聚氧乙烯—聚乳酸温敏型药物传递体系的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
药用辅料对于改良药物制剂的释药性能,提高生物利用度及降低药物毒副作用等都有非常显著的作用,因此近年来新型药用辅料的开发受到药剂工作者的高度重视。含药原位凝胶传递系统可以起到缓释、控释药物的作用,并具有定位给药的优点,逐渐成为一种具有广阔发展前景的剂型。本课题即着眼于新型三嵌段共聚物聚氧乙烯.聚乳酸.聚氧乙烯(PEO-PLA-PEO)的合成及温敏型原位注射凝胶含药体系的开发与研究。
     本文的主要研究内容和结论如下:
     1.以乳酸单体和单甲氧基聚氧乙烯为原料,采用直接聚合法合成了二嵌段共聚物PEO-PLA。以红外光谱(IR)、氢谱(1~H-NMR)和凝胶渗透色谱(GPC)表征了产物的分子结构,并测定分子量。研究发现,反应预处理、反应压力、反应温度、反应时间、催化剂种类与用量等因素都会影响产物的分子量。如:产物分子量随反应压力减小而增大,分别随反应时间、反应温度和催化剂用量的增加而先增大后减小。结果表明,合成分子量在26000-30000左右的二嵌段共聚物的最优合成工艺为:反应时间7小时,反应温度160℃,催化剂用量0.8%。
     2.以二异氰酸酯(HMDI)链接PEO-PLA分子中端羟基,合成PEO-PLA-PEO;并制备了PEO-PLA-PEO水溶液,研究溶液浓度和温度对PEO-PLA-PEO水溶液相变特性的影响。以氢谱(1~H-NMR)和凝胶渗透色谱(GPC)表征了产物的分子结构,并测定分子量;以DPH染料溶解法、动态光散射法(DLS)、胶束粒径测定和差热扫描(DCS)等方法对PEO-PLA-PEO三嵌段共聚物水溶液进行表征。结果表明,三嵌段聚合物水溶液可以在35℃-50℃之间实现溶胶一凝胶的可逆转化;其中,在48℃发生了相变,38℃再次出现相变。而且,胶束问相互作用力是水溶液发生相变的重要原因之一。
     3.以羧甲基壳聚糖(Carboxymethyl Chitosan, CMCTS)为原料,氯化钙和香草醛为双重交联剂制备载药CMCTS微囊。以扫描电镜(SEM)观察微囊的外部与内部形貌特征,并按照药典的规定研究了微囊的药物释放特性。钙离子与羧甲基产生静电力,螯合交联;香草醛中醛基与羧甲基壳聚糖分子中氨基生成-C=N-(希弗碱),且其酚羟基与羧甲基壳聚糖分子中羧基、羟基和氨基形成氢键。以Ca(Ⅱ)-香草醛复合交联羧甲基壳聚糖制备的微囊,对人体无毒,使用安全,而且制备工艺简便,因此该微囊可能是一类很有前途的新型药物载体。
     4.将羧甲基壳聚糖微囊加入到聚氧乙烯-聚乳酸-聚氧乙烯三嵌段共聚物的温敏凝胶体系中,考察该复合体系的力学性能和药物释放特性。随着温度的变化,复合凝胶体系的力学性能不断发生变化。在溶胶态,体系无力学强度,体系转变为“软凝胶”态后(45℃左右),体系开始具有很小的力学强度,而在38℃-39℃左右,体系转化为凝胶态,力学强度到达最大。相比于单纯的羧甲基微囊和凝胶基质,复合凝胶体系具有良好的药物缓释性能,药物释放时间延长到30h-40h。结果表明,该体系可以有效实现“原位注射”和“缓慢释药”的目的,有望开发应用于治疗关节腔与软组织等特定部位疾病的药物载体。
Pharmaceutical excipient is an important part of pharmaceutical preparations because it plays as key role in improving the performance of drug release profile, bioavailability and reducing the side effect. More and more scientists pay attention to development of new pharmaceutical excipient in recent years. The system of drug-loaded hydrogel in situ is used widely in the drug delivery system. Because it can retard the release of drug, especially the system can release the drug in a same site. This paper focus on the preparation of thermo-sensitive injective gel system in situ by new-style polyethylene oxide-polylactic acid-polyethylene oxide (PEO-PLA-PEO) triblock copolymer and its potential application.
     The main contents and conclusions in this paper are as follows:
     1. To synthesis polylactic acid- polyethylene oxide (PLA-PEO) diblock copolymer from lactic acid and monomethyl polyethylene glycol (mPEO) with direct polymerization method. The IR, ~1H-NMR and the GPC has attributed to examine the molecular structure and the molecular weight of product. The research discovered that the factors such as pretreatment, reaction pressure, reaction temperature, reaction time, catalyst sort and amount can influence the molecular weight of product. under the condition of reaction time is 7 hours, reaction temperature is 160℃, the amount of catalyst is 0.8 wt%. The molecular weight and structure of product are characterized by FTIR, ~1H-NMR and GPC. It is found that the molecular weight of PLA block which is prepared as the craft mentioned before is among 16000-20000.
     2. The HMDI is used as link agent reacts with end hydroxyl in the PEO-PLA to synthesis PEO-PLA-PEO. And the PEO-PLA-PEO aqueous solution is prepared to research the influences of solution concentration and the temperature changes on the PEO-PLA-PEO system's phase transform characteristic. 1H-NMR and GPC are attributed to examined the molecular structure and the molecular weight of product; the PEO-PLA-PEO aqueous solution is prepared for characterization with dye solubilization method, dynamic light scattering studying (DLS) and differential scanning calorimetry (DSC) for studying the micellization behaviors of triblock copolymer solution. It is found that the triblock copolymer solution can reversibly transformation between the state of gel and sol among the temperature of 35℃-50℃. And, the spot of phase changing appears at 48℃and the other spot appears at 38℃.Moreover, the interact force which forms the micelle in the solution is one of important reasons to cause the phase transformation.
     3. Carboxymethyl Chitosan (CMCTS) is chosen as material, the calcium chloride and the vanilla are selected as dual crosslinking agents to prepared drug-loaded microcapsules. The outlook and inner structure of microcapsules are observed by SEM. As the stipulation of Chinese Pharmacopoeia, the drug release characteristic of microcapsules is studied. The electrostatic force between calcium ion and the canboxymethyl, and the Schiff base which is formed between the aldehyde of vanillin and amino of CMC are the reasons to produce microcapsules. The vanilla is the national legal edible spice and widely applies to drink, food, cosmetics and tobacco. The CMC microcapsules crossliked with Ca (II) and vanilla is easy to prepare, non-toxic and security, therefore, the microcapsules possibly is a kind of valuable new drug carrier.
     4. The microcapsules of carbomethyl chitasan is prepared and mixed with the thermo-sensitive system which is prepared by polyethylene glycol-polylactic acid-polyethylene glycol. The mechanical capacity and drug release profiles of the system are characterized. It is found the mechanics capacity of compound system is changing with the change of temperature and the phase transform of itself. In sol state, the system has any mechanical capacity, but it increases in soft gel state (about 45℃), and the mechanical capacity achieves to maximum in gel state about 38℃-39℃. Compared to the microcapsules and matrix, the gel system has the outstanding drug release profiles which can prolong the drug releasing period to 30h-40h. The result indicates that this system can effectively achieve the goal of "injection in situ", then releases contained drug slowly. So it is hopeful to be applied to cure the illness of some specific spot such as joint cavity and soft tissue.
引文
[1] Allen C, Maysinger D, Eisenberg A. Nano-engineering block copolymer aggregates for drug delivery [J].Colloids Surf B, 1999(16): 1-35.
    [2] Yoshinori K, Kazunori K. Block copolymer micelles for delivery of gene and related compounds [J].Advanced Drug Delivery Reviews 2002(54): 205.
    [3] James H. R. Woodland, Seymour Yolles, David A. Blake, et al. Long-acting delivery systems for narcotic antagonists. Journal of Medicine Chemistry, 1973,16(8): 897-901.
    [4] David A. Puleo, Lisa A. Holleran, Robert H. Doremus, et al. Osteoblast responses to orthopedic implant materials in vitro. Journal of Biomedical Materials Research. 1991, 6, Vol 25(6): 711-723.
    [5] J. M. Fachaux, A. M. Guyot Hermann, J. C. Guyot, et al. Compression ability improvement by solvation/ desolvation process: application to paracetamol for direct compression. International Journal of Pharmaceutics, 1993,10, Vol 99 (2-3): 99-107.
    [6] Kwan-Wook Kwon, Moon Jeong Park, You Han Bae, et al. Gelation behavior of PEO-PLGA-PEO triblock copolymers in water; Polymer, 2002, 5, Vol 43 (11): 3353-3358.
    [7] Butun, V.; Billingham, N. C.; Armes, S. P. Unusual Aggregation Behavior of a Novel Tertiary Amine Methacrylate-Based Diblock Copolymer: Formation of Micelles and Reverse Micelles in Aqueous Solution. J. Am. Chem. Soc. 1998; 120(45): 11818-11819.
    [8] Liu, S.; Weaver, J. V. M.; Tang, Y.; et al. Synthesis of Shell Cross-Linked Micelles with pH-Responsive Cores Using ABC Triblock Copolymers. Macromolecules, 2002, Vol 35(16): 6121-6131.
    [9] Jae Suk Lee, Akira Hirao, Seiichi Nakahama. Polymerization of monomers containing functional silyl groups. 5. Synthesis of new porous membranes with functional groups. Macromolecules; 1988, 21(1); 274-276.
    [10] Zalusky, A. S.; Olayo-Valles, R.; Taylor, et al. Mesoporous Polystyrene Monoliths. J. Am. Chem. Soc.; 2001; 123(7); 1519-1520.
    [11] Yohiharu Kimura, Kenji Shirotani, Hideki Yamane, et al. Ring-opening polymerization of 3(S)-[(benzyloxycarbonyl) methyl]-1, 4-dioxane-2, 5-dione: a new route to a poly (.alpha.-hydroxy acid) with pendant carboxyl groups. Macromolecules, 1988, 21(11): 3338-3340.
    [12] Ma, Y.; Qi, L.; Ma, J.; Cheng, H. Facile Synthesis of Hollow ZnS Nanospheres in Block Copolymer Solutions. Langmuir; (Note); 2003; 19(9): 4040-4042.
    [13] Ma, Y.; Qi, L.; Shen, W.; et al. Selective Synthesis of Single-Crystalline Selenium Nanobelts and Nanowires in Micellar Solutions of Nonionic Surfactants. Langmuir; (Letter); 2005; 21 (14); 6161-6164.
    [14] Liu, Q.; Wu, H. -J.; Lewis, R.; et al. Investigation of the Pyrolytic Conversion of Poly (silylene methylene) to Silicon Carbide. Chem. Mater., 1999; 11 (8): 2038-2048.
    [15] Rzayev, J.; Hillmyer, M. A. Nanoporous Polystyrene Containing Hydrophilic Pores from an ABC Triblock Copolymer Precursor. Macromolecules; 2005, 38 (1): 3-5.
    [16] Jeong B, Bae Y H, Lee D S, et al. Biodegradable block copolymers as injectable drug- delivery system [J]. Nature, 1997, 388 (6645): 860-862.
    [17] Jeong B, Bae Y H, Kim S W. Drug release from biodegradable injectable thermosensitive hydrogel of PEG-PLGA-PEG triblock copolymers [J]. J Controlled Release, 2000, 63 (1-2): 155-163.
    [18] Burkhard Wichert, Peter Rohdewald. A new method for the preparation of drug containing polylactic acid microparticles without using organic solvents. Journal of Controlled Release, 1990, 12, Vol 14 (3): 269-283.
    [19] Béatrice Mariette, Jean Coudane, Michel Vert, et al. Release of the GRF29-NH_2 analog of human GRF44-NH_2 from a PLA/GA matrix. Journal of Controlled Release, 1993, 3, Vol 24 (1-3): 237-246.
    [20] 沈正荣,朱家惠,马臻.乙醇酸和DL-乳酸交替共聚物的合成和表征.功能高分子学报,1995.8:489.
    [21] 李雄伟,邓先模等.口服高分子微球疫苗的制备研究.中国药学杂志,1996,31:661.
    [22] 李孝红,袁明龙.聚乳酸及其共聚物的合成和在生物医学上的应用.高分子通报,1999.3,24-32.
    [23] 彭瑾.PEO-PLA-PLA载药缓释微球的研究:[硕十论文].四川大学,2005.
    [24] 赵中.聚乳酸多嵌段共聚物的合成及表征:[硕士论文].浙江大学,2005.
    [25] 王方,汪朝阳,赵耀明.聚氧乙烯改性聚乳酸类材料研究进展.材料导报,2004,18 (2):62-64.
    [26] 贾文祥,邓先模等.接种缓释霍乱微球疫苗的试验研究.中华微生物学和免疫学杂志,1997,17:342.
    [27] K. Y. Lee, J. M. David. Hydrogels for tissue engineering [J]. Chem Rev, 2001, (101): 1869-1879.
    [28] 任杰,吴志刚,贾晓真等.PLA-PEO共聚物三维多孔支架的制备及表征.材料导报,2004.18:93-95.
    [29] Zhu, K. J, Lin, X. Z, Yang, S. L. Preparation, Characterization and Properties of Polylactic acid (PLA)-Poly Ethylene Oxide (PEO) Copolymers: A Potential Drug Carrier. J Appl Polym Sci, 1990, 39(1): 1.
    [30] 宋谋道,朱吉亮,张邦华等.可生物降解的聚乳酸弹性体的性能研究.高分子学报,1998, 4:393.
    [31] Sheth, M.; Kumar, R. A.; Dave, V.; et al. Biodegradable Polymer Blends of Poly (lactic acid) and Poly (ethylene oxide). J. Appl Polym Sci, 1997, 66 (8): 1495.
    [32] 王身国,邱波,王志峰.中国专利,申请号921131001311992
    [33] Elrsseeff J, Anseth K, Langer R. Synthesis and Characterization of Photo-Cross-Linked Polymers Based on Poly (L-lactic acid-co-L-aspartic acid), Macromolecules, 1997, 30(7): 2182-2184.
    [34] Denise A, Barrera, Eric Zylstra, et al. Synthesis and RGD peptide modification of a new biodegradable copolymer: poly (lactic acid-co-lysine). Journal of American Chemistry Sociality. 1993, 115(23): 11010-11011.
    [35] Ichiro Yamakawa, Masahiro Kawahara, Sumio Watanabe, et al.Sustained release of insulin by double-layered implant using poly (D, L-lactic acid). Journal of Pharmaceutical Sciences. 1990, 6, Vol 79(6): 505-509.
    [36] Cohn D, Hotovely-Salomon A. Biodegradable multiblock PEO/PLA thermo- plastic elastomers: molecular design and properties. POLYMER 2005, 3, Vol 46 (7): 2068-2075.
    [37] D.E Discher. Polymer vesicles of PEO-PLA and related for controlled release. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY PMSE Part 2, 2003, 225: 679-679.
    [38] Andrew J. Hudson, Karen J, et al. Biodegradable polymer matrices for the sustained exogenous delivery of a biologically active c-myc hammerhead ribozyme. International Journal of Pharmaceutics, 1996, 6, Vol 136 (1- 2): 23-19.
    [39] Yung-Yueh Hsu, Joseph D. Gresser, et al. Low-density poly (DL-lactide-co-oxide) foams for prolonged release of isoniazid. Journal of Controlled Release, 1996, 7, Vol 40 (3): 293-302.
    [40] Y. Cha, C. G. Pitt. A one-week subdermal delivery system for L-methadone based on biodegradable microcapsules. Journal of Controlled Release, 1988, 4, Vol 7 (1): 69-78.
    [41] B. W. Wagenaar and B. W. Müller. Piroxicam release from spray-dried biodegradable microspheres. Biomaterials, 1994, Vol 15(1): 49-54.
    [42] Wladimyr M. C. Dourado, Pascal Bruel, et al. A time-accurate pseudo-compressibility approach based on an unstructured hybrid finite volume technique applied to unsteady turbulent premixed flame propagation. International Journal for Numerical Methods in Fluids. 2004, Vol 44(10): 1063-1091.
    [43] K. Sakata, K. Kato, Y. Iwase, et al. Feeding-stimulant activity of algal glycerolipids for marine herbivorous gastropods. Journal of Chemical Ecology. 1991,1, Vol 17(1): 584.
    [44] Yoshida, M.; Asano, M.; Omichi, H.; et al. Dependence of Volume Phase Transition Temperature of Poly (acryloyl-L-proline methyl ester) Gel on Hydrophobic Tail Length of Anionic Surfactants. Macromolecules, 1997; 30(9): 2795-2796.
    [45] Changhong Yan, James H. Resau, John Hewetson, et al. Characterization and morphological analysis of protein-loaded poly (lactide-co-oxideide) microparticles prepared by water-in-oil-in-water emulsion technique. Journal of Controlled Release, 1994, 12, Vol 32(3): 231-241.
    [46] E. Allemann, R. Gurny, E. Doelker, et al. Distribution, kinetics and elimination of radioactivity after intravenous and intramuscular injection of ~(14)C-savoxepine loaded poly (D, L-lactic acid) nanospheres to rats. Journal of Controlled Release, 1994, 2, Vol 29 (1-2): 97-104.
    [47] Bostman O M. Absorbable implants for the fixation of fractures. Journal of Bone Joint Surgery, 1991, 73A: 148-153.
    [48] D. J. Mooney, S. Park, P. M. Kaufmann, et al. Biodegradable sponges for hepatocyte transplantation. Journal of Biomedical Materials Research. 1995, 8, Vol 29(8): 959-965.
    [49] G. J. Beumer, C. A. van Blitterswijk, M. Ponec. Biocompatibility of a biodegradable matrix used as a skin substitute: An in vivo evaluation. Journal of Biomedical Materials Research. 1994, 5, Vol 28 (5): 545-552.
    [50] L. E. Freed, J. C. Marquis, et al. Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers. Journal of Biomedical Materials Research. 1993, Vol 27(1): 11-23.
    [51] Ch. Schugens, Ch. Grandfils, R. Jerome, et al. Preparation of a macroporous biodegradable polylactide implant for neuronal transplantation. Journal of Biomedical Materials Research, 1995, 12, Vol 29 (11): 1349-1362.
    [52] A. R. Postema, A. J. Pennings. Study on the drawing behavior of poly (L-lactide) to obtain high-strength fibers. Journal of Applied Polymer Science. 1990, 8, Vol 37 (8): 2351-2369
    [53] A.E. Hawley, L. Ilium, S.S. Davis. Preparation of biodegradable, surface engineered PLGA nanospheres PLA enhanced lymphatic drainage and lymph node uptake [J]. Pharm Res, 1997, (14): 657-661.
    [54] M. Tobio, A. Sanchez, A. Vila, et al. The role of PEO on the stability in digestive fluids and in vivo fate of PEO-PLA nanoparticles following oral administration [J]. Colloids and Surfaces Biointerfaces, 2000,18: 215-323. [55] M. Tibio, R. Gref, R. Langer, et al. Stealth PEO-PLA nanoparticles as protein carriers for nasal administration [J]. Pharm Res, 1998, 15: 270-275.
    [56] 邓先模,熊成东,罗福成等.可吸收DL-聚乳酸夹板行颌面部骨折内固定的实验研究.华西口腔医学杂志,1996,14:254.
    [57] 王可,张国,李茁实等.改性CF与EVA复合材料的PTC行为研究.高等学校化学学报.2006,27(8):1590-1592.
    [58] C. S. Chern, C. K. Lee, C. C. Ho. Colloidal stability of chitosan-modified poly(metliyl methacrylate) latex particles. Colloid & Polymer Science, 2004, Vol 278, (4): 285-292.
    [59] Khor, E, Ling, F. T, Khoon, S. G, et al. Prevention of prosthetic valve endocarditis by impregnation of gentamicin into surgical pledgets. Biomaterials. 1996, 8, Vol 17 (16): 1631-1637.
    [60] Li Youxin, Christian Volland and Thomas Kissel. In-vitro degradation and bovine serum albumin release of the ABA triblock copolymers consisting of poly (L -lactic acid), or poly (L-lactic acid-co-oxideic acid) A-blocks attached to central polyoxyethylene B-blocks. Journal of Controlled Release, 1994, 12, Vol 32 (2): 121.
    [61] M. Karbarz, Z. Stojek, T.K. Georgiou, et al. Microphase separation in ABA triblock copolymer-based model conetworks in the bulk: Effect of loop formation. Polymer, 2006, 6, Vol 47(14): 5182-5186.
    [62] Moon Jeong Park and Kookheon Char; Gelation of PEO-PLGA-PEO triblock copolymers induced by macroscopic phase separation. Langmuir. 2004, 20 (6): 2456-2465.
    [63] Kook heon Char and Moon Jeong Park. Effect of shear flow on the polymeric gels formed by macroscopic phase separation. MACROMOLECULAR RAPID COMMUNICATIONS. 2004, 7, 25 (11): 1082-1089.
    [64] E.B Cho and K. Char; Macromolecular templating approach for the synthesis of hydrothermally stable. CHEMISTRY OF MATERIALS. 2004, 1, 16 (2): 270-275.
    [65] N Csaba, L Gonz(?)lez, A S(?)nchez, et al. Design and characterisation of new nanoparticulate polymer blends for drug delivery. Polymer, 2004, 9, Vol 15: 1137-1151.
    [66] Tew G N, Bhatia SR, Aamer K, et al. Mechanical properties of triblock PLA-PEO-PLA hydrogels. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 3, Vol 299:U970-U970 439-POLY Part 2.
    [67] Sanabria-DeLong N, Agrawal S, Aamer K, et al. PLA-PEO-PLA hydrogels from triblock copolymers. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY. 2004, 8, Vol 228:U378-U378 351-POLY Part 2.
    [68] Sarvesh K. Agrawal, Naomi Sanabria-DeLong, et al. Novel drug release profiles from micellar solutions of PLA-PEO-PLA triblock copolymers. Tetrahedron Letters. 2000, 41: 5403-5406.
    [69] Inmaculada Molina, Suming Li, Manuel Bueno Martinez, et al. Protein release from physically crosslinked hydrogels of the PLA/PEO/PLA triblock copolymer-type. Carbohydrate Research.1990, 202: 151-164.
    [70] E.B Cho, K.W. Kwon and K. Char. Sol-gel synthesis and characterization of mesoporous organosilicas by using block copolymer templates. Materials Research Society Symposium - Proceedings, 2001, Vol 634:B6.13.1 -B6.13.6.
    [71] Mays, H.; Almgren, M. Temperature-Dependent Properties of Water-in-Oil Microemulsions with Amphiphilic Triblock-Copolymer. Part Ⅰ: Dynamics, Particle Interactions, and Network Formation. Journal of Physical Chemistry B. 1999, Vol 103(44): 9432-9441.
    [72] Soren Hvidt, Erling B. Joergensen, Wyn Brown, et al. Micellization and Gelation of Aqueous Solutions of a Triblock Copolymer Studied by Rheological Techniques and Scanning Calorimetry. J. Phys. Chem.; 1994, Vol 98(47): 12320-12328.
    [73] Anna C. Balazs, Zexuan Zhou, Chuck Yeung. Behavior of amphiphilic comb copolymers in oil/water mixtures: a molecular dynamics study. Langmuir; 1992, Vol 8(9); 2295-2300.
    [74] Fabiana Quaglia, Luisanna Ostacolo, Giuseppe De Rosa, et al. Nanoscopic core-shell drug carriers made of amphiphilic triblock and star-diblock copolymers, International Journal of Pharmaceutics, 2006, 7.
    [75] Samy A. Madbouly, Joshua U. Otaigbe, Ajaya K. Nanda, et al. Thermal-induced simultaneous liquid-liquid phase separation and liquid-solid transition in aqueous polyurethane dispersions. Polymer, 2005, 11, Vol 46 (24): 10897-10907.
    [76] Cypriano G da Trindade Neto, Ana LP Fernandes, Ana IB Santos, et al. Preparation and characterization of chitosan-based dispersions. Polymer International, April 2005, 4, Vol 54(4): 659-666.
    [77] Rongsheng Zhang. Synthesis, characterization and reversible transport of thermo-sensitive carboxyl methyl dextran/poly (N-isopropylacrylamide) hydrogel. Polymer, 29 March 2005, 3, Vol 46(8): 2443-2451.
    [78] 段宏,沈彬,何勤等.缓释bFGF-PLGA微球制备及其体外释药性质和生物活性的研究.中国药学杂志.2004,39(3):196-198Z.
    [79] M. Kochkina, S. N. Chirkov. Influence of the Chitosan Oligomer on the Phage Particle and Reproduction of Phage 1-97A in the Culture of Bacillus thuringiensis. Microbiology, 2005, Vol 70, (6):706-710.
    [80] 常翠,杨宏图,毛世瑞等.口服缓释、控释制剂的体外释放度测定方法和体内外相关性的研究进展.中国药学杂志.1999.34(12):796-799
    [81] Thomas Kissel, Youxin Li and Florian Ungera. ABA-triblock copolymers from biodegradable polyester A-blocks and hydrophilic poly (ethylene oxide) B-blocks as a candidate for in situ forming hydrogel delivery systems for proteins. Advanced Drug Delivery Reviews. 2002, 1, Vol 54 (1): 99-134.
    [82] D.Cohn, A.Hotovely-Salomon. Biodegradable multiblock PEO/PLA thermo- plastic elastomers: molecular design and properties. Polymer, 2002, 3, Vol 46 (7): 2068-2075.
    [83] Suming Lia, Sylvie Anjarda, Iliya Rashkova, et al. Hydrolytic degradation of PLA/PEO/PLA tfiblock copolymers prepared in the presence of Zn metal or CaH2. Polymer, 1998, 10, Vol 39 (22):5421-5430.
    [84] Masanobu Ajioka, Katashi Enomoto, Kazuhiko Suzuki, et al. Basic Properties of Polylactic Acid Produced by the Direct Condensation Polymerization of Lactic Acid. Bulletin of the Chemical Society of Japan, 1995, Vol. 68, (8): 2125-2131.
    [85] 胡培战,吴兰亭,杨士林.医用生物降解材料——聚乳酸及其共聚物.生物医学工程学杂志,1993,10:183.
    [86] 殷敬华,莫志深.现代高分子物理学[M].北京:北京科学出版,2001.
    [87] Zhixue Zhu, Chengdong Xiong, Lianlai Zhang, et al. Synthesis and characterization of poly (e-caprolactone)-poly (ethylene oxide) block copolymer. Journal of Polymer Science Part A: Polymer Chemistry, 1997, 3, Vol 35 (4): 709-714.
    [88] C. X. Song, X. D. Feng. Synthesis of ABA triblock copolymers of e-caprolactone and DL-lactide Macromolecules; 1984; 17(12); 2764-2767.
    [89] Yamashita, M.; Takemoto, Y.; Ihara, E.; et al. Organol- anthanide-Initiated Living Polymerizations of e-Caprolactone, d-Valerol-actone, and β-Propiolactone. Macromolecules; 1996; 29(5); 1798-1806.
    [90] William J. Evans, Hideo Katsumata. Copolymerization of Ethylene Carbonate and .epsilon.-Caprolactone Using Samarium Complexes. Macromolecules; 1994; 27(14); 4011-4013.
    [91] Ph. Dubois, J. X. Zhang, R. Jér(?)me, et al. Macromolecular engineering of polylactones and polylactides: 13. Synthesis of telechelic polyesters by coupling reactions. Polymer, 1994, 11, Vol 35 (23): 4998-5004.
    [92] Emmanuel Beyou, Pierre Babin, Bernard Bennetau, et al. New fluorinated polysiloxanes containing an ester function in the spacer. I. Synthesis and characterization. Journal of Polymer Science Part A: Polymer Chemistry. 1994, 7, Vol 32 (9): 1673-1681.
    [93] Zhong, Z.; Dijkstra, P. J.; Feijen, J. Determination of the Stereoselectivity Factor for an Asymmetric Enantiomer- Differentiating Polymerization. Macromolecules; 2004; 37(12); 4740.
    [94] 赵艳.含PEO链段两亲接枝共聚物的合成及其表面性能研究:[硕士论文].北京化工大学,2004.
    [95] 金伟.二嵌段共聚物形成胶束和囊泡的研究:[硕士论文].浙江大学,2006.
    [96] F.E. Black, M. Hartshome, M.C. Dacies, et al. Surface engineering and surface analysisi of a biodegradable polymer with biotinylated end groups [J]. Langmuir, 1999, 15: 3157-3161.
    [97] 常津,刘海峰,姚康德.医用纳米控释系统的研究进展.中国生物医学工程学报,2000, 19:423-430.
    [98] S. Stolnik, S. E. Dunn, L. Illum, et al. Surface modification of poly (lactide-co-oxideide) nanospheres by biodegradable poiylactide-poly (ethyleneoxide) copolymers [J]. Pharm. Res, 1994, 11: 1800—1808.
    [99] V. C. F. Mosqueira, P. Legrand, J. L. Morgat, et al. Biodistribution of long-circulationg PEO- grafted nanocapsules in mice: Effects of PEO chain length and density [J]. Pharm Res, 2001, 18: 1411— 1419
    [100] R. Gref, P. Quellec, A. Sancxhey, et al. Development and characterization of CyA-loaded poly (lactic acid)-poly (ethylene oxide) micro and nanoparticles: Comparison with conventional PLA particulate carriers [J]. Eur J Pharm B iopharm, 2001, 51:111—118.
    [101] P. Ouellec, R. Gref, E. Dellacherie, et al. Protein encapsulation within poly (ethylene oxide)-coated nanospheres Ⅱ: Controlled release properties [J]. J Biomed MaterRes, 1999, 47 (3): 388-395.
    [102] Hani Y, Daniel C. Morphological study of biodegradable PEO/PLA block copolymers, J Biomed Mate Res 1987, 21: 1301-1316.
    [103] H. T. Wang, H. Palmer, R. J. Linhardt, et al. Degradation of polyester microspheres. Biomaterials, 1990, 11, Vol 11, (9): 679-685.
    [104] P. Dubois, C. Jacobs, R. Jerome, et al. Macromolecular engineering of polylactones and polylactides. Mechanism and kinetics of lactide homo- polymerization by aluminum isopropoxide. Macromolecules; 1991, 24(9): 2266-2270.
    [105] S. Stassen, S. Archambeau, Ph. Dubois, et al. Macromlecular engineering of polylactones and polylactides. XVI. On the way to the synthesis of ω-aliphatic primary amine poly (e-caprolactone) and polylactides. Journal of Polymer Science Part A: Polymer Chemistry, 1994, 10, Vol 32(13): 2443-2455.
    [106] Tomokazu Yasuda, Takuzo Aida, Shohei Inoue. Synthesis of polyester- polyether block copolymer with controlled chain length from β-1actone and epoxide by aluminum porphyrin catalyst. Macromolecules; 1984, 17(11): 2217-2222.
    [107] 刘莹,阮建明,张海坡等.聚L-乳酸(PLLA)的热稳定性.粉末冶金材料科学与工程.2006(12),V01.11,No.6.
    [108] 钱刚,王海娟,周兴贵等.聚乳酸热降解动力学.华东理工大学学报(自然科学版),2006(3):Vol.32,No.3.
    [109] 李洪权.高强度聚乳酸及其复合物的研制及性能研究[D].中山大学硕士学位论文,2000
    [110] B. Jeong, D.S. Lee, Y.H. Bae, et al. Biodegradable block copolymers as injectable drug -delivery system. Nature 1997, (386): 860.
    [111] Masayuki Yokoyama, Teruo Okano, Yasuhisa Sakurai, et al. Synthesis of poly(ethylene oxide) with heterobifunctional reactive groups at its terminals by an anionic initiator. Bioconjugate. Chemistry. 1992, Vol 3 (295): 275-276.
    [112] Daniel Cohn, Hani Younes. Biodegradable PEO/PLA block copolymers. Journal of Biomedical Materials Research. 1988, 11, Vol 22 (11): 993-1009.
    [113] I. Barakat, Ph. Dubois, R. Jér(?)me, et al. Macromolecular engineering of polylactones and polylactides. XV. Poly (D, L)-lactide macromonomers as precursors of biocompatible graft copolymers and bioerodible gels. Journal of Polymer Science Part A: Polymer Chemistry. 1994, 8, Vol 32 (11): 2099-2110.
    [114] P.J. Hiemenz, Principles of Colloid and Surface Chemistry, 2nd ed., Marcel Dekker, New York, 1986: 448.
    [115] G.S. Kwon, M. Naito, M. Yokoyama, et al. Micelles based on AB block copolymers of poly(ethylene oxide) and poly(.beta.-benzyl L-aspartate). Langmuir; 1993; 9(4); 945-949.
    [116] N. Mischenko, K. Reynders, K. Mortensen, et al. Structural Studies of Thermoplastic Triblock Copolymer Gels. Macromolecules; 1994; 27(8); 2345-2347.
    [117] Thomas P. Johnston, Monika A. et al. Sustained Delivery of Interleukin-2 from a Poloxamer 407 Gel Matrix Following Intraperitoneal Injection in Mice. Pharm. Res. 1992, 3, Vol 9: 425.
    [118] A. V. Kabanov, V. G. Sergeev, M. S. Foster, et al. Polyelectrolytes and Oppositely Charged Surfactants in Organic Solvents: From Reversed Micelles to Soluble Polymer-Surfactant Complexes. Macromolecules; 1995; 28(10); 3657-3663.
    [119] Fanglian Y, Yun B, Synthesis and characterization of multiblock copolymers based on l-lactic acid, citric acid and poly(ethylene oxide), J Appl Polym Sci, 2003, 41:2073-2081
    [120] Cohn D, Hotovely-Salomon A. Biodegradable multiblock PEO/PLA thermo- plastic elastomers: molecular design and properties. POLYMER 2005, 3, Vol 46 (7): 2068-2075.
    [121] Yoshida, M.; Asano, M.; Omichi, H.; et al. Dependence of Volume Phase Transition Temperature of Poly (acryloyl-L-proline methyl ester) Gel on Hydrophobic Tail Length of Anionic Surfactants. Macromolecules, 1997; 30(9): 2795-2796.
    [122] Ch. Schugens, Ch. Grandfils, R. Jerome, et al. Preparation of a macroporous biodegradable polylactide implant for neuronal transplantation. Journal of Biomedical Materials Research, 1995, 12, Vol 29 (11): 1349-1362.
    [123] Cau, F.; Lacelle, S. ~1H-NMR Relaxation Studies of the micellization of a poly (ethylene oxide)- Poly (propylene oxide)- Poly (ethylene oxide) triblock copolymer in Aqueous Solution. Macromolecules. 1996, Vol 29(1): 170-178.
    [124] G. Wanka, H. Hoffmann, W. Ulbrich. The aggregation behavior of poly- (oxyethylene) -poly-(oxypropylene) -poly-(oxyethylene)-block-copolymers in aqueous solution. Colloid Polym. Sci. 268 (1990) 101. Colloid & Polymer Science. 1990, 2, Vol 268 (2): 101
    [125] H Feng, CH Feng, F Jun, et al. In vitro Degradation and Drug Release Properties Block Copolymers PDTC-PEG-PDTC Prepared by Enzyme. J. Wuhan Univ. (Nat. Sci. Ed.) Vol. 50 No. 12 Dec. 2004: 703-706.
    [126] Min-Woo Jeong, Seong-Geun Oh and Young Chai Kim. Effects of amine and amine oxide compounds on the zeta-potential of emulsion droplets stabilized by phosphatidylcholine. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 6, Vol 181 (1-3): 247-253.
    [127] Z.W. Brown, Dynamic Light Scattering, the Method and Some Applications, Oxford Scientific Publications, London, 1993: 327-342.
    [128] Wyn Brown, Karin Schillen, Soeren Hvidt. Triblock copolymers in aqueous solution studied by static and dynamic light scattering and oscillatory shear measurements: influence of relative block sizes. Journal of Physical Chemistry B, 1992, Vol 96(14): 6038-6044.
    [129] Kwan-Wook Kwon, Moon Jeong Park, You Han Bae, et al. Gelation behavior of PEO-PLGA-PEO triblock copolymers in water. Polymer, 2002,5, Vol 43 (11): 3353-3358.
    [130] A. V. Kabanov, I. R. Nazarova, I. V. Astafieva, et al. Micelle Formation and Solubilization of Fluorescent Probes in Poly (oxyethylene-b-oxypropylene-b-oxyethylene) Solutions. Macromolecules. 1995, 28(7): 2303-2314.
    [131] N. Mischenko, K. Reynders, K. Mortensen, et al. Structural Studies of Thermoplastic Triblock Copolymer Gels. Macromolecules; 1994; 27(8); 2345-2347.
    [132] Thomas P. Johnston, Monika A. Punjabi, Christopher J. Froelich. Sustained Delivery of Interleukin-2 from a Poloxamer 407 Gel Matrix Following Intraperitoneal Injection in Mice. Pharm. Res. 1992, 3, Vol 9: 425.
    [133] Wout, Z. G.; Pec, E. A.; Maggiore, J. A.; et al. Parenter. Sci. Technol. 1992,46,192.
    [134] Moon Jeong Park, Kookheon Char. Two Gel States of a PEO-PPO-PEO Triblock Copolymer Formed by Different Mechanisms. Macromolecular Rapid Communications. 2002, 8, Vol 23 (12): 688-692.
    [135] Ferry, J. D. Viscoelastic Properties of Polymers, 3rd ed. Wiley: New York, 1989.
    [136] Larson, R. G. The Structure and Rheology of Complex Fluids; Oxford University Press: Oxford, 1999.
    [137] Lauten, R. A.; Kjoniksen, A.-L.; Nystrom, B. Colloid Polymer Interactions and Aggregation in Aqueous Mixtures of Polystyrene Latex, Sodium Dodecyl Sulfate, and a Hydrophobically Modified Polymer: A Dynamic Light Scattering Study. Langmuir, 2001, Vol 17(3): 924-930.
    [138] Li Youxin, Christian Volland and Thomas Kissel. In-vitro degradation and bovine serum albumin release of the ABA triblock copolymers consisting of poly (L (+) lactic acid), or poly (L (+) lactic acid-co-oxideic acid) A-blocks attached to central polyoxyethylene B-blocks. Journal of Controlled Release, 1994,12, Vol 32 (2): 121.
    [139] M. Karbarz, Z. Stojek, T.K. Georgiou, et al. Microphase separation in ABA triblock copolymer-based model conetworks in the bulk: Effect of loop formation. Polymer, 2006, 6, Vol 47(14): 5182-5186.
    [140] Yan, Y.; Hoffmann, H.; Drechsler, M.; et al. Influence of Hydrocarbon Surfactant on the Aggregation Behavior of Silicone Surfactant: Observation of Intermediate Structures in the Vesicle-Micelle Transition. J. Phys. Chem. B. 2006; Vol 110(11): 5621-5626.
    [141] Sarvesh K. Agrawal, Naomi Sanabria-DeLong, Jeannine M. Coburn, et al. Novel drug release profiles from micellar solutions of PLA-PEO-PLA triblock copolymers. Tetrahedron Letters. 2000,41:5403-5406.
    [142] Inmaculada Molina, Suming Li, Manuel Bueno Martinez, et al. Protein release from physically crosslinked hydrogels of the PLA/PEO/PLA triblock copolymer-type. Carbohydrate Research.1990, 202:151-164.
    [143] Byeong moon Jeong, You Han Bae, Sung Wan Kim. Biodegradable thermosensitive micelles of PEG-PLGA-PEG triblock copolymers. Colloids and Surfaces B: Biointerfaces. 1999(16): 185-193.
    
    [144] Jae young Lee, Eun Chul Cho and Kilwon Cho. Incorporation and release behavior of hydrophobic drug in functionalized poly (lactide)-block-poly (ethylene oxide) micelles. Advanced Drug Delivery Review, 2002, Vol 53: 1093-1099.
    
    [145] X. M. Deng, X. H. Li, M. L. Yuan, et al. Optimization of preparative conditions for poly-DL-lactide-poly- ethylene oxide microspheres with entrapped Vibrio Cholera antigens. Journal of Controlled Release, 1999,3, Vol 58 (2), 2:123-131.
    [146] H. Fessi, F. Puisieux, J. Ph. Devissaguet, N. et al. Nanocapsule formation by interfacial polymer deposition following solvent displacement. International Journal of Pharmaceutics, 1989, 10, Vol 55(1): R1-R4.
    [147] Mingvanish, W.; Kelarakis, A.; Mai, S.-M.; et al. Rheology and Structures of Aqueous Gels of Diblock (Oxyethylene /Oxybutylene) Copolymer E22B7. J. Phys. Chem. B. 2000, Vol 104(42): 9788-9794.
    [148] Chu, B. Laser Light Scattering, 2nd ed.; Academic Press: New York, 1991.
    [149] Mitsuhiro Shibayama, Masahiko Okamoto. Dynamic light scattering study on gelatin aqueous solutions and gels. J. Chem. Phys. 2001, Vol 115:4285.
    [150] Maleki, A.; Kjoniksen, A.-L.; Nystrom, B. Effect of Shear on Intramolecular and Intermolecular Association during Cross-Linking of Hydroxyethylcellulose in Dilute Aqueous Solutions. J. Phys. Chem. B. 2005, Vol 109(25): 12329-12336.
    [151] Renee Kennedy, Darren J. Costain, Vivian C. et al. Prevention of experimental postoperative peritoneal adhesions by N, O-carboxymethyl chitosan Surgery, Volume 120, Issue 5, November 1996, Pages 866-870.
    [152] Darren J. Costain, Renee Kennedy, Curtis Ciona, et al. Prevention of postsurgical adhesions with N, O-carboxymethyl chitosan: Examination of the most efficacious preparation and the effect of N, O-carboxymethyl chitosan on postsurgical healing. Surgery, Volume 121, Issue 3, March 1997, Pages 314-319
    [153] Ragnhild J. Nordtveit Hjerde, et al. Chemical composition of O-(carboxymethyl) -chitins in relation to lysozyme degradation rates. Carbohydrate Polymers, Volume 34, Issue 3, 20 December 1997, Pages 131-139
    [154] Wenming Xie, Peixin Xu and Qing Liu. Antioxidant activity of water-soluble chitosan derivatives.Bioorganic & Medicinal Chemistry Letters, Volume 11, Issue 13, 9 July 2001, Pages 1699-1701
    [155] Zhanyong Guo, Ronge Xing, Song Liu, et al. The synthesis and antioxidant activity of the Schiff bases of chitosan and carboxymethyl chitosan. Bioorganic & Medicinal Chemistry Letters, Volume 15, Issue 20,15 October 2005, Pages 4600-4603
    
    [156] Hovgaard L, Br0ndsted H. Current Application of Polysaccharides in Colon Targeting. Crit. Rev. Ther. Drug Carrier Syst., 1996, 8:185- 223.
    
    [157] Aiedeh K, Gianasi E, Orienti I, et al. Chitosan Microcapsules as Controlled Release System for Insulin. J. Microencapsulation, 1997, 14: 567- 576.
    
    [158] Kudaibergnov S.E and Sigitov VB, Langmuir 1999, 15: 4230

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700