激光光谱诊断技术及其在发动机燃烧研究中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对发动机燃烧机理研究的需要,以燃烧流场的温度和组分浓度测量为主要目标,系统地研究了相干反斯托克斯拉曼光谱(CARS:Coherent Anti-Stokes Raman spectroscopy)技术,激光诱导荧光光谱(LIFS:Laser-Induced Fluorescence Spectroscopy)技术和平面激光诱导荧光(PLIF:Planar Laser-Induced Fluorescence)技术,尤其对于CARS的单脉冲测量、CARS测温的准确性以及LIFS测量转动温度等进行了重点研究。在此基础上,将激光光谱诊断技术应用于超燃机理研究和火箭发动机燃烧过程研究,对超燃火焰结构的形成机理、凹腔的作用机理等进行了深入探讨。
     在阐述了CARS的理论要点之后,对CARS光谱的理论仿真方法和实验测量方法进行了研究。通过对激光能量分配、激光模式控制、空间滤波和相位匹配等进行分析,提出了对这些实验设置进行优化的方法,实现了CARS的单脉冲(高时间分辨)测量。通过与热电偶的比较,研究了CARS测温的准确性。对CARS和热电偶在平面火焰中测温结果存在偏差的原因进行了深入分析,提出了层流预混火焰中可能存在的热力学非平衡会对氮气Q支CARS测温准确性产生影响的假设。
     研究了基于双线扫描激发、谱积分求取宽带荧光强度的LIFS测温方法。从基本的激光诱导荧光理论出发,推导了该方法的测量原理。通过激发氢氧基A~2∑←X~2Π(1,0)跃迁的Q_1(8)和Q_1(5)线,得到了LIFS测量的平面火焰氢氧基转动温度。测量结果支持关于所研究的平面火焰中存在热力学非平衡的假设。
     研究了利用单线激发PLIF技术测量氢氧基组分分布的方法,通过激发对温度变化不敏感的氢氧基A~2Σ←X~2Π(1,0)跃迁的Q_1(8)线得到了火焰的氢氧基分布图像。将氢氧基分布的PLIF图像与自发发射图像对比,分析了几种典型火焰的特点。
     使用氢氧基PLIF技术研究了氢气/空气超燃火焰的结构,分析了可能影响燃烧性能的主要因素,特别指出湍流扩散是该超声速火焰的主要控制过程。对PLIF测量结果与数值仿真结果进行了对比,发现使用氢氧八方程化学反应模型和标准双方程k-ε湍流模型的数值仿真可以模拟超燃火焰的主要结构特征,但难以模拟湍流火焰的细节。
     利用氢氧基PLIF技术,研究了氢气横喷的超燃流场中凹腔促进点火和稳定火焰的机理,发现凹腔的安装位置与燃料喷注位置的关系对发挥其促进点火的功能有影响,并且凹腔是通过持续“点燃”主流发挥其稳定火焰的作用的。研究了凹腔长深比、后缘倾角对超声速燃烧火焰结构的影响,发现火焰结构对于后缘倾角较为敏感。分析了燃料喷注方式,流动干扰对超声速燃烧过程的影响,结果显示对凹腔附近的剪切层施加干扰可有效改变燃料的混合扩散,进而改善燃烧效果。研究了氢气引燃的酒精超声速燃烧火焰,分析了酒精
For the purpose of the temperature and species concentration measurement, Coherent Anti-Stokes Raman Spectroscopy (CARS), Laser-Induced Fluorescence Spectroscopy (LIFS) and Planar Laser-Induced Fluorescence (PLIF) were studied systemically. Emphases of these studies were put on the single pulse CARS measurement, the accuracy of CARS and the rotational temperature measurement using LIFS. On the basis of above studies, laser spectroscopy technologies were applied to supersonic combustion diagnosis and research on combustion in the rocket engine. And then, mechanisms of the formation of flame structure in supersonic combustion, influence of cavities and so on were discussed.After the theory of CARS and methods of theoretical simulation of CARS spectrum were summarized. The experimental measurements were studied and improved. After setups of some key parameters of CARS system have been optimized, the single pulse measurement of temperature of CARS was realized. Results of temperature measurement using single pulse and multi-pulse mode nitrogen Q-branch CARS were then studied in detail. The accuracy of measurements was discussed as an emphasis. Discrepancy between temperature measured respectively by thermocouple and CARS in a plane flame was discussed. It was found that accuracy of temperature measurements of CARS in flames is probably influenced by the state of thermal equilibrium in area where reaction is still going on. This is a new theory hypothesis of CARS measurements.It was studied that the method of temperature measurement using LIFS. It was proposed that a new method based on that double lines were excited by means of laser wavelength scanning and intensity of broad band fluorescence was expressed with spectral integral. The measurement principle of this method was deduced from basic theory of Laser-Induced Fluorescence (LIF). The rotational temperature of OH in the plane flame was measured by LIFS after line Q1(5) and Q1(8) of transition A2∑ ← X2 (?) (1, 0) were excited. The LIFS measurement supported the hypothesis about that the accuracy of CARS measurements could be influenced by the thermal non-equilibrium state of the flame.The PLIF technology to measure the distribution of OH by means of the single transition being excited was studied. After Q1(8) of the transition A2∑← X2 (?) (1 , 0) of OH had been excited, PLIF images of OH distribution in flames were got. While such PLIF images of OH in several kinds of typical flames were compared to the spontaneous emission images of radicals,
    flame structures of these typical flames were analyzed.The OH PLIF technology was then used to study the flame structure of H2/air supersonic combustion. Those important factors that maybe influence the combustion performance were analyzed. Especially, it was concluded that the turbulent diffusion is the most significant process of this supersonic combustion. While the flame structure was analyzed, comparison was done between the PLIF image and the CFD result. It is found that simulation using the 8 equations model of hydrogen and oxygen reaction and the standard double equations turbulent model can describe the main topologic structure of supersonic flame. However, it can not describe the detail and instantaneous structure of turbulent flame.The mechanism of the cavity to improve ignition performance and to hold the flame in the supersonic combustion flow was studied using OH PLIF technology. It is believed that the relation between the location of the cavity being installed and the location hydrogen being sprayed will probably influence the performance of cavity to ignite the flame. And also, it is believed that cavities hold the flame by means of "igniting" the main flow continuously. The influenc of the ratio of length to depth and obliquity of back edge of the cavity were studied. It is found that the flame structure is sensitive to the obliquity of back edge of the cavity. Influenc of the scheme of fuel injection and the disturbance on flow were analyzed with OH PLIF images. The results of analyses showed that disturbance on shear layer near cavity can effectively change mixing and diffusing process of the fuel, and then improve combustion. Research was conducted on alcohol/air supersonic combustion ignited by the hydrogen flame. Impacts upon ignition and forming of flame structures of alcohol injection, evaporation and so on were studied.Temporally-resolved temperature measurements were carried out in a H2/air supersonic combustion using the single pulse N2 Q-branch CARS. In comparison with the measurement results in the stable flame, temperature in the supersonic flame is obviously fluctuating. The measurements also manifested that temperature is not equivalent spatially.By means of the comparison being done among OH PLIF images, spontaneous emission images and CFD results, distribution of OH radicals and temperature of plume were studied. PLIF images showed that processes of the hydrogen/oxygen combustion and the hydrogen/-oxygen/alcohol combustion are under the different controlling mechanism respectively. The intensive spontaneous emission of flames in the rocket engine makes it possible to diagnose combustion using the spontaneous emission. At the mean time, flame structures of the combustion of the different combination of kerosene, alcohol, oxygen and hydrogen were studied using the ultraviolet spontaneous emission. The feasibility of CARS measurements was demonstrated in a model tri-propellant rocket engine. Measurement results of nitrogen Q-branch CARS showed that temperature and species concentration will be affected by the hydrogen mass
    flowrate in the model tri-propellant rocket engine.The work of this paper can be divided into two parts: studies of laser spectroscopy technologies and studies of application of these technologies to combustion diagnosis in a jet engine. Both parts of work concluded some innovative results, especially in researches on optimization of CARS measurements, CARS measurement accuracy, temperature measurements using LIFS, mechanism of the supersonic combustion, and so on.
引文
[1] A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, Abacus, Kent, UK, pp. 162-300, 1988
    [2] 杨仕润,CASR在超音速燃烧中的应用,博士学位论文,中国科学院,1998
    [3] R. W. Minck, R. M. Terhune and W. G. Rado, Laser-Stimulated Raman Effect and Resonant Four-Photon Interactions in Gases H_2,D_2,and CH_4, Applied Physics, 3(10), 181-184, 1963
    [4] P. D. Maker and R. W. Terhune, Study of Optical Effects Due to an Induced Polarization Third Order in the Electric Field Strength, Physical Review, 137(3A), A801-A818, 1965
    [5] W. B. Roh, P. Wschreiber and J. P. E. Taran, Single -Pulse Coherent Anti-Stokes Raman Scattering, Applied Physics Letters, 29(3), 174-176, 1976
    [6] M. D. Duncan, J. Reintjes and T. J. Manuccia, Scanning Coherent Anti-Stokes Raman Microscope, Optics Letters, 7(8), 350-352, 1982
    [7] A. C. Eckbreth, BOXCARS: Crossed-Beam Phase-Matched CARS Generation in Gases, Applied Physics Letters, 32(7), 421-423, 1978
    [8] Y. Prior, Three-Dimensional Phase Matching for Rotational CARS and Stimulated Raman Scattering (SRS), in Proceedings of the Seventh International Conference of Raman Spectroscopy, 702-703, 1980
    [9] Y. Prior, Three-Dimensional Phase Matching in Four-Wave Mixing, Applied Optics, 19(11), 1741-1743, 1980
    [10] J. A. Shirley, R. J. Hall and A. C. Eckbrtth, Folded BOXCARS for Rotational Raman Studies, Optics Letters, 5(9), 380-382, 1980
    [11] J. P. Singh, F. Yueh, An Evaluation of CARS Phase Matching Techniques for Field Application, AIAA 91-1520,, AIAA 22nd Fluid Dynamics, Plasmadynamics & Lasers Conference, Honolulu, HI, 1991
    [12] J. P. Singh and F. Y. Yueh, Comparative Study of Temperature Measurement with Folded BOXCARS and Collinear CARS, Combustion And Flame, 89, 77-94, 1992
    [13] K. A. Marko and L. Romai, Space- and Time-Resolved Coherent Anti-Stokes Raman Spectroscopy for Combustion Diagnostics, Optics Letters, 4(7),211-213, 1979
    [14] L. C. Davis, K. A. Marko and L. Romai, Angular Distribution of Coherent Raman Emission in Degenerate Four-Wave Mixing with Pumping by a Single Diffraction Coupled Laser Beam: Configurations for High Spatial Resolution, Applied Optics, 20(9), 1685~1690, 1981
    [15] 赵建荣,杨仕润,俞刚,环形泵浦相位匹配CARS技术的匹配方式和空间分辨率的实验研究,激光与光电子学进展,第7期,12-17,1998
    [16] A. C. Eckbreth, G. M. Dobbs, J. H. Stulflebeam and P. A. Tellex, CARS Temperature and Species Measurements in Augmented Jet Engine Exhausts, Applied Optics, 23(9), 1328-1339, 1984
    [17] A. C. Eckbreth, and T. J. Anderson, Dual Broadband CARS for Simultaneous, Multiple Species Measurements, Applied Optics, Vol. 24, pp3731, 1985
    [18] A. C. Eckbreth, T. J. Anderson, and G. M. Dobbs, CARS Approaches to Simultaneous Measurements of H2 and H2O Concentration and Temperature in H2-air Combustion Systems, The 23rd JANNAF Combustion Meeting, Volume 1, p 405-415, 1986
    [19] A. C. Eckbreth, T. J. Anderson, Multi-color CARS for Simultaneous Measurements of Multiple Combustion Species, SPIE Proceedings 742, 34-41, 1987
    [20] T. J. Anderson, and A. C. Eckbreth, CARS Temperature/Multi-Species Measurement Strategies for High Speed Airbreathing and Rocket Propulsion Testing, Symposium (International) on Combustion, 23rd, Orleans, France, 1990, Proceedings, A92-16529 04-25
    [21] F. Y. Yueh and E. J. Beiting, Simultaneous N_2, CO, and H_2 Multiplex CARS Measurements in Combustion Environments Using a Single Dye Laser, Applied Optics, 27(15), 3233-3243, 1988
    [22] 赵建荣,杨什润,俞刚,同时测量氢和氧CARS谱的新方法,中国激光,24(11),985-988,1997
    [23] S. R. Yang, J. R. Zhao, C. J. Sung and G. Yu, Simultaneous Multiplex CARS Measurements of Temperature and Concentrations of H_2 and O_2 in Supersonic Hydrogen-Air Combustion, AIAA 98-0727, 1998
    [24] A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, Abacus, Kent, UK, 1988, pp.301—361
    [25] A. P. Baronavski, J. R. McDonald, Application of Satuation Spectroscopy to the Measurement of C_2, ~3П_u. Concentration in Oxy-Acetylene Flames, Appl. Opt. 16, 4138-4144, 1977
    [26] M. J. Dyer, and D. R. Croseley, Two-Dimensional Imaging of OH Laser-Induced Fluorescence in a Flame, Opt. Lett. 7, 382-384, 1982
    [27] G. Kychakoff, R. D. Howe, R. K. Hanson, etc. Quantitative Visualization of Combustion Species in a Plane Flame, Applied Optics, 21, 3225-3227, 1982
    [28] G. Kychakoff, R. D. Howe, R. K. Hanson, Use of Planar Laser-Induced Fluorescence for the Study of Combustion Flowfields, AIAA 83-1361, 1983
    [29] J. P. Taran, CARS, Non-Linear Raman Spectroscopy, and the Frontiers of the Day, A89-29267, 1989
    [30] A. C. Eckbreth, CARS Investigations in Flames, Measurement techniques, Symposium/international/on Combustion, 17th, Leeds, England, August, 20-25, A80-11754, 975-982, 1978
    [31] A. C. Eckbreth, R. J. Hall and J. A. Shirley, Investigations of CARS for Combustion, AIAA 79-0083, 17th Aerospace Sciences Meeting, New Orleans, La, 1979
    [32] R. J. Hall, CARS Spectra of Combustion Gases, Combustion and Flame 35, 47-60, 1979
    [33] A. C. Eckbreth, CARS Investigations in Sooting and Turbulent Flames, AD-A069169, 1979
    [34] J. A. Shirley, R. J. Hall and A. C. Eckbreth, Investigation of the Feasibility of CARS Measurements in Scramjet Combustion, UTRC, East Hardford, 1980
    [35] J. A. Shirley and R. J. Hall, Conceptual Design Study for CARS Diagnostics in the AMMRC Ballistic Compressor Facility, AD-A083492, 1980
    [36] A. C. Eckbreth, CARS Thermometry in Practical Combustors, Combustion and Flame 39: 133-147, 1980
    [37] A. C. Eckbreth, P. A. Bonczyk, and J. F. Verdieck, Investigation of CARS and Laser-Induced Saturated Fluorescence for Practical Combustion Diagnosis, N80-3247 1980
    [38] R. J. Hall, A. C. Eckbreth, Combustion Diagnostics by CARS, Optical Engineering, Vol. 20, No. 4, 1981
    [39] A. C. Eckbreth, R. J. Hall, J. A. Shirley and J. F. Verdieck, Investigations of CARS for Practical Combustion Diagnostics, A81-29080, 5th International Symposium on Airbreathing Engines, 41-1, 10, 1981
    [40] A. C. Eekbreth and J. H. Stufflebeam, A Review: Considerations for the Application of CARS to Turbulent Reacting Flows, Experiments in Fluids, 3. 301-314, 1985
    [41] R. J. Hall, J. F. Verdieck and A. C. Eckbreth, Pressure-Induced Narrowing of The CARS Spectrum of N2, Optics Communications, Vol. 35, No. 3, 1980
    [42] R. J. Hall and J. H. Stufflebeam, Quantitative CARS Spectroscopy of CO2 and H2O, Applied Optics, Vol. 23, No. 23, 1984
    [43] J. A. Shirley and R. J. Hall, Investigation of The CARS Spectrum of Water Vapor, AD-A105235, 1981
    [44] J. H. Stufflebeam, R. J. Hall, A. C. Eckbreth, Investigation of CARS Spectrum of Carbon Monoxide at High Pressure and Temperature, AD-A144816, 1984
    [45] J. H. Stuffebeam and J. A. Shirley, CARS Diagnostics of High Pressure Combustion. 2. Measurements of NO, H2O and High Pressure Flames, AD-A164610, 1985
    [46] J. F. Verdieck, R. J. Hall, J. A. Shirley, and A. C. Eckbreth, Some Applications of Gas Phase CARS Spectroscopy, Journal of Chemical Education, Vol. 59, No. 6, 1982, pp. 495-503
    [47] J. F. Verdieck, R. J. Hall, A. C. Eckbreth, Electronically Resonant CARS Detection of OH, AIAA 83-1477, AIAA 18th Thennophysics Conference, Montreal, Canada, 1983
    [48] J. F. Verdieck, R. J. Hall, A. C. Eckbreth, Resonant CARS detection of OH Radical, N85-28995, 1985
    [49] J. H. Stuffebeam and A. C. Eekbreth, New Concepts for CARS Diagnostics of Solid Propellant Combustion, AD-A179158, The 23rd JANNAF Combustion Meeting, Volume 1 p139-148, 1986
    [50] J. H. Stuffebeam and A. C. Eckbreth, Multiple Species CARS Measurements of High Pressure Solid Propellant Combustion, AIAA 89-0060, Aerospace Sciences Meeting, 27th, Reno, NV, Jan. 9-12, 1989
    [51] J. H. Stuffebeam and A. C. Eckbreth, CARS Diagnostics of Reaction Pathways for Nitramine Combustion, 27th AIAA/SAE/ ASME/ASEE Joint Propulsion Conference, AIAA 91-2318, 1991
    [52] J. H. Stufflebeam, CARS Diagnostics for Solid Propellant Combustion Investigations, N92-32645, 1991
    [53] L. R. Boedeker, G. M. Dobbs, CARS Temperature Measurements in Sooting laminar Diffusion Flames, Combustion Science and Technology, vol. 46, no. 3-6, 1986, p. 301-323
    [54] L. R. Boedeker, G. M. Dobbs, Soot Distribution and CARS Temperature Measurements in Axisymmetric Laminar Diffusion Flames with Several Fuels, Symposium (International) on Combustion, 21st, Proceeding p. 1097-1104, A88-38492, 1988
    [55] T. J. Anderson and A. C. Eckbreth, Simultaneous Measurements of Temperature and H_2, H20 Concentrations in Hydrogen-Fueled Supersonic Combustion, 28th Aerospace Sciences Meeting, Reno, NV, 1990
    [56] S. Kroll, M. Akden, T. Berglind and R. J. Hall, Noise Characteristics of Single Shot Broadband Raman Resonant CARS with Single- and Multimode Lasers, Applied Optics, Vol. 26, No. 6, 1987
    [57] R. R. Antcliff, O. J. Jr. and R. C. Rogers, CARS System For Turbulent Flame Measurements, AIAA 84-1537, AIAA 17th Fluid Dynamics, Plasma Dynamics, and Laser Conference, Snowmass, Colorada, 1984
    [58] R. R. Antcliff, O. J. Jr. and R. C. Rogars, Multispecies CARS Measurements in Turbulent Combustion, The 23rd JANNAF Combustion Meeting, Vol. 1, 577-583, 1986
    [59] O. J. Jr., R. R. Antcliff, T. Chitsomboon, G. S. Dimkin, Dual Stokes CARS Measurements in Supersonic Combusting Flow, The 24th JANNAF Combustion Meeting, Vol. 2, 171-178, 1987
    [60] R. R. Antcliff, Application of CARS to Scramjet Combustion, N87-20400, 1987
    [61] R. R. Antcliff, O. J. Jr. and Tawit Chisomboon, CARS Measurements of Temperature and Species Combusting Flow, AIAA 88-4662, AIAA/NASA/AFWAL Conference on Sensors and Measurements Techniques for Aeronautical Applications, Atlanta, Georgia, 1988
    [62] R. R. Antcliff, M. W. Smith, O. Jarrett, Jr., A Hardened CARS System Utilized for Temperature Measurements in a Supersonic Combustor, AIAA 91-0457, 29th Aerospace Sciences Meeting, Reno, Nevada, 1991
    [63] O. J. Jr., M. W. Smith, R. R. Antcliff, G. B. Northam, CARS Temperature Measurements in a Hypersonic Propulsion Test, N92-12049, 1992
    [64] A. D. Cutler, P. M. Danehy, R. R. Springer, R. DeLoach, CARS Thermometry in a Supersonic Combustor for CFD Code Validation, 40th AIAA Aerospace Science Meeting & Exhibit, AIAA 2002-0743, 2002
    [65] P. M. Danehy, S. O'Byrne,and A. D. Cutler, CARS as a Probe for Supersonic Hydrogen-Fuel/Air Mixing, JANNAF/APS/CS/PSHS/MSS Joint Meeting, Colorado Springs, 2003
    [66] E. J. Beiting and J. C. Luthe, CARS Temperature measurements in the Fuel Preburner of the SSME: A Feasibility Study, N83-25778, 1983
    [67] E. J. Beiting, Multiplex CARS Temperature Measurements in A Coal-Fired MHD Environment, A86-26605, 1986
    [68] J. P. Singh and F. Y. Yueh, Multiplex CARS for Simultaneous Measurement of Temperature and CO_2 and H_2 Concentrations in a Combustion Environment, Applied Optics, Vol. 30, No. 15, 1991
    [69] J. P. Singh and F. Y. Yueh, Study of N_2 CARS Spectra of a Coal-Fired Flow Facility, AIAA 93-3216, AIAA 24th Plasmadynamics & Lasers Conference, Orlando, FL, 1993
    [70] E. J. Beiting, CARS Measurements in Low Density Expanding Flows: Application to Resistojets, AIAA 95-1962, 26th AIAA Plasmadynamics and Lasers Conference, San Diego, CA, 1995
    [71] F. Y. Yueh and E. J. Beiting, Simultaneous N_2, CO_2 and H_2 Multiplex CARS Measurements in Combustion Environments Using a Single Dye Laser, Applied Optics, Vol. 27, No. 15, 1998
    [72] F. Y. Yueh, and J. P. Singh, CARS Fitting Techniques for Temperature Measurement in a Plasma Environment, AIAA 94-2429, 25th AIAA Plasmadynamics and Lasers Conference, Colorado Springs, 1994
    [73] F. Y. Yueh, J. P. Singh, G. Zikratov, H. Zhang, and Cook R. L., Gas Temperature Measurement by Spontaneous Raman Spectroscopy(SRS) and Coherent Anti- Stokes Raman Spectroscopy(CARS), Proceedings of 47th International Instrumentation Symposium, Vol. 409, Denver, CO. 2001
    [74] W. B. Roh, P. W. Schreiber, Pressure Dependence of Integrated CARS Power, Applied Optics, Vol. 17, No. 9, 1978
    [75] D. M. Guthals, K. P. Gross and J. W. Nibler, Resonant CARS Spectra of NO2, J. Chem. Phys. 70(05), 1979
    [76] C. M. Roland, and W. A. Steele, Intensity in Pure Rotational CARS of Air, J. Chem. Phys. 73(12), 1980
    [77] M. D. Duncan, P. Osterlin, and R. L. Byer, Pulsed Supersonic Molecular-Beam CARS of C_2H_2, Optics Letters, Vol. 6, No. 2, 1981
    [78] K. Aron, L. E. Harris, and J. Fendell, N_2 and CO Vibrational CARS and H_2 Rotational CARS Spectroscopy of CH_4/N_2O Flames, Applied Optics, Vol. 22, No. 22, 3604-3611, 1983
    [79] J. B. Snow, D. V. Murphy, and R. K. Chang, Rotational CARS Application to Simultaneous and Multiple-point Temperature and Concentration Detection in A turbulent Flow, N84-16489, 1983
    [80] L. P. Goss, G. L. Switzer, and D. D. Trump, Temperature and Species-Concentration Measurements in Turbulent Flames by the CARS Technique, Jour. Energy, Vol. 7, No. 5, 403-409, 1983
    [81] G. L. Switzer and L. P. Goss etc., The Application of CARS to Simulated Practical Combustion Systems, AIAA 80-0353, AIAA 18th Aerospace Sciences Meeting, Pasadena, CA, 1980
    [82] L. E. Harris, CARS Spectra From Lean and Stoichiometric CH(4)-N(2)O Flames, AD-A126653, 1983
    [83] K. Aron and L. E. Harris, CARS Studies of Nitramine LOVA Propellant Combustion, AD-A135813, 1983
    [84] L. P. Goss and D. D. Trump, Simultaneous CARS and LDA Measurements in a Turbulent Flames, AIAA 84-1458,AIAA/SAE/ASME 20th Joint Propulsion Conference, Cincinnati, Ohio, 1984,
    [85] D. J. Tannor, S. A. Rice and P. M. Weber, Picosecond CARS As A Probe of Ground Electronic State Intmmolecular Vibrational Redistribution, J. Chemical Physics. Vol. 83 912, 1985
    [86] J. Fendell, L. E. Harris, K. Aron, Theoretical Calculations of H(2) CARS Spectra For Propellant Flames, Technical Report, AD-A135818, 1983
    [87] J. Zheng, J. B. Snow, D. V. Murphy, A. Leipertz and R. K. Chang, Experimental Comparison of Broadband Rotational Coherent Anti-Stokes Raman Scattering and Broadband Vibrational CARS in A Flame, Aug. 1984, Vol. 9, No. 8, Optics Letters
    [88] M. Toich, D. W. Melton, and W. B. Roh, High Resolution CARS Measurement of Raman Linewidths of H2, Optics Communications, Vol. 55, No. 6, 1985
    [89] G. J. Rosasco, Fundamental Molecular Data to Support CARS Diagnostics of Temperature, Pressure, and Species Concentration, U. S. Army Research Office, Proposal No. 23356-CH, 1989
    [90] R. L. Farrow, P. L. Mattern, L. A. Rahn, Comparison Between CARS and Corrected Thermocouple Temperature Measurements in a Diffusion Flame, Applied Optics, Vol. 21 3119-3125, 1982
    [91] D. R. Sneling, G. J. Smallwood, and R. A. Sawchuk, Nonlinearity and Image Persistence of P-20 Phosphor-based Intensified Photodiode Army Detectors Used in CARS Spectroscopy, Applied Optics, Vol. 28, 3226-3232, 1989,
    [92] D. Dunn-Rankin, G. L. Switzer, C. A. Obringer, and T. A. Jackson, Effect of Droplet-Induced breakdown on CARS Temperature Measurements, Applied optics, Vol. 29, No. 21, 1990
    [93] J. Y. Zhu, T. Tsuruda, etc., CARS Thermometry in A Liquid Fueled Model Combustor, AIAA 93-0366, 31st Aerospace Sciences Meeting & Exhibit, Jan 11-14, Reno, NV, 1993
    [94] G. L. Switzer, L. P. Goss, and D. D. Trump, etc. CARS Measurements in the Near-Wake Region of an Axisymetrie Bluff-Body Combustor, AIAA 85-1106, 1985
    [95] P. P. Yaney, C. J. Emmerich and D. D. Hodson, Spatial Profiles of Vibrational and Rotational Temperatures in a Nitrogen Positive-Column Discharge Using Crossed Beam CARS, AIAA 87-0615, 1987
    [96] L. P. Goss and D. D. Trump, Combined CARS/LDA Instrument for Simultaneous Temperature and Velocity Measurements, Experiments in Fluids, Vol. 6, 189-198, 1988
    [97] L. P. Goss, D. D. trump, W. F. Lynn and T. H. Chen, Second-Generation Combined CARS-LDV Instrument for For Simultaneous Temperature and Velocity Measurements in Combusting Flows, Rev. Sci. Instrum. 60 (4), 1989
    [98] T. H. Chen, L. P. Goss and D. D. Trumpt, Studies of a Turbulent Premixed Flame Using CARS-LDV Diagnostics, J. Propulsion, Vol. 6, No. 2, 1990
    [99] G. Switzer, G. Sturgess, Relation of CARS Temperature Field to Lean Blowout Performance in an Aircraft Gas Turbine Generic Combustor, AIAA 94-3271, 30th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Indianapolis, IN 1994,
    [100] S. M. Green, R. P. Lucht, and J. E. Peters, A Dual-Pump CARS System for Simultaneous Detection of Methane and Nitrogen, AIAA 97-0607, 35th Aerospace Sciences Meeting & Exhibit, Reno, NV, 1997
    [101] P. P. Yaney, J. W. Parish, Studies of Surface Deactivation of Vibrationally-Excited Homonuclear Molecules in Gaseous Discharge Media Using Coherent Anti-Stokes Raman Spectroscopy (CARS), AD-A369109, 1999
    [102] J. S. Bredfeldt, D. L. Marks and C. Vinegoni, Coherent Anti-Stokes Raman Scattering Heterdyne Interferomitric, http://www.arxiv.org/PS_cache/physics/pdf/0311/03111057.pdf, 2003
    [103] J. P. Taran, CARS Techniques and Applications, Proceedings of the Conference, Loen, Norway, A78-11812, 1976
    [104] B. Attal-Tretout, M. Pealat and J. P. Taran, CARS Diagnostics of Combustion, AIAA 80-0282, AIAA 18th Aerospace Sciences Meeting, Pasadena, CA, 1980
    [105] M. Pealat, J. F. Taran, F. Moya, CARS Spectrometer for Gases and Flames, Optics and Laser Technology, 1980
    [106] S. A. J. Druet and J. E. Taran, CARS Spectroscopy, Prog. Quant. Electr. Vol. 71-72, 1981
    [107] M. Pealat, D. Debarre, J. J. Marie, J. P. E. Taran, CARS Study of Vibrationally Excited H2 Formed in Formaldehyde Photolysis, 6th International Conference on Laser Spectroscopy, A83-48181, 1983
    [108] J. Bonnet, D. David, V. Joly, M. Lefebvre, M. Pealat and D. Pigache, Application of CARS to the Chemical Oxygen-Iodine Laser, A85-12606, 1984
    [109] B. Attal-Tretout, Trace Species Analysis of Flames by Resonance CARS, A83-48187, 1983
    [110] B. Attal-Tretout, M. Pealat and J. P. Taran, CARS, The Only Tool For The Diagnostics of Reactive Media? A83-48192, 1983
    [111] B. Attal-Tretout, p. Berlemont and J. P. Taran, Resonance CARS Spectroscopy of The OH Radical In Flames and Discharge, 8th International Conference on Laser Spectroscopy, 1987
    [112] B. Attal-Tretout and P. Rouchardy, Detection of the OH Radical in Flames by Resonance CARS, A88-28947
    [113] B. Attal-Tretout, S. C. Schmidt, E. Crete, P. Dumas, and J. P. Taran, Resonace CARS of OH in High-Pressure Flames, Quant. Spectrasc. Radiant. Transfer Vol. 43, No. 5, 351-364, 1990
    [114] M. Pealat, P. Bouchardy, M. Lefebvre, and J. P. Taran, Precision of Multiplex CARS Temperature Measurements, Applied Optics, Vol. 24, No. 7,1012-1022,1985
    [115] P Magre, P Moreau, G Collin, R Borghi, M Pealat and J. P. Taran, CARS Study of Premixed Turbulent Combustion in a High Velocity Flow, A88-18484,1988
    [116] P Magre, P Moreau, G Collin, R Borghi and M Pealat, Further Studies by CARS of Premixed Turbulent Combustion in a High Velocity Flow, Combustion and Flame, Vol. 71, 147-168, 1988
    [117] P. Bouchardy, G Collin, M. Lefebvre, M. Pealat, J. P. Taran and B. Tretou, Diagnostics of Reactive Media By CARS, European Propulsion Forum, A89-45189, 1989,
    [118] M. Pealat, P. Magre, P. Bouchardy, and G Collin, Simultaneous Temperature and Snesitive Two-Species Concentration Measuremeents by Single-shot CARS, Applied Optics, Vol. 30, No. 10,1991
    [119] P. Magre, G Collin, etc., Temperature Measurements by CARS and Intrusive Probe in an Air-Hydrogen Supersonic Combustion, AIAA 98-1621,1998
    [120] K. Knapp, F. J. Hindelang, Measurement of Temperature in A Shock Tube By CARS, Proceedings of the Thirteenth International Symposium, Niagara Falls, NY, 1981
    [121] D. U. Wellhausen, and J. Wolfrum, CARS Studies of Vibrationally Excited Nitrogen at Low Pressures, Applied Physics B, Vol. 29, 31-36, 1982
    [122] A. Leipertz and E. Magens, Flame Temperature Measurements Using a Novel Rotational CARS Analysis Technique, AIAA 85-1569, AIAA 18~th Fluid Dynamics and Plasmadynamics and Laser Conference, Cicinatti, Ohio, 1985
    [123] R. Brakel, V. Mudogo and F. W. Schneider, Polarization Sensitive Resonance CARS Spectroscopy, J. Chem. Phys. 84(5), 1986
    [124] G Marowsky and G Lupke, CARS-Backgroud Suppression by Phase-Controlled Nonlinear Interferometry, Applied Physics B 51,49-51,1990
    [125] B. Lange and J. Wolfrum, The Impact of Laser Field Statistics in Determination of Temperature and Concentration by Multiplex USED CARS, Applied Physics, B 51, 53-58, 1990
    [126] E Diebel, T Dreier, B Lange, and J Wolfrum, Parameter Studies in Practical Nitrogen CARS Thermometry Using Standard and Advanced Fitting Codes, Applied Physics B 50, 29-46, 1990
    [127] M. Fischer, E. Magens, H. Weisgerber, A. Winandy, S. Cordes, CARS Temperature Measurements on an Air Breathing Ram Jet Model, AIAA 98-0961, 36~th Aerospace
     Science Meeting & Exhibit, Reno, NV, 1998,
    [128] D. A. Greenhalph, Resonant-Enhanced CARS From C2 Produced by Laser of Soot Particles, Applied Optics, Vol. 22, No. 8, 1983
    [129] F. M. Porter, D. A. Greenhalgh, P J Stopford, D R Williams and C A Baker, A Study of CARS Nitrogen Thermometry at High Pressure, 51, 31-38, Applied Physics B, 1990
    [130] J. D. Black, R. J. Parker, Use of Retroreflective Material For Pseudo, Single-EndedvARS, Opt. Commum., N92-21739, 1990,
    [131] J. D. Black, Rotational CARS Measurements in a Rotating Cavity with Axial Throughflow of Cooling Air: Oxygen Concentration Measurements, N93-11035, 1993
    [132] Y. Matsunoto, H. Matsui and T. Asaba, Measurements of CARS Intensity in Hydrogen Molecule behind Shock Waves, Trans. Japan Soc. Aero. Space Sci. Vol. 26, No. 73, 1982
    [133] S. Fuji, and M. Gomi, and Y. Jin, Instantaneous CARS Thermometry in Turbulent Flames, Combustion and Flame, Vol. 48, 232-240, 1982
    [134] S. Fujii, M. Gomi, K. Eguchi, etc., Time-resolved LDV and CARS Measurements in a Premixed Reacting Flow, Combustion Science and Technology, Vol. 36, No. 5-6, ,. 211-226, 1984
    [135] Tezaki, H. Matsui, Yoshiro Kawamura, Measurement of Detection Temperature of Hydrogen-Oxygen Mixture by CARS, Koatsu Gasu, Vol. 22, No. 3, 106-111, 1985
    [136] Shigeo Furuno, Kazuhio Akihama, and Mitsugu Hanabusa, Nitrogen CARS Thermometry for a Study of Temperature Profiles through Flame Fronts, Combustion and Flame Vol. 54, 149-154, 1983
    [137] Yasuo Watanabe, Mitsuo Gomi, Kunihisa Eguchi and Atsumu Tezaki, CARS Measurements of Combustion(Ⅱ) Gas Species Concentration Measurements, N88-18663, 1988
    [138] Yasuo Watanabe, Mitsuo Gomi, Kunihisa Eguchi and Atsumu Tezaki, CARS Measurements of Combustion(Ⅰ) Presion of Thermometry, N88-17769, 1988
    [139] T. Parameswaran and D. R. Snelling, A Computer Program to Generate Theoretical Coherent Anti-Stokes Raman spectra, AD-A 128102, 1982
    [140] D. R. Snelling, R. A. Sawchuk and T. Parmeswaran, Measurements of the total Third-Order Nonresonant Susceptibilities of C_3H_8, CO_2, and C_2H_4, and Their Application to N_2 CARS Thermometry, Applide Optics, 32(36),7546-7550, 1993
    [141] D. R. Snelling, R. A. Sawchuk, and G. J. Smallwood, Multichannel Light Detectors and Their Use For CARS, Applied Optics, Vol. 23, No. 22, 1984
    [142] D. R. Snelling, R. A. Sawchuk, and R. E. Mueller, Single Pulse CARS Noise: A Comparison Between Single-Mode and Multimode Pump Lasers, Applied Optics, Vol. 24, No. 17, 1985
    [143] D. R. Snelling, G. J. Smallwood, R. A. Sawchuk and T. Parameswaran, Precision of Multiplex CARS Temperatures using Both Single-mode and Multimode Pump Lasers, Applied Optics, Vol. 26, No. 1, 1987
    [144] M. J. Deen and E. D. Thompson, Design and Simulated Performance of a CARS Spectrometer for Dynamic Temperature Measurements Using Electronic Heterodyning, Applied Optics, Vol. 28, No. 7, 1989
    [145] D. R. Snelling, T. Parameswaran, and G. J. Smallwood, Noise Characteristics of Single-shot Broadband CARS Signals, Applied Optics, Vol. 26, No. 19, 1987
    [146] A. M. Brodnikovsky, S. M. Gladkov, and N. I. Koroteev, Strong Selective Excitation of Raman-Active Vibrations and Energy Transfer Between Low-Lying Vibrational States of A CO2 Molecule, Optics Communications, Vol. 40, No. 4, 1982
    [147] A. A. Deviatov, S. A. Dolenko, A. T. Rakhimov etc, Investigation of Kinetic Processes in Molecular Nitrogen by the CARS Technique, A86-33037, 1986
    [148] S. Dlaskov, P. L. Podvig, Using CARS Spectroscopy for Studying Combustion and transient Process Behind A Shock Wave, A91-25249, 1990
    [149] B. F. Boyarshinov, S. Yu. Fedorov, and A. A. Volkov, CARS Measurements in Ranque-Hilsch's Vortex Tube, International Conference on the Methods of Aerophysical Research, p. 36-40, 1998
    [150] 解伯民,刘达伟,探测气体平衡及非平衡态的相干反斯托克斯喇曼散射技术,力学进展,12(3),255-264,1982
    [151] 王庆宇,金耀根,董根发,虞海平,李郁芳,CARS技术测量煤气/空气火焰温度的实验研究,中国激光,14(11),694-696,1987
    [152] 虞海平,王庆宇,李郁芳,测量技术中CARS谱的模拟计算,中国激光,14(12),725-734,1986
    [153] 赵建荣,李春金,孙树兰,“宽带CARS技术用于气体温度的测量”,中国激光,17(3),163-167,1990
    [154] 赵建荣,李春金,杨仕润,USED CARS测量对撞式扩散火焰的温度分布,激光技术,第21卷,第4期,1997年8月
    [155] 赵建荣,俞刚,李春金等,宽带USED CARS技术用于超声速燃烧温度测量,推进技术,第18卷,第3期,1997年6月
    [156] 赵建荣,杨仕润,俞刚,CARS在超声速燃烧中的应用,激光技术,第24卷,第4期,2000年8月
    [157] 杨仕润,赵建荣,俞刚等,氢/空气平面预混火焰中CARS温度测量,激光技术,第24卷,第5期,2000年10月
    [158] 赵建荣、陈立红,俞刚等,OH在火焰中浓度分布图像及与温度关系的PLIF和CARS研究,分析测试学报,第19卷,第6期,2000年11月
    [159] 闫军,徐更光,CARS测温技术在炸药测温领域中的应用,火炸药学报,2000年第3期,59页~61页
    [160] 闫军,徐更光,Theoretical Calculation of Nitrogen Q-branch CARS spectra, Jour. Of Beijing Institute of Technology, Vol. 10, No. 1, 2001
    [161] 杨金玉,赵鸣,王瑛等,CARS测量的时序控制器研究,第25卷第2期,2002年
    [162] 李春喜,赵鸣,张蕊娥等,双基推进剂燃烧火焰温度CARS测定技术,火炸药学报,第26卷第1期,2003年2月
    [163] 胡志云,刘晶儒,张振荣等,Single-pulse CARS Spectra in Solid Propellant Combustion at Atmosphere Pressure, Chinese Optics Letters, Vol. 1 No. 7, 2003
    [164] M. A. Yuratich and D. C. Hanna, Coherent Anti-Stokes Raman Spectroscopy (CARS) Selection Rules, Depolarization Ratios and Rotational Structure, Molecular Physics, 33(3), 671-682, 1977
    [165] R. N. DeWitt, A. B. Harvev, W. M. Tolles, Theoretical Development of Third-Order Susceptibility as Related to CARS, AD-A024164, 1976
    [166] R. L. Farrow, R. P. Lucht and R. E. Palmer, Spectral Modeling for CARS Diagnostics of Combustion Gases, AIAA 87-1304, AIAA 19th Fluid Dynamics, Plasma Dynamics and Lasers Conference, Honolulu, Hawaii, 1987
    [167] R. J. Hall, D. A. Greenhalgh, Application of The Rotational Diffusion Model to gaseous N_2 CARS Spectra, Optics Communications, Vol. 40, No. 6, 1982
    [168] A. Lau, M. Pfeiffer, W. Werncke, K. Lenz and H. J. Weigmann, Analysis of Resonance CARS Spectra within the Frame of a Molecular Multimode Modal, Journal of Molecular Structure, 114, 123-126, 1984
    [169] W. Kaabar and R. Devonshire, A Versatile Model of CARS Signal Generation: Optimum Beam Diameter Ratios for Different Phase Matching Geometries, Chemical Physics Letters, 186(6), 522-530, 1991
    [170] R. J. Hall, Intensity Convolutions of CARS Spectra, Optics Comminations, 52(5), 360-366, 1985
    [171] D. A. Greenhalgh and R. J. Hall, A Closed Form Solution for the CARS Intensity Convolution, Optics Communications, 57(2), 125-128, 1986
    [172] N. Bloembegen, H. Hotem and R. T. Lynch Jr, Lineshapes in Coherent Resonant Raman Scattering, Indian Journal of Pure and Applied Physics, 16, 151-158, 1989
    [173] A. D. Buckingham and A. Szabo, Determination of Derivatives of the Polarzability Anisotropy in a Diatomic Molecule form Relative Raman Intestines, Journal of Raman Spectroscopy, 7(1), 46-48, 1978
    [174] T. R. Gilson and, in part, I. R. Beattie, J. D. Black, D. A. Greenhalgh and S. N. Jenny, Determination of Some of the Spectroscopic Constants of the Electronic Ground State of Di-Nitrogen ~(14)N_2, ~(14)N~(15)N and ~(15_N_2 Using Coherent Anti-Stokes Raman Spectroscopy, Journal of Raman Spectroscopy, 9(6), 316-368, 1980
    [175] A. D. Devir, The Determination of Absolute Raman Cross Sectons by Indirect Measurement of Stimulated Raman Gain, Journal of Applied Physics, 49(6), 3110-3113, 1978
    [176] R. L. Farrow, R. P. Lucht and L. A. Rahn, Measurements of the Nonresonant Third-Order Susceptibilities of Gases Using Coherent Anti-Stoker Raman Spectroscopy, Journal of the Optical Society of America B: Optical Physics, 4(8), 1241-1246, 1987
    [177] R. J. Hall, Pressure-Broadened Linewidths for N_2 Coherent Anti-Stokes Raman Spectroscopy Thermometry, Applied Spectroscopy, 34(6) 700-702, 1980
    [178] L. A. Raha and R. E. Palmer, Studies of Nitrogen Self-Broadening at High Temperature with Inverse Raman Spectroscopy, Journal of the Optical Society of America B: Optical Physics, 3(9), 114-1169, 1986
    [179] J. A. Shirley, R. J. Hall, J. F. Verdieck and A. C. Eckbreth, New Directions in CARS Diagnostics for Combustion, AIAA 80-1542, AIAA 15th Thermophysics Conference, Snowmass, Colorado, 1980
    [180] J. H. Stufflebeam, J. A. Shirley, R. J. Hall, CARS Diagnostics of High Pressure Combustion, AD-A124304, 1982
    [181] E. J. Beiting, Coherent Interference in Multiplex CARS Measurements: Nonresonant Susceptibility Enhancement Due to Laser, Applied Optics, Vol. 24, No. 18, 1985
    [182] A. Haraguchi, B. Smith, S. Weeks, etc. Measurement of Small Volume Flame Temperature by the Two-Line Atomic Fluorescence Method, Applied Spectroscopy, 31, 156-163, 1977
    [183] R. Cattolica, OH Rotational Temperature from Two-Line Laser Excited Fluorescence, Applied Optics, 20, 1156-1166, 1981
    [184] M. L. Elder, G. Zizak, D. Bolton, etc. Single Pulse Temperature Measurement in Flames by Thermally Assisted Atomic Fluorescence Spectroscopy, Applied Spectroscopy, 38, 113-118, 1984
    [185] W. R. Anderson, L. J. Decker and A. J. Kotlar, Temperature Profile of a Stoichiometric CH_4/N_2O Flame from Laser Excited Fluorescence Measurement on OH, Combustion and Flame 48, 163-176, 1982
    [186] A Lawizki, I Plath, W Striker, J Bittner and U Meier, Laser-Induced Fluorescence Detection of Flame Temperatures in Comparison with CARS Measurements, Applied Physics B, 50, 513-518 1990
    [187] M. J. Papac, D. Dunn-Rankin, C. B. Stipe and D. Lucas, N_2 CARS Thermometry and O_2 LIF Concentration Measurement in a Electrical Induced Microbuoyancy, Combustion and Flame, 133, 241-254, 2003
    [188] J. M. Seitzman, M. Kychakoff, R. K. Hanson, Instantaneous Temperature Field Measurements Using Planar laser-Induced Fluorescence, Opt. Lett., Vol. 10, 439-441, 1985
    [189] J. M. Seitzman, P. Paul and R. Hanson, PLIF Imaging Analysis of OH Structures in a Turbulent Nonpremixed HE-Air Flames, AIAA 90-0160, 28th Aerospace Sciences Meeting, Reno, NV, 1990,
    [190] J. M. Seitzman, J. L. Palmer, A. L. Antonio, R. K. Hanson, Instantaneous Planar Thermometry of Shock-Heated Flows Using PLIF of OH, AIAA 93-0802, 31st Aerospace Sciences Meeting & Exhibit, Reno, NV, 1993
    [191] B. K. mcMillin, J. M. Seitzman and R. K. Hanson, Comparison of NO and OH PLIF Temperature Measurements in a Scramjet Model Flowfield, AIAA 93-2035, AIAA/SAE/ASME/ASEE 29th Joint Propulsion Conference and Exhibit, Monterey, CA, 1993
    [192] J. L. Palmer, A. F. P. Houwing, M. C. Thurber, S. D. Wehe and R. K. Hanson, PLIF Imaging of Transient Shock Phenomena in Hypersonic Flows, AIAA 94-2642, 18th AIAA Aerospace Ground Testing Conference, Colorado Springs, CO, 1994
    [193] F. P. Houwing, J. L. Palmer, r. R. Boyce, R. K. Hanson, PLIF Thermometry in a High Temperature Shock Layer Flow on a Cylinder in a Supersonic Jet, AIAA 95-0515, 33rd Aerospace Sciences Meeting & Exhibit, Reno, NV, 1995
    [194] J. L. Palmer and R. K. Hanson, Single-Shot OH PLIF Thermometry in a Reacting, Supersonic Free Jet, AIAA 95-0517, 33rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 1995
    [195] F. P. Houwing, M. R. Karmel, C. I. Morris, S. D. Wehe, R. R. Boyce and R. K. Hanson, PLIF Imaging and Thermometry of NO/N2 Shock Layer Flows in an Expansion Tube, AIAA 96-0537, 34th Aerospace Sciences Meeting & Exhibit, Reno, NV, 1996
    [196] C. I. Morris, M. R. Kamel, I. G. Stouklov and R. K. Hanson, PLIF Imaging of Supersonic Reactive Flows Around Projectiles in an Expansion Tube, AIAA 96-0855, 34th Aerospace Sciences Meeting & Exhibit, Reno NV, 1996
    [197] M. R. Kamel, C. I. Morris and R. K. Hanson, Simultaneous PLIF and Schilieren Imaging of Hypersonic Reacting Flows Around Blunted Cylinders, AIAA 97-0913, 35th Aerospace Sciences Meeting & Exhibit, Reno, NV, 1997
    [198] J. L. Palmer and R. K. Hanson, PLIF Measurements of Temperature and Velocity in a Reacting Supersonic Free Jet With OH, AIAA 94-0618, 32nd Aerospce Sciences Meeting & Exhibit, Jan 10-13, Reno, NV, 1994
    [199] R. K. Hanson, Quantitative PLIF Imaging in High Pressure Combustion, NASA CR-205685, 1997
    [200] B. E. Battle and R. K. Hanson, Laser-Induced Fluorescence Measurements of NO and OH Mole Fraction in Fuel-Lean High-Pressure Methane Flames: Fluorescence Modeling and Experimental Validation, J. Quant. Spectroscopy Radiat. Transfer Vol. 54, No. 1 521-537, 1995
    [201] M. D. Dirosa, K. G. Klavuhn, R. K. Hanson, LIF Spectroscopy of NO and O2 in High-Pressure Flames, Combustion Science and Technology, Vol. 113, 257-283, 1996
    [202] M. C. Thurber, F. Grisch, and R. K. Hanson, Temperature Imaging with Single- and Dual-Wavelength Acetone PLIF, AIAA 96-2936, 32nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Lake Buena Vista, FL, 1996
    [203] R. K. Hanson, M. G. Mungal, F. Grisch, Imaging of Gaseous Flows Using Acetone PLIF, AIAA 96-1964, 27th AIAA Fluid Dynamics Conference, New Orleans, LA, 1996
    [204] M. C. Thurber, B. J. Kirby, F. Grisch, and R. K. Hanson, Instantaneous Temperature Imaging with Single-Wavelength Acetone PLIF, AIAA 97-0151, 35th Aerospace Sciences Meeting & Exhibit, Reno, NV, 1997
    [205] Ben-Yakar, M. R. Kamel, C. I. Morris, and R. K. Hanson, Hypersonic Combustion and Mixing Studies Using Simultaneous OH-PLIF and Schlieren Imaging, AIAA 98-0940, 36th Aerospace Sciences Meeting & Exhibit, Reno, NV, 1998,
    [206] M. C. Thurber, B. J. Kirby, and R. K. Hanson, Instantaneous Imaging of Temperature and Mixture Fraction with Dual-Wavelength Acetone PLIF, AIAA 98-0397, 36th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 1998
    [207] C. I. Morris, M. R. Kamei, A. Ben-Yabkar and R, K, Hanson, Combined Schilieren and OH PLIF Imaging Study of Ram Accelerator Flowfields, 36thAIAA Aerospace Sciences Meeting and Exhibit, 1998, Reno, NV
    [208] Ben-Yaker and R. K. Hanson, GTTC Student Design Winner: Hypervelocity Combustion Studies Using Simultaneous OH-PLIF and Schilieren Imaging in an Expansion Tube, AIAA 99-2453, 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Los Angeles, California, 1999
    [209] T. Rossmann, M. G. Mungai, and R. K. Hanson, Acetone PLIF and Schlieren Imaging of High Compressibility Mixing Layer, AIAA 2001-0290, 39th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 2001
    [210] B. J. Kirby, and R. K. Hanson, Infrared PLIF Imaging of Gaseous Flows, AIAA 98-0307, 36~th AIAA Aerospace Sciences Meeting & Exhibit, Reno, NV , 1998
    [211] J. D. Koch and R. K. Hanson, Ketone Photophysics for Quantitative PLEF Imaging, AIAA 2001-0413, 39~th Aerospace Sciences Meeting & Exhibit, Reno, NV, 2001
    [212] C. C. Wey and B. Ghorashi, An Imaging System for PLIF/Mie Measurements for a Combusting Flow, 6~th Miami International Symposium on Heat and Mars transfer, N91-20084, 1990
    [213] R. C. Anderson, R. E. Trucco, L. F. Rubin and D. M. Swain, Visulization of hydrogen Injection in A Scramjet Engine By Simultaneous PLEF Imaging and Laser Holographic Imaging, The NASA Langley Measurement Technology Conference: Measurement Technology for Aerospace Applications in High-Temperature Environments 339-354, 1992
    [214] T. E. Parker, M. G Allen, R. R. Foutter, D. M. Sonnenfroh, and W. T. Rawlins, Exit Plane H2O Concentration Measurements Correlated with OH PLIF Near-Injector Mixing Measurements For Scramjet Flows, N93-13678,1993
    [215] M. G Allen, J. F. Cronin, S. J. Davis, R. R. Foutter, T. E. Parker, W. G Reinecke, and D. M. Sonnenfroh, PLIF Imaging Measurements Compared to Model Calculations in High-Temperature Mach 3 Airflow Over A Sphere, 31~st Aerospace Sciences Meeting & Exhibit, Reno, NV, 1993
    [216] M. G Allen, K. R. McManus and D. M. Sonnenfroh, PLIF Imaging Measurements in High-Pressure Spray Flame Combustion, AIAA 94-2913, 30~th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Indianapolis, IN ,1994
    [217] M. G Allen, K. R. McManus and D. M. Sonnenfroh, PLIF Imaging in Spray Flame Combustors at Elevated Pressure, AIAA 95-0172, 33rd Aerospace Sciences Meeting, Reno.NV, 1995
    [218] Bunyajitradulya and D. Papamoschou, Acetone PLIF Imaging of Turbulent Shear-Layer Structure at High Convective Mach Number, AIAA 94-0617, 32~nd Aerospace Sciences Meeting & Exihibit, Reno, NV ,1994
    [219] D. Papamoschou and A. Bunyajitradulya, Double-Exposure PLIF Imaging of Compressible Shear Layers, AIAA 95-0513, 33~rd Aerospace Sciences Meeting and Exhibit, Reno, NV, 1995
    [220] W. M. Ruyten, W. D. Williams and F. L. Heltsley, Computational Flow Imaging For Planar Laser-Induced Fluorescence Applications(CFI-PLIF), AIAA 94-2621, 18~th AIAA Aerospace Ground Testing Conference, Colorado Springs, CO, 1994
    [221] G Gauba, K. G Klavuhn, J. C. McDaniel, K. G Victor, R. H. Krauss and R. B. Whitehurst HI, OH PLIF Velocity Measurements in a Supersonic Combustor, AIAA 95-0296, 33~rd Aerospace Sciences Meeting and Exhibit, Reno, NV, 1995
    [222] P. Barker, A. Thomas, T. McIntyre, LEI Velocimetry and PLIF Thermometry of Supersonic Flow Around A Cylindrical Body, AIAA 97-0496, 35~th Aerospace Sciences Meeting & Exhibit, Reno, NV, 1997
    [223] B. Bedat, L. G Shepherd and R. K. Cheng, PLIF Investigation of the Evolution of Premixed Turbulent Flame Structures, Meeting of the Westen States Section of the Combustion Institute, 1996
    [224] G F. King, R. P. Lucht and J. C. Dutton, Instantaneous Dual-Tracer PLIF Measurements of molecular Mixing in Axisymmetric Jets, AIAA 97-0152, 35~th Aerospace Sciences Meeting & Exhibit, Reno, NV, 1997
    [225] T. R. Meyer, R. P. lucht and J. C. Dutton, Dual-Tracer PLIF Measurements of Entrainment and Mixing in a Driven Axisymmetric Jet, AIAA 98-3018, 29~th AIAA Fluid Dynamics Conference, Albuquerque, NM, 1998,
    [226] J. E. Rehm and N. T. Clemens, A PIV/PLIF Investigation of Turbulent Planar Non-Premixed Flames, AIAA 97-0250, 35~th Aerospace Sciences Meeting & Exhibit, Reno,NV,1997
    [227] J. H. Frank, P. A. M. Kalt, R. W. Bilger, Measurements of Conditional Velocities in urbulent Premixed Flames by Simultaneous OH PLIF and PIV, Combustion and Flame 116:220-232,1999
    [228] E. Murakami, D. Papamoschou, PLIF Investigation of Coannular Supersonic Jets, AIAA 98-3015, 29~th AIAA Fluid Dynamics Conference,Albuquerque, NM, 1998
    [229] P. C. Palma, P. M. Danehy, A. F. O. Houwing, PLIF Thermometry of a Free-Piston Shock-tunnel Nozzle Flow, AIAA 98-2703, 20~th AIAA Advanced Measurement and Groud Testing Technology Conference, Albuquerquer, NM June 15-18,1998
    [230] R. A. Bryant, A. Ratner and J. F. Dricoll, Using PLIF Determined Flame Structure to Analyze Supersonic Combustion Efficiencies, AIAA 99-0445, 37~th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 1999
    [231] W. Pun, S. L. Palm and F. E. C. Culick, PLIF Measurements of Combustion Dynamics in a Burner under Forced Oscillatory Conditions, AIAA 2000-3123, 36~th AIAA/ ASME/ SAE/ ASEE Joint Propulsion Conference and Exhibit, Hunsville, AL, 2000
    [232] E. J. Welle and William L. Roberts, Evaluation of the Transient Response of a Counter-Flow Difusion Flame Using Two-Line OH PLIF Thermometry and PIV, AIAA 2001-0785,39~th Aerospace Sciences Meeting & Exhibit, Reno, NV, 2001
    [233] S. Y. Lee, C. Conrad, J. Watts, R. Woodward, S. Pal and R. J. Santoro, Deflagration to Detonation Transition Study Using Simultaneous Schlieren and OH PLIF Images, AIAA 2000-3217, 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Huntsville, AL, 2000
    [234] Bresson, P. Bouchardy, P. Magre, F. Grisch, OH/Acetone PLIF and CARS Thermometry in a Supersonic Reactive Layer, AIAA 2001-1759, 2001
    [235] D. Ritchie and J. M. Seitzman, Quantitative Acetone PLIF in Two-Phase Flows, AIAA 2001-0414, 39th AIAA Aerospace Sciences Meeting & Exhibit, Reno, NV, 2001
    [236] 赵建荣,陈立红,俞刚,杨仕润,韩百,平面激光诱导荧光显示火焰中OH的分布图像,第四届全国流动显示会议,桂林,2000
    [237] 赵建荣,杨仕润,俞刚等,火焰结构的平面激光诱导荧光技术观测,分析测试学报,Vol.22,No.2,2003
    [238] 王岳,雷宇,张培元,用OH—PLIF研究浮力对预混V形火焰的作用,工程热物理学报,Vol.22,No.3,2001年5月
    [239] 关小伟 刘晶儒 黄梅生,利用平面激光诱导荧光技术测量燃烧场内NO的浓度分布,强激光与粒子束,Vol.15,No.7,2003
    [240] 邹英华,孙陶亨编著,激光物理学,北京大学出版社,294-311,1991年6月
    [241] Y. Prior, A Complete Expression for the Third-Order Susceptibility(x~3)-Perturbative and Diagrammatic Approaches. IEEE J. Quant. Elec. QE-20, 37-42, 1984
    [242] R. E. Palmer, The CARSFT Computer Code for Calculating Coherent Anti-Stokes Raman Spectra: User and Programmer Information, Sandia Report SAND89-8206, 1989
    [243] G. 赫兹堡著,王鼎昌译,分子光谱与分子结构(第一卷),双原子分子光谱,科学出版社,49-86,1983年8月,
    [244] 赵永学,液体火箭发动机羽流光谱及应用,博士学位论文,国防科技大学,2001
    [245] S. P. Heneghan, M. D. Vangsness and J. C. Pan, Simple Determination of the Width of the Slit Function in Single-Shot Coherent Anti-Stokes Raman Spectroscopy, Journal of Applied Physics, 69(4), 2692-2693 (1991)
    [246] S. P. Heneghan and M. D. Vangsness, Analysis of Slit Function Errors in Single-Shot Coherent Anti-Stokes Raman Spectroscopy (CARS) in Practical Combustors, Review of Scientific Instruments, 62(9), 2093-2099, 1991
    [247] Humlicek, An Efficient Method for Evaluation of Complex Probability Function: The Voigt Function and its Derivative Jour. Quant. Radiat. Transfer 21, 309, 1979
    [248] L. Varghese, R. K. Hanson, Collisional Narrowing Effects on Spectral Line Shapes Measured at High Resolution, Appl. Opt. 23, 2376, 1984
    [249] R. R. Antcliff and O. Jarrett, Comparison of CARS Combustion Temperatures with Standard Techniques, AIAA 83-1482, 18th AIAA Thermophysics Conference, Montreal, Canada, 1983
    [250] J.R.威尔特著,李为正译,动量、热量、质量传递原理,国防工业出版社,对流换热263~265页,辐射传热306页~328页,1984
    [251] 谈洪,朱宗厚,气动激光技术,国防工业出版社,15页~38页,1977
    [252] 泽尔道维奇,莱依捷尔,激波和高温流体动力学现象物理学上册,科学出版社,381页~406页,1980
    [253] R.W.F.格罗斯,J.F.博特,化学激光手册,科学出版社,1987
    [254] W. M. Shaub, J. W. Nibler and A. B. Harvey, Direct Determination of Non-Boltzmann Vibrational Level Populations in Electric Discharge by CARS, Journ. of Chemical Physics, Vol. 67, No. 5, 1977
    [255] S. C. Schmidt, P. C. Malte, and D. T. Pratt, Absorption-Emission Spectroscopy Applied to the Study of Kinetics in High-Intensity Continuous Combustion, AIAA 76-138, AIAA 14th Aerospace Sciences Meeting, Washington, D. C., 1976,
    [256] D. Stepowski, and M. J. Cotterreau, Time Resolved Study of Rotational Energy Transfer in A~2∑~+(v'=0) State of OH in a Flame by Laser Induced Fluorescence, Jour. Chem. Phys. 74, 6674-6679, 1981
    [257] J. Luque and D. R. Crosley, Database and Spectral Simulation for OH A-X, OD A-X,NO A-X, B-X D-X,CH A-X,B-X,C-X,CN B-X, Sill A-X and CF A-X, SRI report No. MP 99-009, 1999
    [258] E. T. Curran and S. N. B. Murthy, Scramjet Propulsion, Vol. 189, Progress in Astronautics and Aeronautics, AIAA Inc. 2000
    [259] 刘欧子,胡欲立,蔡元虎等,超声速燃烧凹槽火焰稳定的研究动态,推进技术,Vol.24,No.3,265~271,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700