湿空气扩散火焰的实验和数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湿空气燃烧作为HAT、IGCC以及IGHAT等先进热力循环中的关键过程之一,其性能的优劣直接关系到热力循环系统的性能。因此本文针对构建循环的需要,对天然气和煤气化合成气在湿空气中的扩散燃烧进行了实验和数值研究,目的是更清晰、深入地理解湿空气燃烧的概念,从而对燃气轮机的湿空气燃烧操作和湿空气燃烧室的设计提供帮助。
     首先研究了空气加湿对于火焰形态、尺寸和颜色的影响。通过实验研究发现,在加湿的同时增加燃料量,从而保持燃烧室出口温度相同的情况下,天然气火焰的尺寸随空气湿度的增加会大幅增加。而对于合成气火焰,空气加湿对于火焰尺寸的影响不明显。通过理论分析和数值模拟可以得知,空气加湿后氧浓度和流场的共同作用导致火焰尺寸改变。根据研究结果提出了改善甲烷—湿空气扩散火焰尺寸过大状况的措施,通过实验验证了该措施的可行性。
     随后对湿空气扩散火焰的稳定性进行了研究。实验结果表明,甲烷—湿空气火焰的稳定性要比合成气—湿空气火焰差很多。通过分析和计算得出了甲烷火焰稳定性较差的原因,针对甲烷火焰提出了改善稳定性的措施,并且进行了实验验证。
     最后对不同燃料湿空气燃烧的污染物生成和排放特性进行了研究。全尺寸燃烧室的实验结果表明,空气加湿对于碳氢燃料与合成气火焰污染物排放的影响不同,尤其是对CO排放的影响。针对在空气加湿影响CO排放方面存在的疑问,本文运用对冲扩散火焰从化学机理方面对其进行了计算分析。随后在模型燃烧室中对合成气—湿空气扩散火焰的CO排放机理进行了研究,发现CO排放并非随含空气湿量单调增加,而是先减后增。数值模拟的结果明确地解释了出现这种趋势的原因。
     通过本文的研究,空气加湿影响扩散火焰和燃烧室性能的轮廓基本清晰。
Humid air combustion is a key process of the advanced thermodynamical cycles such as HAT, IGCC and IGHAT, so its performance is directly related to the system performance of the thermodynamical cycles. Thus, according to the requirement of constructing the cycles, the diffusion combustion of natural gas and synthesis gas from coal gasification in humid air was studied experimentally and numerically. The purpose is to achieve more clear and deep understanding on the concept of humid air combustion and then help the operation on humid air combustion and humid air combustor design of gas turbines.First of all, the influence of humid air on flame shape, size and color was studied. It was found in the experiments that the size of natural gas flames significantly increased as the air became more humid under the condition the fuel flow rate was increased when increasing air humidity thus to keep the exit temperature of the combustor to be constant. While for the synthesis gas flames, the influence of air humidity on flame size is not so apparent. Via theoretical analysis and numerical simulation, it has been known that the change of flame size is induced by the comprehensive impact of the variation of oxygen concentration and flow field due to air humidification. On the basis of the previous study, a method for improving the condition that the size of methane-humid air flame is too large was proposed and the feasibility of the method was validated by experiments.Then the stability of diffusion flames in humid air was studied. The experimental results show that the stability of methane-humid air flames is much poor than that of synthesis gas-humid air flames. The reson of the poor stability of the methane flames was known via analysis and calculation. A method to improve the stability of the methane
    flames was proposed and validated experimentally.Finally, the characteristics of pollutant generation and emission for the humid air combustion of different types of fuel were studied. The experimental results of a full-size combustor show that the influence of humid air on pollutant emission is different for hydro-carbon fuels and synthesis gas, especially on CO emission. Due to there exists some doubts on the influence of humid air on CO emission, the process was calculated and analyzed considering the chemical mechanism by using an opposed diffusion flame. Subsequently, the mechanism of CO emission of synthesis gas-humid air diffusion flames was studied by using a model combustor. It was found that the CO emission did not increase monotonically with air humidity. However, the CO emission would at first decrease and then increase. The results of numerical simulation clearly explained the reason of the exhibition of this trend.After the research work of the present study, the profile of the influence of humid air on diffusion flames and combustor performance becomes basically clear.
引文
[1] Mori, Y., Nakamura, H., Takahashi, T. and Yamamoto, K.. A Highly Efficient Regenerative Gas-Turbine System with a New Method of Heat Recovery with Water Injection. 1983, Tokyo International Gas Turbine Congress
    [2] Nakamura, H. T., et al. Regenerative Gas Turbine Cycle, US Patant 4537023, 1985
    [3] 林汝谋,蔡睿贤,张娜.跨世纪的HAT热力循环.工程热物理学报,1993,6(2):1-6
    [4] CAGT Results Workshop, ASME Turbo Expo'94, 1994
    [5] 肖云汉,林汝谋,蔡睿贤.HAT循环的系统优化.工程热物理学报,1994,15(2):133-136
    [6] 焦树建.HAT循环的热力学分析.燃气轮机技术,1995,8(2):1-11
    [7] 王永青,陈安斌,严家禄,闻学友.联合循环、STIG循环、HAT循环及其相关循环的热力性能比较.工程热物理学报,1998,19(5):545-548
    [8] 赵丽凤,刘泽龙,张世铮.整体煤气化湿空气透平(IGHAT)循环的性能分析.工程热物理学报,2000,21(4):413-416
    [9] Chiesa, P., Lozza, G. Intercooled Advanced Gas Turbines in Coal Gasification Plants with Combined of"HAT" Power Cycle. ASME paper, 97-GT-39
    [10] 赵丽凤,张世铮,肖云汉.整体煤气化湿空气透平(IGHAT)循环的参数优化.工程热物理学报,2000,21(4):141-144
    [11] 庞忠甲.失落的能源战略——回眸 IGCC二十五年.经济管理文摘,2005,18:10-22
    [12] 倪维斗.煤现代化利用的跨越式技术路线是大势所趋——论煤气化多联产及IGCC发展的必要性和紧迫性.化工技术经济,2005,23(7):7-8
    [13] 吴枫,阎文艳,阎承信.加快IGCC的发展以应对“京都议定书”.燃气轮机技术,2005,18(4):9-13
    [14] 江刚.美两家大公司联手共促IGCC电厂发展.中国环境科学,2005,25(2):240-240
    [15] 许世森.IGCC与未来煤电.中国电力,2005,38(2):13-17
    [16] 林汝谋,徐玉杰,徐钢,金红光,邓润亚.新型IGCC系统的开拓与集成技术.燃气轮机技术,2005,18(1):7-15
    [17] Stodala A. Steam and Gas Turbines. Mc-Graw-Hill, 1927.
    [18] Zeldovich, Ya B., Sadovaikov, P. Ya., and Frank-Kamenetskii, D. A.. Oxidation of Nitrogen in Combustion (Trans. By M. Shelef). Academy of Sciences of U. S. S. R., Institute of Chemical Physics, Moscow, Leningrad, 1947.
    [19] Kopa, R. D., Hollander, B. R., Hollander, F. H. and Kimura, H.. Combustion Temperature, Pressure and Products an Chemical Equillibrium. SAE Meeting paper 633A
    [20] Abthoff, J. Measurement and Modification of NOx Emission by Internal Combustion Engines by Measures Applied to the Engine. Part One: The NOx Emission of Diesel Engines. Combustion Engine Research Association, Frankfurt/Main-Niedurad;MIRA Translation. Research Dept. No. 2-216/1, 1968
    [21] Schaub, F. S. and Beightol, K. V.. NOx Emission Reduction Methods for Large Bore Diesel and Natural Gas Engines. ASME paper, 71-WA/D4p-2
    [22] Walder, C. J.. Reductions of Emissions from Diesel Engines. 1973, SAE meeting, 73024
    [23] Wilson, R. P.. Emission study of a Single-Cylinder Diesel Engine. 1974, SAE meeting, 740123
    [24] Melton, Jr. R. B., Lestz, S. J., Quillian, Jr. R. D. and Rambie, E. J.. Direct Water Injection Cooling for Military Engines and Effects on the Diesel Cycle., 1389-1400
    [25] Greeves, G., Khan, I. M. and Onion, G.. Effects of Water Introduction on Diesel Engine Combustion and Emissions. The 16th Symposium (International) on Combustion, The Combustion Institute, 1976 321-336
    [26] Robison, S. A.. Humidity Effects on Engine Nitric Oxide Emissions at Steady State Conditions. SAE meeting, 1970, 700467
    [27] Lestz, S. S., Meyer, W. E. and Colony, C. M.. Emissions form a Direct-Cylinder Water-Injected Spark-Ignition Engine. SAE meeting, 1972, 720113
    [28] Manos, M. J., Bozek, J. W. and Huls, T. A.. Effect of Laboratory Ambient Conditions on Exhaust Emissions. SAE meeting, 1972, 720124
    [29] Klapatch, R. D. and Koblish, T. R.. Nitrogen Oxide Control With Water Injection in Gas Turbines. ASME paper, 1971, 71 WA/GT-9
    [30] Dibelius, N. R., Hilt, M. B., and Johnson, R. H.. Reduction of Nitrogen Oxides from Gas Turbines by Steam Injection. ASME paper, 1971, 71-GT-58
    [31] Hilt M. B. and Johnson, R. H.. Nitric Oxide abatement in Heavy Duty Gas Turbine Combustors by Means of Aerodynamics and Water Injection. ASME paper, 1972, 72-GT-53
    [32] Singh, P. P., Young, W. E. and Ambrose, M. J.. Formation and Control of Oxides of Nitrogen Emissions from Gas Turbine Combustion Systems. ASME paper, 1972. 72-GT-22
    [33] Day, W. H. and Kydd, P. H.. Maximum Steam Injection in Gas Turbines. ASME paper, 1972 72-JPG-GT-l
    [34] Ambrose, M. J. and Obidinski, E. S.. Recent Field Tests for Control of Exhaust Emissions form a 35 MW Gas Turbine. ASME paper, 1972, 72-JPG-GT-2
    [35] Marchionna, N. R.. Effect of Inlet-Air Humidity on the Formations of Oxides of Nitrogen in Gas Turbine Combustor. NASA TMX-68209, 1973
    [36] Ingebo, R. D. and Norgren, C. T.. Effect of Primary-Zone Water Injection on Pollutants form a Combustor Burning Liquid ASTM-A-1 and Vaporized Propane Fuels. NASA TN D-7293, 1973
    [37] Marchionna, N. R., Diehl, L. A. and Trout, A. M.. The Effect of Water Injection on Nitric Oxide Emissions of a Gas Turbine Combustor Burning ASTM Jet-A Fuel. NASA TM X-2958, 1973
    [38] Shaw, H.. The Effect of Water on Nitric Oxide Production in Gas Turbine Combustors. ASME paper, 1975, 75-GT-70
    [39] Dobbeling K, Hellat J, Koch H. 25 Years of BBC/ABB/Alstom Lean Premix Combustion Technologies. 2005, ASME paper GT2005-68269
    [40] Miyauchi, T., Mori, Y. and Yamaguchi, T.. Effect of Steam Addition on NO Formation. In 18th Symposium (International) on Combustion, The Combustion Instiute, 1981:43-51
    [41] Zhao, D. and Yamashita, H.. Behavior and Effect on NO_x formation of OH radical in Methane-Air Diffusion Flame with Steam Addtion. Combustion and Flame, 2002, 130:352-360
    [42] Meyer, J. L. and Grienche, G.. An Experimental Study of Steam Injection in an Aeroderivative Gas Turbine. ASME paper 97-GT-506, 1997
    [43] Day, W. H., Kendrick, D., Knight, B., Bhargava, A., Sowa, W., Colket, M., Casleton, K., Maloney, D.. HAT Cycle Technology Development Program. In Advanced Turbine Systems Annual Program Review Meeting, 1999. [see also: http://www.netl.doe.gov/publications/proceedings/99/99ats/2-8.pdf]
    [44] Bhargava, A., Colket, M., Sowa, W., Casleton, K., Maloney, D.. An Experemental and Modeling Study of Humid Air Premixed Flames. Journal of Engineering Gas Turbines Power, 2000, 122(3): 405-411
    [45] Hermann, F., Klingmann, J., Gabrielsson, R.. Computational and Experimental Investigation of Emissions in a Highly Humidified Premixed Flame. 2003, ASME paper GT2003-38337
    [46] Bianco, M., Camporeale S. M., Fortunato, B.. CFD Simulation of Humid Air Premixed Flame Combustion Chamber for Evaporative Gas Turbine Cycles. 2001, ASME paper, 2001-GT-0061
    [47] Chen, A. G., Maloney, D. J., Day, W. H.. Humid Air NOx Reduction Effect on Liquid Fuel Combustion. 2002, ASME paper, GT-2002-30163
    [48] Belokon, A. A., Khritov, K. M., Klyachko, L. A., Zakharov, V. M., Opdyke, Jr. G.. Prediction of Combustion Effeciency and NOx levels for Diffusion Flame Combustors in HAT Cycles. ASME paper, GT-2002-30369
    [49] Engdar, U., Hermann, F., Nilsson, P., Klingmann, J.. Investigation of Turbulent Combustion in Humid Air Using a Level-Set Flamelet Library Approach. ASME paper, GT2004-53364
    [50] 金大祥,王代骄,胡宗军,吴铭岚,邹介堂.大湿度燃烧室实验台的研制.动力工程,2000,20(5):816-820
    [51] 顾欣,臧述升,葛冰.湿空气扩散燃烧火焰结构特性研究.中国工程热物理学会燃烧学学术会议论文集(下册),2005,920-926
    [52] 周见光,臧述升,翁史烈.大湿度扩散燃烧的变工况特性.中国工程热物理学会燃烧学学术会议论文集,2003,56-62
    [53] Zhang, Z., Xiao, Y., Wang, Y., Nie, C.. Influence of Air Humidity on the Oxidation of CO in Syngas Diffusion Flames. ASME paper, GT2006-90338
    [54] Wang, Y., Zhang, Z., Cui, Y., Xu, G., Nie, C., Xiao, Y., Huang, W.. Influence of Humid Air on Gaseous Combustion of Gas Turbines. ASME paper, GT2005-68946
    [55] Beer, J. M. and Chigier, N. A.. Combustion Aerodynamics. Robert E. Krieger Publishing Company Inc., 1983
    [56] 格狄内.国防科学技术资料研究所(译),燃烧过程中的气体取样和化学分析, 1963
    [57] Kee, R. J., Miller, J. A. and Evans, G. H.. A Computational Model of the Structure and Extinction of Streained, Opposed Flow, Premixed Methane-Air Flames. Proceedings of the Twenty-Second Symposium (intemational) on Combustion. The Combustion Institute, Pittsburgh, Pennsylvania, 1988, 1479-1494
    [58] Schilichting, H.. boundary Layer Theory, McGraw-Hill, New York, 1979
    [59] Launder, B. E., Spalding, D. B.. Lectures in Mathematical Models of Turbulence. Academic Press, London, England, 1972
    [60] Bray, K. N. and Peters, N.. Laminar Flamelets in Turbulent Flames. In Libby, P. A. and Williams, F. A., editors, Turbulent Reacting Flows, Academic Press, 1994, 63-114
    [61] Peters, N.. Laminar Diffusion Flamelet Models in Non-Premixed Combustion. Progress in Energy and Combustion Science, 1984, 10: 319-339
    [62] Peters, N.. Laminar Flamelet Concepts in Turbulent Combustion. Proceedings of the Twenty-First Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, Pennsylvania, 1986, 1231-1250
    [63] Sivathanu, Y. R. and Faeth, G. M.. Generalized State Relationships for Scalar Properties in Non-Premixed Hydrocarbon/Air Flames. Combustion and Flame, 1990, 82: 211-230
    [64] Jones, W. P. and Whitelaw, J. H.. Calculation Methods for Reacting Turbulent Flows: A Review. Combustion Flame, 1982, 48: 1-26.
    [65] Pope, S. B.. PDF Methods for Turbulent Reactive Flows. Progress in Energy and Comubustion Science, 1985, 11: 119-192
    [66] GRI;http://www.me.berkeley.edu/gri_mech/, 1999
    [67] Drake, M. C., and Blint, R. J.. Thermal NOx in Stretched Laminar Opposed-Flow Diffusion Flames with CO/H2/N2 Fue. Combustion and Flame, 1989, 76: 151-167
    [68] Chew, T. C., Britter, R. E., Bray, K. N. C. Laser Tomography of Turbulent Premixed Bunsen Flames. Combustion and Flame, 1989, 75: 165: 174.
    [69] 王岳,雷宇,张培远,等.用OH-PLIF研究浮力对预混V型火焰的作用[J].工程热物理学报,2001,22(3):382-385.
    [70] Kass, M., Witkin, A., Tezopoulos, D., Active Countour Models [J]. International Journal of Computer Vission, 1987, 1 (4): 321-331.
    [71] Abu-Gharbieh, R., Hamarneh, G., Gustavvsson, T., et al. Flame Front Tracking by Laser Induced Fluorescence Spectroscopy and Advanced Image Analysis [J]. Optics Express, 2001, 8 (5): 278-287.
    [72] Chan, T. F., Vese, L. A.. Active Contours without Edges [J]. IEEE Transactions on Image Processing, 2001, 10 (2): 266-277.
    [73] Sechian, J. A., Level Set Methods and Fast Marching Methods [M]. Cambridge: Cambridge University Press, 1999.
    [74] Mellor, A. M.. Design of Modem Turbine Combustors. Academic Press, Harcort Brace Jovanovich, Publishers.
    [75] Vanquickenbome, L., Tigglen, A.. The Stabilization Mechanism of Lifted Diffusion Flames. Combustion and Flame, 1966, 10(1): 59-69
    [76] J. E. Broadwell, W. J. A. Dahm, M. G. Mungal, 27th Symposium (Intemational) on Combustion, The Combustion Institute, Pittsbrgh, 1984, 303-310
    [77] W. J. A. Dahm, R. W. Dibble, AIAA Paper 88-0538,1988
    [78] R. C. Miake-Lye, J. A. Hammer, 22th Symposium (Intemational) on Combustion, The Combustion Institute, Pittsbrgh, 1988, 817-824
    [79] C. M. Müler, H. Breitbach, N. Peters, 25th Symposium (Intemational) on Combustion, The Combustion Institute, Pittsbrgh, 1995, 1099-1106
    [80] Muniz, L. and Mungal, M.G.. Instantaneous Flame-Stabilization Velocitys in Lifted-jet Diffusion Flames. Combustion and Flame, 1997, 111 (1): 16-31
    [81] A. Linan, Acta Astronaut. 1 (1974) 1007-1039
    [82] Kioni, P. N., Rogg, B., Bray, K. N., and Linan, A.. Flame Spread in Laminar Mixing Layers: The Triple Flame. Combustion and Flame, 1993, 95(2): 276-290
    [83] Schefer, R. W. and Goix, P. J.. Mechanism of Flame Stabilization in Turbulent, Lifted-jet Flames. Combustion and Flame, 1998, 112(4): 559-574
    [84] Watson, K. A., Lyons, K. M., Donbar, J. M. and Carter, C. D.. Scalar and Velocity Field Measurements in Lifted CHn-Air Diffusion Flame. Combustion and Flame, 1999, 117(1): 257-271
    [85] Watson, K. A., Lyons, K. M., Donbar, J. M. and Carter, C. D.. Observations on the leading edge in lifted flame stabilization. Combustion and Flame, 1999, 119 (1): 199-202
    [86] E.F. Hasselbrink, M.G. Mungal, 27th Symposium (International) on Combustion, The Combustion Institute, Pittsbrgh, 1998, 213-221
    [87] Savelli, J. F., and Touchton, G. L.. Development of a Gas Turbine Combustion System for Medium-Btu Fuel. ASME paper 1985, 85-GT-98
    [88] Belokon, A. A., Khritov, K. M., Klyachko, L. A., Tschepin, S. A., and Vladimir, M. Z.. Prediction of Combustion Efficiency and NO_x Levels for Diffusion Flame Combustors in HAT Cycles. ASME paper, 2002, GT-2002-30609
    [89] Hermann, F., Klingmann, J., and Gabrielsson, R... Computational and Experimental Investigation of Emissions in a highly Humidified Premixed Flame. ASME paper, 2003, GT2003-38337
    [90] Chen, A. G., Maloney, D. J., and Day, W.H.. Humid Air NOx Reduction Effect on Liquid Fuel Combustion. ASME paper, 2002, GT-2002-30163
    [91] Wang, Y., Zhang, Z., Cui, Y., Xu, G., Nie, C, Xiao, Y., Huang, W.. Influence of Humid Air on Gaseous Combustion of Gas Turbines. ASME paper, 2005, GT2005-68946
    [92] Richard, J., Garo, J. P., Souil, J. M., Vantelon, J. P., Knorre, V. G.. Chemical and Physical Effects of Water Vapor Addition on Diffusion Flames. Fire Safety Journal, 2003, 38: 569-587
    [93] Yamamoto, T., Kobayashi, N., Arai, N., Tanaka, T.. Effects of Pressure on Fuel-Rich Combustion of Methane-Air under High Pressure. Energy Conversion Management, 1997,38: 1093-1100
    [94] Cundy, V. A., Morse, J. S., and Senser D. W.. Constant-Tension Thermocouple Rake Suitable for Use in Flame Mode Combustion Studies. The Review of Science Instruments, 1986, 57:1209-1210
    [95] Miller, J. H., Elreedy, S., Ahvazi, B., Woldu, F., and Hassanzadeh, P.. Tunable Diode Laser Measurement of Carbon Monoxide Concentration and Temperature in a Laminar Methane-Air Diffusion Flame, Applied Optics, 1993, 32: 6082-6089
    [96] Sato, A., Hashiba, K., Hasatani, M., Sugiyama, S., and Kimura, J.. A Correctional Calculation Method for Thermocouple Measurements of Temperatures in Flames. Combustion and Flame, 1975, 24: 35-41
    [97] FLUENT? release 6.1, Fluent Inc, 2003, Centerra Resource Park, 10 Cavendish Court, Lebanon, N.H., U.S.A.
    [98] Barths, H., Peters, N., Brehm, N., Mack, A., Pfitzner, M., and Smiljanovski, V.. Simulation of Pollutant Formation in a Gas-Turbine Combustor Using Unsteady Flamelets.. 27th Symposium (International) on Combustion, The Combustion Institute, Pittsbrgh, 1998, 1841-1847
    [99] Drake, M. C, and Blint, R. J.. Thermal NO_x in Stretched Laminar Opposed-Flow Diffusion Flames with CO/H2/N2 Fuel. Combustion and Flame, 1989, 76:151-167
    [100] Peters, N.. Laminar Diffusion Flamelet Models in Non-Premixed Turbulent Combustion. Progress of Energy and Combustion Science, 1984, 10: 319-339
    [101] Pope, S. B.. PDF Methods for Turbulent Reactive Flows. Progress of Energy and Combustion Science, 1985, 11: 119-192
    [102] Pope, S. B.. Computationally efficient implementation of combustion chemistry using in-situ adaptive tabulation. Combustion Theory and Modelling, 1997, 1: 41-63
    [103] Hermann, F., Klingmann, J., and Gabrielsson, R.. Computational and Experimental Investigation of Emission in a Highly humidified Premixed Flame. ASME Paper, 2003, GT2003-38337
    [104] Correa, S. M., Gulati, A., and Pope, S. B.. Raman Mesurements and Joint PDF Modeling of a Nonpremixed Bluff-Body-Stablized Methane Flame. Twenty-Fifth International Symposium on Combustion, The Conmbustion institute, Pittsburgh, 1994,1167-1173
    [105] Zhao, D., Yamashita, H., Kitagawa, K., Arai, N., and Furuhata, T.. Behavior and Effect on NOx Formation of OH Radical in Methane-Air Diffusion Flame with Steam Addition. Combustion and Flame, 2002, 130: 352-360
    [106] Correa, S. M., Gulati, A., and Pope, S. B.. Raman Mesurements and Joint PDF Modeling of a Nonpremixed Bluff-Body-Stablized Methane Flame. Twenty-Fifth International Symposium on Combustion, Pittsburgh: The Conmbustion institute, 1994. 1167-1173
    [107] Hu, I. Z., and Correa, S. M.. Calculations of Turbulent Flames Using a PSR Microstructural Library, Twenty-Sixth International Sympoium on Combustion, Pittsburgh: The Combustion Institute, 1996. 307-313

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700