I., Lampa J., Ernestam S, et al. Anti-tumor necrosis factor(TNF)-a therapy (etanercept) down-regulates serum matrix metalloproteinase(MMP)-3 and MMP-1 in rheumatoid arthritis. Rheumatology 2002,41:484-489.
    [31] Sweeney S.E., Firestein GS.. Primer: signal transduction in rheumatic disease—a clinician's guide. Nature clinical practice rheumatology. 2007,3(11):651-660.
    [32] Schett G, M. Akrad T, Somlen J.S., et al. Activation, differential location, and regulation of the stress-activated protein kina ses, extracellular signal-regulated kinase, c-JUN N-terminal kinase, and p38 mitogen-activated protein kinase, in synovial tissue and cells in rheumatoid arthritis. Arthritis Rheum, 2000,43:2501-2512.
    [33] Yamanishi Y, Boyle DL, Rosengren S, et al. Regional analysis of p53 mutations in rheumatoid arthritis synovium. Proc Natl Acad Sci,2002(99): 10025-10030.
    [34] Hidakah H, Ishiko T, Ishikwa S, et al. Constitutive IL-8 expression in cancer cells is associated with mutation of p53. Journal of experimental & clinical cancer research, 2005,24:127-133.
    [35] Garner E, Raj K. Protective mechanisms of p53-p21-pRb proteins against DNA damage-induced cell death. Cell Cycle, 2008, 7(3): 1-6.
    [36] Vousden KH. Outcomes of p53 activation - spoilt for choice. Journal of Cell Science,2006,119:5015-5020.
    [37] Liebermann DA, Hoffman B, Vesely D. p53 Induced Growth Arrest versus Apoptosis and its Modulation by Survival Cytokines. Cell Cycle,2007,6(2):166-170.
    [38] Chipuk JE, Bouchier-Hayes L, Kuwana T, et al. PUMA Couples the Nuclear and Cytoplasmic Proapoptotic Function of p53. Science, 2005, 309: 1732-1735.
    [39] Villunger A, Michalak EM, Coultas L, et al. Strasser A: p53- and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa. Science 2003, 302:1036-1038.
    [40] Mihara M, Erster S, Zaika A, et al. p53 has a direct apoptogenic role at the mitochondria. Mol Cell 2003,11:577-90.
    [41] Danial N, Korsmeyer S. Cell death: critical control points. Cell 2004,116:205-19.
    [42] Xin You, David L Boyle, Deepa Hammaker, et al. PUMA-mediated apoptosis in fibroblast-like synoviocytes does not require p53. Arthritis Research & Therapy 2006, 8:R157.
    [43] Cha HS, Rosengren S, Boyle DL, et al. PUMA regulation and proapoptotic effects in fibroblast-like synoviocytes. Arthritis Rheum 2006, 54:587-592.
    [44] Perlman H, Bradley K, Liu H, et al. IL-6 and Matrix Metalloproteinase-1 Are Regulated by the Cyclin-Dependent Kinase Inhibitor p21 in Synovial Fibroblasts. The Journal of Immunology, 2003,170: 838-845.
    [45] Tak P.P., Zvaifler N.J., Green D.R., et al. Rheumatoid arthritis and p53: how oxidative stress might alter the course of inflammatory diseases. Immunol. Today,2000,21:78-82.
    [46] Han ZN, Boyle DL, Shi Y, et al. Dominant-negative p53 mutations in rheumatoid arthritis. Arthritis & Rheum, 1999,42(6):1088-1092.
    [47] Han SY, Gai W, Yancovitz M, et al.Nucleofection is a highly effective gene transfer technique for human melanoma cell lines. Exp Dermatol. 2008,17(5):405-11
    [48] Kay J, Calabrese L. The role of interleukin-1 in the pathogenesis of rheumatoid arthritis. Rheumatology 2004;43(Suppl. 3):iii2-iii9.
    [49] van Leeuwen MA, Westra J, Limburg PC,et al. Interleukin-6 in relation to other proinflammatory cytokines, chemotactic activity and neutrophil activation in rheumatoid synovial fluid. Annals of the Rheumatic Diseases 1995; 54: 33-38.
    [50] Dayer J-M, Burger D. Cytokines and direct cell contact in synovitis:relevance to therapeutic intervention. Arthritis Res 1999;1:17-20
    [51] Hammaker DR, Boyle DL, Inoue T, et al. Regulation of the JNK pathway by TGF-beta activated kinase 1 in rheumatoid arthritis synoviocytes. Arthritis Res Ther, 2007, 9:R57.
    [52] Oguchi T, Ishiguro N. Differential Stimulation of Three Forms of Hyaluronan Synthase by TGF-β, IL-1β, and TNF-α. Connective Tissue Research, 45: 197-205, 2004.
    [53] Joosten LAB, Helsen MMA, Saxne T, et al. IL-1β blockade prevents cartilage and bone destruction in murine type II collagen-induced arthritis, whereas TNF-α blockade only ameliorates joint damage. J Immunol 1999; 163:5049-55.
    [54] Fitzgerald AA, Leclercq SA, Yan A, et al. Rapid responses to anakinra in patients with refractory adult-onset Still's disease. Arthritis Rheum, 2005,52:1794-1803
    [55] Komarova EA, Krivokrysenko V, Wang K, et al. p53 is a suppressor of inflammatory response in mice. The FASEB Journal express article 10.1096/fj.04-3213fje. Published online April 5, 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700