中国松嫩平原短芒野大麦(Hordeum brevisubulatum (Trin.) Link.)天然种群分子遗传与表观遗传多样性及其遗传结构的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首次采用分子标记技术AFLP(Amplified fragment length polymorphism)、S-SAP (Sequence-specific amplified polymorphism)和MSAP (Methylation-sensitive amplified polymorphism)三种分子标记研究了松嫩平原9个短芒野大麦((Hordeum brevisubulatum (Trin.) Link.))天然种群235个单株的分子遗传和表观遗传多样性及遗传结构分化,并对这三种分子标记进行了比较。
    采用AFLP和S-SAP分子标记对松嫩平原9个短芒野大麦天然种群遗传多样性和遗传结构进行了分析。两种标记的各种遗传多样性指标、基因流、遗传距离、聚类分析、PCA分析和AMOVA分析都表明,松嫩平原9个短芒野大麦天然种群遗传多样性和遗传结构变化的趋势是一致的。松嫩平原黑龙江省齐齐哈尔地区草原分布广泛,基本没有明显的人为干扰和山脉等地理隔离,并且适合短芒野大麦生长,其4个短芒野大麦种群的遗传多样性偏低,遗传距离较近,基因流较高,其分布明显符合距离隔离模型;而吉林省的5个种群都受到人类不同程度的干扰,大部分草原改为耕地或退化为重度盐碱地,形成了人为隔离,其遗传多样性偏高,遗传距离较远,基因流较低,其分布明显符合脚踏石模型。9个短芒野大麦天然种群分布在该物种地理分布的最东端,根据多样性分析,表明其迁移方向应为由南向北,即从松嫩平原南部的吉林省向北部的黑龙江省扩散。很明显,两种显性标记技术都适合高度异交短芒野大麦种群遗传多样性和遗传结构分化的研究,而对种群样本量的要求较低,每个种群大于16株的样本量就可以代表绝大部分种群遗传信息。但是从各种指标来看,S-SAP能检测到更多的变异,遗传多样性更高,更适合该物种种群分子遗传学研究。
    根据AFLP和S-SAP的分析结果,两种方法都把松嫩平原9个短芒野大麦天然种群的235个单株聚为3组,从3组中分别取出8个单株来分析3组共24个短芒野大麦单株的甲基化模式变化。很明显,松嫩平原短芒野大麦天然种群的甲基化模式具有种群特异性,采用聚类分析,能把绝大多数单株聚到相应的组中。另一方面,通过对AFLP、S-SAP、甲基化非敏感多态(Methylation-insensitive polymorphism: MSIP)和甲基化敏感多态(Methylation-sensitive polymorphism: MSP)Jaccard相似性系数的Mental相关性检测发现,短芒野大麦种群甲基化模式变化不仅与序列和反转座子序列变化有一定的相关,还受其它控制系统的调控。
Genetic diversity and structure of 9 natural populations of wild barley (Hordeumbrevisubulatum (Trin.) Link.), which encomprised of a total of 235 individuals collected fromSongnen plain were analyzed by amplified fragment length polymorphism (AFLP),specific-sequence amplified polymorphism (S-SAP) and methylation-sensitive amplifiedpolymorphism (MSAP) markers. The efficiency of these three markers was also evaluated.
    Indices of genetic diversity, genetic distance, gene flow, genotype frequency, clusteranalysis, PCA analysis and AMOVA analysis generated from both AFLP and S-SAP markershad the same trend. It was determined that a sample number of 16 was enough to represent themajority of genetic diversity for a given population of wild barley. Grasslands in the Qiqihaerarea distribute broadly and were not isolated by geography such as mountains, or notdisturbed by human interferences, and this area is suitable for growth of wild barley too. Sogenetic diversity indices were lower, genetic distance between populations was smaller andgene flow among given populations was higher among these populations. Spatial structure ofthe four populations on Qiqihaer area was consistent with an isolation-by-distance model(r=0.80917 for AFLP data and r=0.95479 for S-SAP data). But loci of five populations in Jilinprovinces were interrupted severely by huamn activities, most of the plains have been turnedinto plowland or salinity/alkaline soil. Therefore, genetic diversity indices were higher,genetic distance between populations was larger and gene flow among populations was lowerin these populations. The spatial structure of 5 populations on Jilin area was consistent with astepping stone model. On the other side, the 9 natural populations of wild barley distribute onthe east peripheral area, the direction of migration of wild barley on Songnen plain maybefrom south (Jilin) to north (Heilongjiang) based on population diversity and structure. S-SAPis more suitable for detecting variety than AFLP after comparing indices of genetic diversitybetween them.
    The 235 wild barley indivuduals were clustered into three groups using UPGMA basedon AFLP and S-SAP Jaccard similarity indices (JSI) separately. Eight plants from each groupwere selected and analyzed by MSAP. First, The 24 MSAP-studied individuals can beclustered into their respective groups except for KZJ1 using MSP (Methylation-sensitivepolymorphism) JSI matrix by UPGMA (r=0.72864), suggests that methylation pattern of wildbarley population in Songnen plain is characteristic of each population. Second, themethylation pattern change is not only related to DNA sequence variation, but mayberegulated by other controlling systems from Mental test of JSI matrices of AFLP, S-SAP, MSPand MISP (Methylation-insensitive polymorphism).
引文
[1] 郭本兆,周立华. 中国大麦属分类、分布初步研究. 植物学分类,1980,18:420-423.
    [2] 于立华, 王胜利. 野大麦染色体的核型分析. 内蒙古草业 2004, 16: 24-25
    [3] Bothmer R von, Jacobsen N, Baden C, et al. An ecogeographical study of the genus Hordeum. International Plant Genetic Resources. Rome, 1995.
    [4] Wang Richard R-C, Cauderon Y, Banks D. A Report of Collecting Expedition to Northeast China for Triticeae Genetic Resources in 1988.
    [5] 李彦舫,沈景林,李喜文等. 军需 1 号野大麦品种选育研究. 吉林畜牧兽医, 2004, 8: 31-33.
    [6] 李红, 杨允菲. 松嫩平原碱化草甸野大麦无性系构件的定量分析. 草业学报, 2000, 9(4): 13-19.
    [7] 李红, 杨允菲. 松嫩平原野大麦无性系分蘖株的年龄结构. 应用生态学报, 2000, 11(3): 403~407.
    [8] 李红,杨允菲, 卢欣石. 松嫩平原野大麦种群可塑性生长及密度调节. 草地学报,2004,12:87-90
    [9] 杨允菲, 张宝田, 李建东. 松嫩平原人工草地野大麦无性系冬眠构件的结构及形成规律. 生态学报, 2004, 24: 268-273.
    [10] 杨允菲, 祝玲. 松嫩平原碱化草甸野大麦的种子散布格局. 植物学报, 1994, 36 (8): 636-644.
    [11] Nevo E, Zohary D, Brown AHD, et al. Genetic diversi-ty and environmental associations of wild barley, Hordeum spontaneum, in Israel. Evolution, 1979, 33: 815-833.
    [12] Jana S, Pietrzak LN. Comparative assessment of genetic diversity in wild and primitive cultivated barley in a center of diversity. Genetics, 1988, 119: 981-990.
    [13] Volis S, Yakubov B, Shulgina I, et al. Tests for adaptive RAPD variation in population genetic structure of wild barley, Hordeum spontaneum Koch.,Biological Journal of the Linnean Society, 2001, 74: 289-303.
    [14] Fernández ME, Figueiras AM, Benito C. The use of ISSR and RAPD markers for detecting DNA polymorphis, genotype identification and genetic diversity among barley cultivars with known origin. Theor Appl Genet, 2002, 104: 845-851.
    [15] Bustos AD, Casanova C, Soler C, et al.RAPD variation in wild populations of four species of the genus Hordeum (Poaceae), Theor Appl Genet, 1998, 96: 101-111.
    [16] Blattner FR, Badani Mendez AG. RAPD data do not support a second centre of barley domestication in Morocco,Genetic Resources and Crop Evolution 48: 13–19, 2001.
    [17] Zhang Q, Saghai-Maroof MA, Kleinhofs A. Comparative analysis of RFLPs and isozymes within and among populations of Hordeum vulgare spp. spontaneum. Genetics, 1993, 134: 906-916.
    [18] Ivandic VC, Hackett A, Nevo E, et al. Analysis of simple sequence repeat (SSRs) in wild barley from the Fertile Crescent: associations with ecology, geography and flowering time. Plant Mol Biol, 2002, 48: 511-527.
    [19] Matus IA, Hayes PM. Genetic diversity in three groups of barley germplasm assessed by simple sequence repeats. Genome, 2002, 45: 1095-1106.
    [20] Baek, HJ, Beharav A, Nevo E. Ecological-Genomic diversity of microsatellites in wild barley, Hordeum spontaneum, populations in Jordan. Theor Appl Genet, 2003, 106: 397–410.
    [21] Schut JW, Qi X, Stam P. Association between relationship measures based on AFLP markers, pedigree data and morphological traits in barley. Theor Appl Genet, 1997, 95: 1161-1168.
    [22] Turpeinen T, Vanhala T, Nevo E, et al. AFLP genetic polymorphism in wild barley (Hordeum spontaneum) populations in Israel, Theor Appl Genet., 2003, 106: 1333-1339.
    [23] Waugh R, McLean K, Flavell AJ, et al. Genetic distribution of BARE-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol Gen Genet, 1997, 253: 687-694.
    [24] Soleimani VD, Baum BR, Johnson DA. Analysis of genetic diversity in barley cultivars reveals incongruence between S-SAP, SNP and pedigree data. Genetic Resources and Crop Evolution, 2006, Online First.
    [25] Soleimani VD, Baum BR, Johnson DA. Genetic diversity among barley cultivars assessed by sequence-specific amplification polymorphism, Theor Appl Genet., 2005, 110: 1290-1300.
    [26] Vos P, Hogers R, Bleeker M, et al. AFLP: A new technique for DNA "ngerprinting. Nucleic Acids Res, 1995, 21: 4407-4414.
    [27] Powell W, Morgante M. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Molecular Breeding, 1996, 2: 225-238.
    [28] Badr A, Sch R, Rabey HE, et al. On the Origin and Domestication History of Barley (Hordeum vulgare). Molecular Biology and Evolution, 2000, 17: 499–510.
    [29] Heun M, Schaefer-Preg R, Klawan D, et al. Site of einkorn wheat domestication identified by DNA fingerprinting. Science, 1997, 278: 1312-1314.
    [30] Pakniyat H, Powell W, Baird E, et al. AFLP variation in wild barley (Hordeum spontaneum C. Koch) with reference to salt tolerance and associated ecogeography. Genome, 1997, 40: 332-341.
    [31] Becker J, Vos P, Kuiper M, et al. Combined mapping of AFLP and RFLP markers in barley. Mol Gen Genet, 1995, 249: 65-73.
    [32] Castiglioni P, Pozzi C, Heun M, et al. An AFLP-based procedure for the efficient mapping of mutants and DNA probes in barley. Genetics, 1998, 149: 2039-2056.
    [33] Ozkan H, Brandolini A, Schafer-Pregl R, et al. AFLP analysis of a collection of tetraploid wheats indicates the origin of emmer and hard wheat domestication in southeast Turkey. Mol Biol Evol., 2002, 19: 1797-1801.
    [34] 陈心平,闫玲,丁毅. 中国近缘野生大麦的 RAPD 分析与进化途径探讨[J]. 植物学报, 2000,42:179-183.
    [35] SanMiguel P, Tikhonov A, Jin YK, et al. Nested retrotransposons in the intergenic regions of the maize genome. Science, 1996, 274: 765-764.
    [36] SanMiguel P, Bennetzen Jl. Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons. Ann Bot., 1998, 81: 37-44.
    [37] Vicient, CM, Kalendar, R., Schulman, AH. Variability, Recombination and Mosaic Evolution of the Barley BARE-1 Retrotransposon. Journal of Molecular Evolution, 2005, 61: 275-91.
    [38] Heslop-Harrison JS, Brandes A, Taketa S, et al. The chromosomal distributions of Ty1-copia group retrotransposble elements in higher plants and their implications for genome evolution. Genetica, 1997, 100: 197-204.
    [39] Nuzhdin SV. Sure facts, speculations, and open questions about the evolution of transposable element copy number. Genetica, 1999, 107: 129-137.
    [40] Liu B, Wendel JF. Retrotransposon activation followed by rapid repression in introgressed rice plants. Genome, 2000, 43: 874-880.
    [41] Shirasu K, Schulman AH, Lahaye T, et al. A contiguous 66-kb barley DNA sequence provides evidence for reversible genome expansion. Genome Res., 2000, 10: 908-915.
    [42] Shimamura M, Yasue H, Ohshima K, et al. Molecular evidence from retroposons that whales form a clade within even-toed ungulates. Nature, 1997, 388: 666-670.
    [43] Suoniemi A, Narvanto A, Schulman A. The BARE-1 retrotransposon is transcribed in barley from an LTR promoter active in transient assays. Plant Mol Biol, 1996, 31: 295-306.
    [44] Suoniemi A, Schmidt D, Schulman AH. BARE-1 insertion site preferences and evolutionary conservation of RNA and cDNA processing sites. Genetica, 1999, 100: 219-230.
    [45] J??skel?inen M, Mykkanen A H, Arna T.et al. Retrotransposon BARE-1: expression of encoded proteins and formation of virus-like particles in barley cells. Plant J, 1999, 20: 413-422.
    [46] Wei F,Wing RA, Wise RP. Genome dynamics and evolution of the Mla (powdery mildew) resistance locus in barley. Plant Cell, 2002, 14: 1903-1917.
    [47] Suoniemi A, Anamthawat-JoH nsson K, Arna T, et al. Retrotransposon BARE-1 is a major, dispersed component of the barley (Hordeum vulgare L.) genome. Plant Mol Biol, 1996, 30: 1321-1329.
    [48] Vicient CM, Suoniemi A, Anamthawat-Jonsson K, et al. Retrotransposon BARE-1 and its role in genome evolution in the genus Hordeum. Plant Cell, 1999, 11: 1769-1784.
    [49] Kalendar R, Tanskanen J, Immonen S, et al. Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc Natl Acad Sci USA, 2000, 97: 6603-6607.
    [50] Turpeinen T, Kulmala J, Nevo E. Genome size variation in Hordeum spontaneum populations. Genome, 1999, 42, 1094-1099.
    [51] Wessler SR. Plant retrotransposons: turned on by stress Curr. Biol, 1996, 6: 959-961.
    [52] Queen RA, Gribbon BM, James C, et al. Retrotransposon-based molecular markers for linkage and genetic diversity analysis in wheat. Mol Gen Genomics, 2004, 271: 91-97.
    [53] Casa AM, Brouwer C, Nagel A, et al. The MITE family Heartbreaker (Hbr): molecular markers in maize. Proc Natl Acad Sci USA, 2000, 97: 10083–10089.
    [54] Ellis THN, Poyer SJ, Knox MR, et al. Tyl-copia class retrotransposon insertion site polymorphism for linkage and diversity analysis in pea. Mol Gen Genet, 1998, 260: 9–19.
    [55] Labra M, Imazio S, Grassi F, et al. Vine-1 retrotransposon-based sequence-specific amplified polymorphism for Vitis vinifera L. genotyping. Plant Breed, 2004, 123: 180-185.
    [56] Venturi S, Dondini L, Donini P, et al. Retrotransposon characterisation and fingerprinting of apple clones by S-SAP markers. Theor Appl Genet., 2006, 112: 440-444.
    [57] Porceddu E, Albertini G, Barcaccia G, et al. Development of S-SAP markers based on an LTR-like sequence from Medicago sativa L. Mol Gen Genet, 2002, 267: 107-114.
    [58] Syed NH, Sureshsundar S, Wilkinson MJ, et al. Ty1-copia retrotransposon-based SSAP marker development in cashew (Anacardium occidentale L.) Theor Appl Genet, 2005, 110: 1195-1202.
    [59] Flavell AJ. Ty1-copia retrotransposon-based SSAP marker development in cashew (Anacardium occidentale L.), Theor Appl Genet, 2005, 110: 1195–1202.
    [60] Gribbon BM, Pearce SR, Kalendar R, et al. Phylogeny and transcriptional activity of Ty1-copia group retrotransposons in cereal genomes. Mol Gen Genet, 1999, 261: 883-891.
    [61] Tam SM, Mhiri C, Kerkveld AVM, et al. Comparative analyses of genetic diversities within tomato and pepper collections detected by retrotransposon-based SSAP, AFLP and SSR. Theor Appl Genet, 2005, 110: 819-831.
    [62] Bender J. Plant epigenetics. Current Biology, 2002, 12: 412-414.
    [63] Messeguer R, Ganal MW, Steffens JC et al. Characterization of the level, target sites and inheritance of cytosine methylation in tomato nuclear DNA. Plant. Mol. Biol., 1991, 16: 753-770.
    [64] Finnegan EJ, Kovac KA. Plant DNA methyltransferases. Plant Mol Biol, 2000, 43: 189–201.
    [65] Xiong, LZ, Xu CG, Saghai Maroof MA, et al. Patterns of cytosine methylation in an elite rice hybrid and its parental lines, detected by a methylation-sensitive amplification polymorphism technique. Mol. Gen. Genet., 1999, 261: 439-446.
    [66] Sheldon CC, Burn JE, Perez PP, et al. The FLF MADS box gene: a repressor of flowering in Arabidopsis regulated by vernalization and methylation. Plant Cell, 1999, 11: 445-458.
    [67] Ruffini Castiglione M, Cremonini R, Frediani M. DNAmethylation patterns on plant chromosomes. Caryologica, 2002, 55: 275-282.
    [68] Grossniklaus U, Spillane C, Page DR, et al. Genomic imprinting and seed development: endosperm formation with and without sex. Current Opinion in Plant Biology, 2001, 4: 21-27.
    [69] Gehring M, Choi Y, Fischer R. Imprinting and seed development. The Plant Cell, 2004, 16: 203-213.
    [70] Martienssen RA, Colot V. DNA methylation and epigenetic inheritance in plants and filamentous fungi. Science, 2001, 293: 1070-1074.
    [71] Steimer A, Amedeo P, Afsar K, et al. Endogenous targets of transcriptional gene silencing in Arabidopsis. The Plant Cell, 2000, 12: 1165-1178.
    [72] Lewis N, Lukens J, Pires C, et al. Patterns of Sequence Loss and Cytosine Methylation within a Population of Newly Resynthesized Brassica napus Allopolyploids,Plant Physiology, 2006, 140: 336-348.
    [73] Wendel JF, Wessler SR. Retrotransposon-mediated genome evolution on a local ecological scale. Proc Natl Acad Sci USA, 2000, 97: 6250-6252.
    [74] Liu B, Wendel JF. Epigenetic phenomena and the evolution of plant allopolyploids. Molecular Phylogenetics and Evolution, 2003, 29: 365-379.
    [75] Comai L , Tyagi A P , Winter K, et al. Phenotypic in stability and rapid gene silencing in newly formed arabidopsis allotetraploids. The Plant Cell, 2000, 12: 1551-1568.
    [76] Grandbastien MA. Activation of plant retrotransposons under stress conditions. Trends in Plant Science, 1998, 3: 181-187.
    [77] Takeda S, Sugimoto K, Otsuki H, et al. A 13-bp cis-regulatory element in the LTR promoter of the tobacco retrotransposonTto1 is involved in responsiveness to tissue culture, wounding, methyl jasmonate and fungal elicitors. Plant Journal, 1999, 18: 383-393.
    [78] Hirochika H, Sugimoto K, Otsuki Y, et al. Retrotransposons of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci USA, 1996, 93: 7783-7788.
    [79] Kikuchi K, Terauchi K,Wada M, et al. The plant MITE mPing is mobilized in anther culture. Nature, 2003, 421: 167-170.
    [80] Liu B, Piao HM, Zhao FS, et al. DNA methylation changes in rice induced by Zizania latifolia (Griseb.) DNA introgression. Hereditas, 1999, 131: 75-78.
    [81] Chandler VL, Rivin C, Walbot V. Stable non-mutator stocks of maize have sequences homologous to the Mu1 transposable element. Genetics, 1986, 114: 1007–1021.
    [82] Fedoroff N, SchlappiM, Raina R. Epigenetic regulation of the maize Spm transposon. Bioessays, 1995, 17: 291-297.
    [83] Ashikawa I. Surveying CpG methylation at 5′-CCGG in the genomes of rice cultivars. Plant Molecular Biology, 2001, 45: 31–39.
    [84] Finnegan EJ, Peacock WJ, Dennis ES. Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development. Proc Natl Acad Sci USA, 1996, 93: 8449–8454.
    [85] Ronemus MJ, Massimo G, Christine T, et al. Demethylation-induced developmental pleiotropy in Arabidopsis. Science, 1996, 273: 654-657.
    [86] Kakutani T, Munakataa K, Richards EJ, et al. Meiotically and mitotically stable inheritance of DNA hypomethylation induced by ddm1 mutation of Arabidopsis thaliana. Genetics, 1999, 151: 831-838.
    [87] Riddle NC, Richards EJ. The Control of Natural Variation in Cytosine Methylation in Arabidopsis. Genetics, 2002, 162: 355-363.
    [88] Kalisz S, Purugganan MD. Epialleles via DNA methylation: consequences for plant evolution. Trends in Ecology and Evolution, 2004, 19:309-314.
    [89] Reyna-López GE, Simpsonand J, Ruiz-Herrera J. Differences in DNA methylation patterns are detectable during the dimorphic transition of fungi by amplification of restriction polymorphism. Mol Gen Genet, 1997, 253: 703–710.
    [90] McClelland M, Nelson M, Raschke E, Effect of site-specific modification on restriction endonucleases and DNA modification methyltransferases. Nucleic Acid Res., 1994, 22: 3640-3659.
    [91] Liu B, Brubaker CL, Mergeai G, et al. Polyploid formation in cotton is not accompanied by rapid genomic changes. Genome, 2001, 44: 321-330.
    [92] Xu M, Li X, Korban SS. AFLP-based detection of DNA methylation, Plant Mol. Biol. Rep., 2000, 18 :361-368.
    [93] Cervera MT Ruiz-Garcia L, Martinez-Zapater JM. Analysis of DNA methylation in Arabidopsis thaliana based on methylation-sensitive AFLP markers. Mol Genet Genomics, 2002, 268: 543-552.
    [94] Noyer JL, Causse S, Tomekpe K, et al. A new image of plantain diversity assessed by SSR, AFLP and MSAP markers. Genetica, 2005, 124: 61-69.
    [95] Peraza-Echeverria S, Herrera-Valencia V, Andrew James K. Detection of DNA methylation changes in micropropagated banana plants using methylation-sensitive amplification polymorphism (MSAP). Plant Sci., 2001, 161:359-367.
    [96] Matthes M, Singh R, Cheah SC, et al. Variation in oil palm (Elaeis guineensis Jacq.) tissue culture-derived regenerants revealed by AFLPs with methylation-sensitive enzymes. Theor Appl Genet, 2001, 102: 971-979.
    [97] Law RD, Suttle JC. Transient decreases in methylation at 5′-CCGG-3′ sequences in potato (Solanum tuberosum L.) meristem DNA during progression of tubers through dormancy precede the resumption of sprout growth, Plant Mol. Biol., 2002, 51:437-447
    [98] Joyce SM, Cassells AC. Variation in potato microplant morphology in vitro and DNA methylation, Plant Cell Tiss. Org., 2002, 70: 125-137.
    [99] Popescu CF, Falk A, Glimelius K. Application of AFLPs to characterize somaclonal variation in anther-derived grapevines. Vitis, Siebeldingen, 2002, 41: 177-182.
    [100] Li XQ, Xu ML, Korban SS. DNA methylation profiles differ between field-and in vitro-grown leaves of apple. J. Plant Physiol., 2002, 159:1229-1234.
    [101] Bardini M, Labra M, Winfield M, et al. Antibiotic-induced DNA methylation changes in calluses of Arabidopsis thaliana, Plant Cell Tiss. Org., 2003, 72: 157-162.
    [102] Hao YJ, You C, Deng XX. Analysis of ploidy and the patterns of amplified fragment length polymorphism and methylation-sensitive amplified polymorphism in strawberry plants recovered from cryopreservation, Cryo. Lett., 2002, 23: 37-46.
    [103] Chakrabarty D, Yu KW, Paek KY. Detection of DNA methylation changes during somatic embryogenesis of Siberian ginseng (Eleuterococcus senticosus). Plant Science, 2003, 165: 61-68.
    [104] Hao YJ, Deng XX. Genetically stable regeneration of apple plants from slow growth, Plant Cell Tiss. Org., 2003, 72: 253-260.
    [105] Imazio S, Labra M, Grassi F, et al. Molecular tools for clone identification: the case of the grapevine cultivar ‘Traminer'. Plant Breed, 2002, 121:531-535.
    [106] Sherman JD, Talbert LE. Vernalization-induced changes of the DNA methylation pattern in winter wheat. Genome, 2002, 45: 253-260.
    [107] Watson JD, Crick FHC. A structure for deoxyribose nucleic acid. Nature, 1953, 171: 737-738.
    [108] 阮成江,何祯祥,周长芳. 植物分子生态学[M]. 北京: 化学工业出版社, 2005. pp3-4.
    [109] Dobzhansky Th. Genetics and the Origin of Species (Columbia Univ. Press, New York) (1937);2nd Ed., 1941;3rd Ed., 1951.
    [110] Kimura M. volutionary rate at the molecular level. Nature, 1968, 217: 624-626.
    [111] King JL, Jukes TH. Non-Darwinian evolution. Science, 1969, 164: 788-798.
    [112] 阮成江,何祯祥,周长芳. 植物分子生态学[M]. 北京: 化学工业出版社, 2005. pp153-154.
    [113] King JL, Jukes TH. Non-Darwinian evolution. Science, 1969, 164: 788-798.
    [114] Wright S. Isolation by distance. Genetics, 1943, 28: 114-138.
    [115] Latter BDH. The island model of population differentiation: a general solution. Genetics, 1973, 73: 147-157.
    [116] Wright S. Breeding structure of populations in relation to speciation. Amer. Nat., 1940, 74: 232-248.
    [117] Kimura M. “stepping stone”model of population. Ann. Rept. Nat. Inst. Genetics, Japan, 1953, 3: 62-63.
    [118] Hastings A, Harrison S. Metapopulation dynamics and genetics. Ann. Rev. Ecol. Syst., 1994, 25: 167-188.
    [119] 张爱兵, 谭声江, 陈建等. 空间分子生态学—分子生态学与空间生态学相结合的新领域[J]. 生态学报 2002, 22: 52-769.
    [120] Gueritaine G, Sester M, Fber F, et al. Fitness components of progeny of hybrids between transgenic oilseed rape (Brassica napus) and wild radish (Raphanus raphanistrum). Molecular Ecology, 2002, 11: 1419-1426.
    [121] Pimentel D, Hunter MS, LaGro JA, et al. Benefits and risks of genetic engineering in agriculture. BioScience, 1989, 39: 606-614.
    [122] 阮成江,何祯祥,周长芳. 植物分子生态学[M]. 北京: 化学工业出版社, 2005. pp16
    [123] Barrett SCH, Kohnj K. Genetic and evolutionary consequence of small population size in plants: implication for conservation [A]. In: Falk DA, Holsinger KE. Genetics and conservation of rare plants [M]. New York: Oxford University Press, 1991, pp3-30.
    [124] Powers DA, Ropson I, Brown DC, et al. Genetic variation in Fundulus heterocltics: Geographics distribution. American Zoologist, 1986, 26: 13-144.
    [125] Botstein D, White RL, Skolnick M, et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet., 1980, 32: 314–331.
    [126] Williams JGK, Kubelik AR, Livak KJ, et al. DNA polymorphism amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res., 1990, 18: 6531-6535.
    [127] Jeffreys AJ, Wilson V, Thein SL. Individual specific fingerprints of human DNA. Nature, 1985, 316: 76-79.
    [128] Burke T. DNA fingerprinting and other methods for the study of mating success. Trends in Ecology and Evolution, 1989, 4: 13-1344.
    [129] Hadrys HM, Balick M, Schierwater B. Applications of random amplified polymorphic DNA (RAPD) in molecular ecology. Molecular Ecology, 1992, 1: 55-63.
    [130] Scottm P, Haymes KM, Williams SM. Parentage analysis using RAPD PCR. Nucleic Acids Research, 1992, 20: 5493.
    [131] Tautzd. Hypervariable simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Research, 1989, 17: 6463-6471.
    [132] Queller DC, Strassman JE, Hughes CR. Microsatallites and kinship. Trends in Ecology and Evolution, 1993, 8: 285-288.
    [133] Rongwen J, Akkaya MS, Bhagwat AA, et al. The use of microsatellite DNA markers for soybean genotype identification. Theo Appl Genet., 1995, 90:43-48.
    [134] Asins MJ, Carbonell EA. Distribution of genetic variability in a durum wheat world collection. Theor Appl Genet, 1989, 77: 287-294.
    [135] Brown ADH, Burdon JJ, Grace JP. Genetic structure of Glycine canescens, a perennial relative of soybean. Theor Appl Genet, 1990, 79: 729-736.
    [136] Phillips TD, Murphy JP, GodmanMM. Isozyme variation in germplasm accesions of the wild oat Avena sterilis L. Theor Appl Genet, 1993, 86: 54-64.
    [137] Soler C, Galindo C, González-Casta?o S. et al. Isozyme variation in Spanish natural populations of Elytrigia pungens (Pers.) Tutin and Elytrigia repens (L). Nevski. Heredity, 1993, 71: 51-58.
    [138] Struss D, Plieske J. The use of microsatellite markers for detection of genetic diversity in barley populations. Theor Appl Genet., 1998, 97: 308-315.
    [139] Baum BR, Nevo E, Johnson DA, et al. Genetic diversity in wild barley (Hordeum spontaneum C. Koch) in the Near East: a molecular analysis using random amplified polymorphic DNA (RAPD) markers. Genet Res Crop Evol, 1997, 44: 147–157.
    [140] Turpeinen T, Tenhola T, Manninen O, et al. Microsatellite diversity associated with ecological factors in Hordeum spontaneum populations in Israel. Mol Ecol., 2001, 10: 1577-1591.
    [141] Schierenbeck KA, Skupski M, Lieberman D, et al. Population structure and genetic diversity in four tropical tree species in Costa Rica. Mol. Ecol., 1997, 6: 137-144.
    [142] Neale DB, Saghai-Maroof MA, Alland RW, et al. Chloroplast DNA diversity in populations of wild and cultivated barley. Genetics, 1988, 180: 1105-1110.
    [143] Gupta PK. Use of molecular probes for the study of DNA polymorphism in the genera Hordeum and Avena. In: Chopra VL, Sharma RP, Swaminathan MS (eds) Agricultural biotechnology, 2nd Asia Pacific conference. Oxford & IBH Publishing Co Pvt Ltd, New Delhi, India, 1996, pp27-37.
    [144] Balyan HS, Jana S, Selvaraj G. Polymorphism, ecogeographical differentiation and adaptation of ribosomal DNA (rDNA) alleles in wild and cultivated barley. In: Chopra VL, Sharma RP, Swaminathan MS (eds) Agricultural biotechnology, 2nd Asia Pacific conference. Oxford & IBH Publishing Co Pvt Ltd, New Delhi, India, 1996, pp 39-49.
    [145] Lin JZ, Brown A H D, Clegg MT. Heterogeneous geographic patterns of nucleotide sequence diversity between two alcohol dehydrogenase genes in wild barley (Hordeum vulgare subspecies. spontaneum). Proc. Natl. Acad. Sci. USA, 2001, 98:531-536.
    [146] Nevo E. Genetic diversity in wild cereals: regional and local studies and their bearing on conservation ex situ and in situ. Genet Res Crop Evol, 1998, 45: 355-370.
    [147] 闫玲,丁毅,陈新平等. 青藏高原近缘野生大麦 5S rRNA 基因染色体原位杂交定位.武汉植物学研究, 2000, 18: 443-448.
    [148] Yin YQ, Ma DQ, Ding Y. Analysis of genetic diversity of hordein in wild close relatives of barley from Tibet. Theor Appl Genet, 2003, 107: 837-842.
    [149] 唐慧慧,丁毅, 胡耀军. 中国近缘野生大麦醇溶蛋白的遗传多态性研究. 武汉植物学研究, 2002, 20: 251-257.
    [150] Nevo E, Beiles A, Zohary D. Genetic resources of wild barley in the Near East: structure, evolution and application in breeding. Biological Journal of the Linnean Society, 1986, 27: 355-380.
    [151] Saghai-Maroof MA, Soliman KM, Jorgensen RA, et al. Ribosomal DNA spacer length polymorphism in barley: Mendelian inheritance, chromosomal location and population dynamics. Proc Natl Acad Sci USA, 1984, 81: 8014-8018.
    [152] Saghai-Maroof MS, Allard RW, Zhang Q. Genetic diversity and ecogeographical differentiation among ribosomal DNA alleles in wild and cultivated barley. Proc Natl Acad Sci USA, 1990. 87: 8486-8490.
    [153] Heywood JS. Spatial analysis of genetic variation in plant populations. Annu. Rev. Ecol. Syst, 1991, 22: 335–355.
    [154] Nevo E, Apelbaum-Elkaher I, Garty J, et al. Natural selection causes microscale allozyme diversity in wild barley and a lichen at ‘Evolution Canyon' Mt. Carmel, Israel. Heredity, 1997, 78: 373-382.
    [155] Weining S, Henry RJ. Molecular analysis of the DNA polymorphism of wild barley (Hordeum spontaneum) germplasm using the polymerase chain reaction. Genetic Resources and Crop Evolution, 1995, 42: 273-281.
    [156] Owuor ED, Fahima T, Beiles A, et al. Population genetics response to microsite ecological stress in wild barley, Hordeum spontaneum. Molecular Ecology, 1997, 6: 1177-1187.
    [157] Nevo E, Beiles A, Kaplan D, et al. Natural selection of allozyme polymorphism: a microsite test revealing ecological genetic differentiation in wild barley. Evolution, 1986, 40: 13-20.
    [158] Dawson IK, Chalmers KJ, Waugh R, et al. Detection and analysis of genetic variation in Hordeum spontaneum populations from Israel using RAPD markers. Molecular Ecology, 1993, 2: 151–159.
    [159] Nevo E. Genetic diversity in nature: patterns and theory. Evol. Biol., 1988, 23: 217-246.
    [160] Nevo E. Evolution of genome-phenome diversity under environmental stress. Proc. Natl. Acad. Sci. USA, 2001, 98: 6233-6240.
    [161] Li Y, Fahima T, Korol A et al. Microsatellite diversity correlated with ecological-edaphic and genetic factors in three microsites of wild emmer wheat in north Israel. Molecular Biology and Evolution, 2000, 17:851-862.
    [162] Li Y, R?der MS, Fahima T, et al. Natural selection causing microsatellite divergence in wild emmer wheat at the ecologically variable microsite at Ammiad, Israel. Theo Appl Genet, 2000, 100: 985-999.
    [163] Li YC, Fahima T, Peng JH et al. Edaphic microsatellite DNA divergence in wild emmer wheat, Triticum dicoccoides, at a microsite: Tabigha, Israel. Theo Appl Genet, 2000, 101:1029-1038.
    [164] Allard RW, Saghai-Maroof MA, Zhang Q, et al. Genetic and molecular organization of ribosomal DNA (rDNA) variants in wild and cultivated barley. Genetics, 1990, 126: 743–751.
    [165] Gupta PK, Sharma PK, Balyan HS, et al. Polymorphism at rDNA loci in barley and its relation with climatic variables. Theor. appl. Genet., 2002, 104: 473-481.
    [166] Michael PC, Michael TC. Nucleotide sequence diversity at the alcohol dehydrogenase 1 locus in wild barley (Hordeum vulgare ssp. spontaneum): An evaluation of the background selection hypothesis, Proc. Natl. Acad. Sci. USA, 1998, 95: 5637-5642.
    [167] Adams SE, Mellor J, Gull K, et al.The functions and relationships of Ty-VLP proteins in yeast reflect those of mammalian retroviral proteins, Cell, 1987, 49: 111-119.
    [168] Grandbastien MA. Retroelements in higher plants. Trends Genet, 1992, 8: 103-108.
    [169] Pearce SR, Pich U, Harrison G, et al. The Ty1-copia group retrotransposons of Allium cepa are distributed throughout the chromosomes but are enriched in the terminal heterochromatin. Chrom Res, 1996, 4: 357-364.
    [170] McClintock B. The significance of responses of the genome to challenge. Science, 1984, 226: 792-801.
    [171] Swarz-Sommer Z, Saedler H. Transposition and retrotransposition in plants. In: Nelson O (ed) Plant transposable elements. Plenum Press, New York, 1988, pp175–187.
    [172] Grandbastien MA, Lucas H, Morel JB, et al. The expression of the tobacco Tnt1 retrotransposon is linked to plant defense responses. Genetica, 1997, 100: 241-252.
    [173] Mhiri C, Morel JN, Vernhettes S, et al. The promoter of the tobacco Tn1 retrotransposon is induced by wounding and abiotic stress. Plant Mol. Biol., 1997, 33: 257-266.
    [174] Boeke JD, Corces VG. Transcription and reverse-transcription of retrotransposons. Annu Rev Microbiol, 1989, 43: 403-434.
    [175] Smyth DR. Plant retrotransposons. In: Verma DPS (ed) Control of gene expression. CRC Press, London, 1993, pp1-15.
    [176] Kumar A. The adventures of Ty1-copia group of retrotransposons in plants. Trends Genet, 1996, 12: 41-43.
    [177] Xiong Y, Eichbush TH. Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J., 1990, 9: 3353-3363.
    [178] Bennetzen JL. The contribution of retroelements to plant genome organization, function and evolution. Trends Microbiol, 1996, 4: 347–353.
    [179] Bennetzen JL, Kellogg E K. Do plants have a one way ticket to genomic obesity? Plant Cell, 1997, 9: 1509–1514.
    [180] Wessler SR, Bureau TE, White SE. LTR-retrotransposons and MITES: important players in the evolution of plant genomes. Curr. Opin. Genet. Dev., 1995, 5: 814-821.
    [181] White SE, Habers L, Wesseler SR. Retrotransposons in the flanking regions of normal plant genes. A role for copia-like elements in the evolution of gene structure and expression. Proc Natl Acad Sci USA, 1994, 91: 11792-11796.
    [182] Fuerstenberg SI, Johns MA. Distribution of Bs1 reretrotransposons in Zea and related genera. Theor Appl Genet, 1990, 80: 680–686.
    [183] Joseph JL, Sentry JW, Smyth D R. Interspecies distribution of abundant DNA sequences in Lilium. J. Mol. Evol., 1990, 30: 146-154.
    [184] Aledo R, Raz R, Monfort A, et al.Chromosome localization and characterization of a family of long interspersed repetitive DNA elements from the genus Zea. Theor Appl Genet, 1995, 90: 1094–1100.
    [185] Brandes A, Heslop-Harrison JS, Kamm A, et al. Comparative analysis of the chromosomal genomic organization of Ty1-copia-like retrotransposons in pteridophytes, gymnosperms and angiosperms. Plant Mol. Biol., 1997, 33: 11–21.
    [186] Moore G, Cheung W, Schwarzacher T, et al. BIS1, a major component of the cereal genome and a tool for studying genomic organization. Genomics, 1991, 10: 469-476.
    [187] Lippman Z, Gendrel AV, Black M, et al. Role of transposable elements in heterochromatin and epigenetic control. Nature, 2004, 430: 471-477.
    [188] Lee D, Ellis THN, Turner L, et al. A copia-like element in Pisum demonstrates: the uses of dispersed repeated sequences in genetic analysis. Plant Mol Biol, 1990, 15: 707-722.
    [189] Katsiotis A, Schmidt T, Heslop-Harrison JS. Chromosomal and genomic organization of Ty1-copia-like retrotransposon sequences in the genus Avena. Genome, 1996, 39: 410-417.
    [190] Flavell AF, Dumbar E, Anderson R, et al. Ty1-copia group retrotransposons are ubiquitous and heterogeneous in higher plants. Nucleic Acids Res, 1992, 20: 3639-3644.
    [191] Voytas DF, Cummings MP, Konieczny A, et al. Copia-like retrotransposons are ubiquitous among plants. Proc Natl Acad Sci USA, 1992, 89: 7124-7128.
    [192] Pearce SR, Harrison G, Heslop-Harrison JS, et al. Characterisation and genomic organisation of Ty1-copia group retrotransposons in rye (Secale cereale). Genome, 1997, 40: 1-9.
    [193] Manninen I, Schulman AH. BARE-1, a copia-like retroelement in barley (Hordeum vulgare L.). Plant Mol Biol, 1993, 22: 829-846.
    [194] Vicient CM, J??skel?inen MJ, Kalendar R, et al. Active retrotransposons are a common feature of grass genomes. Plant Physiology, 2001, 125:1283-1292.
    [195] Suoniemi A, Schmidt D. Schulman AH. BARE-1 insertion site preferences and evolutionary conservation of RNA and cDNA processing sites. Genetica, 1997, 100: 219-230.
    [196] Suoniemi A, Tanskanen J, Pentikainen O, et al. The core domain of retrotransposon integrase in Hordeum: Predicted structure and evolution. Mol. Biol. Evol., 1998, 15: 1135-1144.
    [197] Vicient CM, Kalendar R, Schulman AH, et al. Envelope-class retrovirus-like elements are widespread, transcribed and spliced, and insertionally polymorphic in plants. Genome Research, 2001, 11: 2041-2049.
    [198] Leigh F, Kalendar R, Lea V, et al. Comparison of the utility of barley retrotransposon families for genetic analysis by molecular marker techniques. Mol Genet Genomics, 2003, 269: 464-474.
    [199] Feuillet C, Keller B., Comparative genomics in the grass family: molecular characterization of grass genome structure and evolution. Annals of Botany, 2002, 89: 3-10.
    [200] Ramsay L, Macaulay M, Cardle L, et al. Intimate association of microsatellite repeats with retrotransposons and other dispersed repetitive elements in barley. Plant Journal, 1999, 17: 415-425.
    [201] Kalendar R, Grob T, Suoniemi A, et al. IRAP and REMAP: Two new retrotransposon-based DNA fingerprinting techniques. Theor Appl Genet, 1999, 98: 704-711.
    [202] Manninen O, Kalendar R, Robinson J, et al. Application of BARE-1 retrotransposon markers to the mapping of a major resistance gene for net blotch in barley. Molecular Genetics and Genomics, 2000, 264: 325-334.
    [203] Boyko E, Kalendar R, Korzun V, et al. Combined mapping of Aegilops tauschii by retrotransposon, microsatellite, and gene markers. Plant Mol. Biol., 2002, 48: 767-790.
    [204] Yu G, Wise RP. An anchored AFLP-and retrotransposon-based map of diploid Avena. Genome, 2000, 43: 736-749.
    [205] Berenyi M, Gichuki ST, Schmidt J, et al. Ty1-copia retrotransposon-based S-SAP (sequence-specific amplified polymorphism) for genetic analysis of sweet potato. Theor Appl Genet, 2002, 105: 862-869.
    [206] Bretó MP, Ruiz C, Pina JA, et al. The diversification of Citrus clementina Hort. ex Tan., a vegetatively propagated crop species. Molecular Phylogenetics and Evolution, 2001, 21 (2): 285-293.
    [207] Pearce SR, Stuart-Rogers C, Knox MR, et al. Rapid isolation of plant Ty1-copia group retrotransposon LTR sequences for molecular marker studies. Plant J, 1999, 19: 711-717.
    [208] 徐廷文, 刘学儒. 三菱大麦 Boni×六菱大麦特青穗型的遗传研究. 遗传学报, 1982, 9: 440.
    [209] 邵启全. 西藏野生大麦. 北京: 科学出版社, 1982. p171.
    [210] 马得泉, 徐廷文, 顾茂芝等. 中国农业科学, 1987, 20: 1.
    [211] Zhang Q, Yang G P, Dai X K, et al. A comparative analysis of genetic polymorphism in wild and cultivated barley from Tibet using isozyme and ribosomal DNA markers. Genome, 1994, 37: 631-638.
    [212] 冯宗云, 张义正, 张立立等. 应用微卫星标记研究西藏野生二棱大麦的遗传多样性及地理分化. 高技术通讯,2003, 10:46-52.
    [213] 郭红, 魏育明, 陈放等. 应用 STS-PCR 标记研究新疆布顿大麦的遗传多样性. 植物学报, 2002, 44: 1327-1332.
    [214] Finnegan EJ, Dennis ES. Isolation and identification by sequence homology of a putative cytosine methyltransferase from Arabidopsis thaliana. Nucleic Acids Res, 1993, 21:2383–2388.
    [215] Genger RK, Kovac KA, Dennis ES, et al. Multiple DNA methyltransferases in Arabidopsis thaliana. Plant Molecular Biology, 1999, 41: 269-278.
    [216] Henikoff S, Comai L. A DNA methyltransferase homolog with a chromodomain exists in multiple polymorphic forms in Arabidopsis. Genetics, 1998, 149: 307-318.
    [217] Bartee L, Malagnac F, Bender J. Arabidopsis cmt3 chromomethylase mutations block non-CG methylation and silencing of an endogenous gene. Genes and Development, 2001, 15: 1753-1758.
    [218] Lindroth AM, Cao X, Jackson JP, et al. Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation. Science, 2001, 292: 2077-2080.
    [219] Tompa R, McCallum CM, Delrow J, et al. Genome-wide profiling of DNAmethylation reveals transposon targets of CHROMOMETHYLASE3. Current Biology, 2002, 12: 65-68.
    [220] Cao X, Springer NM, Muszynski MG, et al. Conserved plant genes with similarity to mammalian de novo DNA methyltransferases. Proc. Natl. Acad. Sci. USA, 2000, 97: 4979–4984.
    [221] Cao X, Jacobsen SE. Locus-specific control of asymmetric and CpNpG methylation by the DRM and CMT3 methyltransferase genes. Proc. Natl. Acad. Sci. USA, 2002, 99: 16491–16498.
    [222] Cao X, Jacobsen SE. Role of Arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing. Current Biology, 2002, 12: 1138–1144.
    [223] Goodrich J, Tweedie S. Rememberance of things past: Chromatin remodeling in plant development. Annu Rev Cell Dev Biol, 2002, 18: 707-746.
    [224] Gong ZZ, Morales-Ruiz T, Ariza RR, et al. ROS1, a Repressor of Transcriptional Gene Silencing in Arabidopsis, Encodes a DNA Glycosylase/Lyase. Cell, 2002, 111: 803-814.
    [225] Jacobsen SE, Meyerowitz EM. Hypermethylated SUPERMAN epigenetic alleles in Arabidopsis. Science, 1997, 277: 1100-1103.
    [226] Chandler VL, Eggleston WB, Dorweiler JE. Paramutation in Maize. Plant Mol. Biol., 2000, 43: 121-145.
    [227] Soppe WJ, Duijvelaar BG, Schiermeier SEA, et al. The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene. Mol. Cell., 2000, 6: 791-802.
    [228] Cubas P, Vincent C, Coen E. An epigenetic mutation responsible for natural variation in floral symmetry. Nature, 1999, 401: 157-161.
    [229] Finnegan EJ, Genger RK, Kovac K, et al. DNA methylation and the promotion of flowering by vernalization. Proc Natl Acad Sci USA, 1998, 95: 5824-5829.
    [230] Finnegan EJ, Genger RK, Peacock WJ, et al. DNA methylation in plants. Ann Rev Plant Physiol Plant Mol Biol, 1998, 49: 223-247.
    [231] Burn JE, Bagnall DJ, Metzger JD, et al. DNA methylation, vernalization, and the initiation of flowering. Proc Natl Acad Sci USA, 1993, 90: 287-291.
    [232] Peerbolte R, Leenhouts K, Hooykaas-van Slogteren GMS, et al. Clones from a shooty tobacco crown gall tumor Ⅱ: irregular T2 DNA structures and organization, T2 DNA methylation and conditional expression of opines genes. Plant Mol Biol, 1986, 7: 285-299.
    [233] Liu B, Vega JM, Feldman M. Rapid genomic changes in newly synthesized amphiploids of Triticum and Aegilops. II. changes in low-copy coding DNA sequences. Genome, 1998, 41: 535-542.
    [234] Liu B, Vega JM, Segal G, et al. Rapid genomic changes in newly synthesized amphiploids of Triticum and Aegilops. I. changes in low-copy noncoding DNA sequences. Genome, 1998, 41: 272-277.
    [235] Lee HS, Chen ZJ. Protein coding gene are epigenetically regulated in Arabidopsis polyploids. Proc Natl Acad USA, 2001, 98: 6753-6758.
    [236] Madlung A, Watson B, Masuelli R, et al. Genetic and epigenetic changes in synthetic allopolyploids of Arabidopsis thaliana. Plant & Animal Genomes Ⅺ Conference, 2003, 1: 11-15.
    [237] Madlung A, Tyagi AP, Watson B, etal. Genomic changes in synthetic Arabidopsis polyploids. Plant J, 2005, 41:221-230.
    [238] Rapp RA, Wendel JF. Epigenetics and plant evolution. New Phytologist, 2005, 168: 81-91.
    [239] Hirochika H. Activation of tobacco retrotransposons during tissue culture. EMBO Journal, 1993, 12: 2521-2528.
    [240] Kaeppler SM, Phillips RL. 1993. Tissue culture-induced DNA methylation variation in maize. Proc Natl Acad Sci USA, 90: 8773-8776.
    [241] Kubis SE, Castilho AM, Vershinin AV, et al. Retroelements, transposons and methylation status in the genome of oil palm (Elaeis guineensis) and the relationship to somaclonal variation. Plant Molecular Biology, 2003, 52: 69-79.
    [242] Liu ZL, Wang YM, Shen Y, et al. Extensive alterations in DNA methylation and transcription in rice caused by introgression from Zizania latifolia. Plant Molecular Biology, 2004, 54: 571-582.
    [243] Wang YM, Lin XY, Dong B, et al. DNA methylation polymorphism in a set of elite rice cultivars and its possible contribution to inter-cultivar differential gene expression. Cellular and Molecular Biology Letters, 2004, 9: 543-556.
    [244] Schmitt FE, Oakeley J, Jost JP. Antibiotic induces genome-wide hypermethylation in cultured Nicotiana tabacum plants. J. Biol. Chem., 1997, 272: 534-1540.
    [245] Sharma S, Balyan HS, Gupta PK. Adaptive methylation pattern of ribosomal DNA in wild barley from Israel Barley Genetics Newsletter, 2005, 35: 27-35.
    [246] Hashida SN, Kitamura K, Mikami T, et al. Temperature Shift Coordinately Changes the Activity and the Methylation State of Transposon Tam3 in Antirrhinum majus, Plant Physiology, 2003, 132:1207-1216.
    [247] Hashida SN, Uchiyamab T, Martinc C, et al. The Temperature-Dependent Change in Methylation of the Antirrhinum Transposon Tam3 Is Controlled by the Activity of Its Transposase,The Plant Cell, 2006, 18: 104-118.
    [248] Portis E, Acquadro A, Comino C, et al. Analysis of DNA methylation during germination of pepper (Capsicum annuum L.) seeds using methylation-sensitive amplification polymorphism (MSAP). Plant Science, 2004, 166: 169-178.
    [249] Kidwell KK, Simple plant DNA isolation procedures, In Plant genomes: methods for genetic and physical mapping Amsterdam, The Netherlands, Kluwer Academic Publishers, 1992, pp1-13.
    [250] Hollander M, Wolfe DA. Nonparametric Statistical Methods. New York, Wiley, 1973.
    [251] Hartl DL, Clark AG. Principles of population genetics. 2nd ed. Sinauer Associates, Sunderland, MA,1989, pp125.
    [252] Nei M. Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA, 1973, 70: 3321-3323.
    [253] Lewontin RC. Testing the theory of natural selection. Nature, 1972, 236: 181-182.
    [254] Slatkin M, Barton NH. A comparison of three indirect methods for estimating average levels of gene flow. Evolution, 1989, 43: 1349-1368.
    [255] Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 1978, 89: 583-590.
    [256] Yeh FC, Yang RC, Boyle TBJ, et al. POPGENE, the user-friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Centre, University of Alberta, Canada. 1997.
    [257] Page RDM. TREEVIEW: An application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences, 1996, 12: 357-358.
    [258] Rohlf FJ. NTSYS-pc. Numerical taxonomy and multivariate analysis system. Ver. 2.1 Exeter software, Setauket, New York, 2000.
    [259] Jaccard P. Nouvelles rescherches sur la distribution florale. Bull. Soc. Vaud. Sci. Nat., 1908, 44: 223-270.
    [260] Rohlf FJ. NTSYS-pc: Numerical taxonomy and multivariate analysis system. Exeter, Publishing Ltd., New York, USA, 1993.
    [261] Mantel NA. The detection of disease clustering and a generalized regression approach. Cancer Res., 1967, 27: 209-220.
    [262] Gower JC. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika, 1966, 53: 325-338.
    [263] Excoffier L, Laval G, Schneider S. Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evolutionary Bioinformatics, 2005, Online.
    [264] Excoffier L, Smouse PE, Quattro JM. Analysis of molecular variance inferred from metric distances among DNA haplotypes: applications to human mitochondrial DNA restriction data. Genetics, 1992, 131: 479-491.
    [265] Anderson JA, Churchill GA, Autrique JE, et al. Optimizing parental selection for genetic-linkage maps. Genome, 1993, 36: 181-186.
    [266] Archak S, Gaikwad AB, Gautam D, et al. Comparative assessment of DNA fingerprinting techniques (RAPD, ISSR and AFLP) for genetic analysis of cashew (Anacardium occidentale L.) accessions of India. Genome, 2003, 46: 362-369.
    [267] Nei M, Takezaki N, Sitnikova T. Assessing molecular phylogenies. Science, 1995, 267: 253-254.
    [268] Crow JF. Genetic loads and the cost of natural selection. In: Kojima, K. (ed.), Mathematical topics in population genetics. Springer-Verlag, Berlin, 1970, pp128-177.
    [269] Kimura M, Crow JF. The number of alleles that can be maintained in a finite population. Genetics, 1964, 49: 725-738.
    [270] Wright S. The interpretation of population structure by F-Statistics with special regard to system of mating. Evolution, 1965,19: 395-420.
    [271] Nei M. Molecular Evolutionary Genetics. Columbia University Press, New-York, 1987, pp176-187.
    [272] Brown AHD. The case for core collection. In AHD Brown et al. (ed.) The use of plant genetic resources. Cambridge Univ. Press, Cambridge, England, 1989, pp136–156.
    [273] Frankel OH, Brown AHD, Burdon JJ. The conservation of plant biodiversity. Cambridge Univ Press, Cambridge, England. 1995.
    [274] Hamrick JL, Loveless M D. The genetic structure of tropical tree populations: Associations with reproductive biology. pp131-146 In Bock, J. H. and Y. B. Linhart (eds.) Plant Evolutionary Ecology. Westview Press, Boulder Colo. 1989.
    [275] Ozkan H, Kafkas S , Ozer MS, et al. Genetic relationships among South-East Turkey wild barley populations and sampling strategies of Hordeum spontaneum. Theor Appl Genet, 2005, 112: 12-20.
    [276] Hamrick JL. Gene flow and distribution of genetic variation in plant populations. In KM Urbanska (ed.), Differentiation Patterns in Higher Plants. Academic Press, New York, 1987, pp 63-67.
    [277] 周永刚.柠条群体种子蛋白、同工酶的遗传分析(硕士学位论文), 中国科学院植物研究所, 1997.
    [278] Schulman AH, Flavell AJ, Ellis THN. The application of LTR retrotransposons as genetic markers in plants. In: Miller W, Capy P (eds) Mobile genetic elements: protocols and genomic applications. Humana Press, Totowa, 2004, pp145-173.
    [279] Morrell PL, Lundy KE, Clegg MT. Distinct geographic patterns of genetic diversity are maintained in wild barley (Hordeum vulgare ssp. spontaneum) despite migration. Proc. Natl. Acad. Sci. USA, 2003, 100: 10812-10817.
    [280] Crispo E, Bentzen P, David N. The relative influence of natural selection and geography on gene flow in guppies. Molecular Ecology, 2006, 15: 49–62.
    [281] Peerbolte R, Leenhouts K, Hooykaas-van Slogteren GMS, et al. Clones from a shooty tobacco crown gall tumor Ⅱ: irregular T2DNA structures and organization, T2 DNA methylation and conditional expression of opines genes. Plant Mol Biol, 1986, 7: 285-299.
    [282] Napoli C, Lemieux C, Jorgensen R. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous gene in trans. Plant Cell, 1990, 2: 279-289.
    [283] Muller LAH, Lambaerts M, Vangronsveld J, et al. AFLP-based assessment of the effects of environmental heavy metal pollution on the genetic structure of pioneer populations of Suillus luteus. New Phytologist, 2004, 164:297–303.
    [284] Juan A, Crespo MB, Cowan RS, et al. Patterns of variability and gene-flow in Medicago citrina, an endangered endemic of islands in the western Mediterranean, as revealed by amplified fragment length polymorphism (AFLP). Molecular Ecology, 2004, 13: 2679-2690.
    [285] He T, Frauss SL, Lamont BB, et al. Long distance seed dispersal in a metapopulation of Banksia hookeriana inferred from a population allocation analysis of amplified fragment length polymorphism data. Molecular Ecology, 2004, 13:1099-1109.
    [286] 张殿发, 林年丰. 松嫩平原第四纪以来生态环境演化的影响因素. 吉林地质, 2000, 19: 23-29.
    [287] Wang ZM, Zhang B, Zhang SQ, et al. Estimates of loss in ecosystem service values of Songnen plain from 1980 to 2000. Journal of Geographical Sciences, 2005, 15(1): 80-86.
    [288] 林年丰, 汤洁. 松嫩平原环境演变与土地盐碱化、荒漠化的成因分析. 第四纪研究, 2005, 25(4):474-483.
    [289] 罗新正,朱坦,孙广友. 人类活动对松嫩平原生态环境的影响. 中国人口?资源与环境, 2002, 12(4): 94-99.
    [290] Salmon A, Ainouche ML, Wendel JF. Genetic and epigenetic consequences of recent hybridization and polyploidy in Spartina (Poaceae). Molecular Ecology, 2005, 14: 1163-1175.
    [291] Bensch S, ?esson M. Ten years of AFLP in ecology and evolution: why so few animals? Molecular Ecology, 2005, 14:2899-2914.
    [292] Schwartz MK, Mills LS, Ortega Y, et al. Landscape location affects genetic variation of Canada lynx (Lynx Canadensis). Molecular Ecology, 2003, 12: 1807-1816.
    [293] Wright S. Evolution in Mendelian populations. Genetics, 1931, 16: 97-159.
    [294] Saccheri IJ, Wilson IJ, Nichols RA, et al. Inbreeding of bottlenecked butterfly populations: estimation using the likelihood of changes in marker allele frequencies. Genetics, 1999, 151: 1053-1063.
    [295] Taylor AC, Sherwin WB, Wayne RK. Genetic variation of microsatellite loci in a bottlenecked species – the northern hairy-nosed wombat Lasiorhinus krefftii. Molecular Ecology, 1994, 3(4): 277-290.
    [296] Baus E, Darrock DJ, Bruford MW. Gene-flow patterns in Atlantic and Mediterranean populations of the Lusitanian sea star Asterina gibbosa. Molecular Ecology, 2005, 14: 3373-3382.
    [297] Otero-Arnaiz A, Casas A, Hamrick JL. Direct and indirect estimates of gene flow among wild and managed populations of Polaskia chichipe, an endemic columnar cactus in Central Mexico. Molecular Ecology, 2005, 14: 4313-4322.
    [298] Ostrowski MF, David J, Santoni S, et al. Evidence for a large-scale population structure among accessions of Arabidopsis thaliana: possible causes and consequences for the distribution of linkage disequilibrium. Molecular Ecology, 2006, 15: 1507-1517.
    [299] Sten?en HK, Fenster CB, Tonteri A, et al. Genetic variability in natural populations of Arabidopsis thaliana in northern Europe. Molecular Ecology, 2005, 14: 137-148.
    [300] Haldane JBS. The theory of a cline. Journal of Genetics, 1948, 48: 277-284.
    [301] Endler JA. Geographic Variation, Speciation, and Clines.Princeton University Press, Princeton. 1977.
    [302] Bakker EG, Stahl EA, Toomajian C., et al. Distribution of genetic variation within and among local populations of Arabidopsis thaliana over its species range Molecular Ecology, 2006, 15: 1405-1418.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700