液体火箭发动机燃烧稳定性理论、数值模拟和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文结合非平衡热力学、小波分析、非线性动力学等非线性学科,建立燃烧稳定性理论模型,发展两相喷雾燃烧非定常数值模拟程序,利用激光测粒系统,发动机高频热试系统等测试手段,重点围绕液体推进剂的化学动力学过程,对燃烧不稳定进行了较为系统的理论、仿真和实验研究。
     ●建立非线性场振子模型,比较燃烧速度对压力导数前三项系数的作用。
     ●提出均匀反应器声振模型。发现燃烧区的传热是燃烧过程的Hopf分岔参数:化学动力学过程也具有频率选择、频率牵引和非线性激发的特点。
     ●建立时空作用模型。提出不同声振模式之间的竞争与合作概念。发现若非线性互饱和系数较小,各振型共同分享振动能量;否则,只能有一个主振型振荡。
     ●用非平衡热力学分析燃烧不稳定。结果表明由扩散控制的蒸发过程不可能包含振荡激励机理。得到燃烧稳定性一般热力学判据。
     ●数值研究燃烧室的一维非线性声学。发现压力和速度主要体现声特征,熵和组分主要体现流特征,而密度和温度既体现声特征又体现流特征。
     ●用EBU模型三维数值研究气相湍流火焰。EBU模型不包含燃烧振荡机理。结果表明用包含着火和灭火过程的EBU模型可以产生燃烧振荡,但不会持续太久。
     ●用简化多步化学反应动力学数值研究气相火焰。发现高活化能的预混火焰比扩散火焰容易产生振荡,但振荡难以持久。
     ●用简化多步化学反应动力学数值研究液氧/煤油,气氧/煤油/气氢,和液氧/气氢喷雾火焰。自激燃烧振荡形成极限环。增加气氢占燃料的质量比,增加气氧的喷射速度都有助于提高燃烧稳定性。提出判定燃烧不稳定敏感区的方法。喷嘴附近温度适中的预混区为燃烧振荡提供了能量。
     ●实验发现并研究YF-75发动机同轴离心式喷嘴的自激振荡。这是中心气涡与气体通道中的气流共振的结果。对喷雾的滴径分布和喷嘴下游的流强分布产生重要影响。
     ●用充填,气动噪声,脉冲枪和扩音器实验研究燃烧室的各种声学响应。实验研究液氧/气氢/煤油三组元两工况发动机在不同结构和工作条件下的燃烧稳定性。发现氢气的加入对烃/氧燃烧稳定性的提高不是绝对的。
     ●提出判定燃烧不稳定激励机理的实验方法,并提出第三种燃烧不稳定控制方法。
Combustion instability in liquid rocket engine is investigated with theoretical analyses, numerical simulations and experiments. Nonlinear science, such as Nonlinear Dynamics, Non- equilibrium Thermodynamics, and Wavelets, is introduced in the studies.Nonlinear oscillation equation of chamber pressure is established. The first three coefficients of combustion Vs pressure play different roles in combustion instability.Continuous Stirred Tank Reactor Acoustic Model is put forward. The heat transfer is the important Hopf bifurcation parameter. The self-catalyze mechanism may drive the combustion oscillate at an inherent frequency, and can provide frequency-draught and nonlinear inspiration behaviors.Temporal-spatial interaction model is established. The concept of competition and cooperation of the acoustic modes is introduced. Different acoustic modes can shares oscillation energy if the nonlinear interaction coefficient is little. Otherwise, only one mode gets instability.Non-equilibrium Thermodynamics is used to analyze the combustion instability. The vaporization models controlled by diffusion process can not include driving mechanism. General thermodynamics stability criterion of combustion is got.The nonlinear acoustic process is numerically simulated. It is found that the pressure and velocity disturbances run at sound speed, the entropy and components at flow speed, the temperature and density partly at sound speed, partly at flow speed.Gas combustion instability is numerically simulated with EBU model. The standard EBU model can not drive combustion to oscillate. The amendatory EBU model including ignition and extinguish mechanism can drive the combustion to oscillate. However, the oscillation can not last for a long time.Combustion instability of gas and spray flame in a lab-scale O_2/Kersene/H_2 tripropellant rocket engine is numerically studied. The diffusion and premixed gas flame are always stable in our simulations, though the premixed gas flame will oscillate for a period of time when the activation energy is artificially enlarged.
    The spray flames can self-oscillate from startup sequence with large amplitudes, and eventually reach limited cycles. The LO_2/Kerosene biproprellant spray flame is the most unstable case, and its stability is improved when gas hydrogen is injected and the velocity of gas oxygen is increased. Correlation of the numerical results on the basis of flow visualization and theoretical analyses indicate chemical kinetic play an important role in the combustion instability.During the experiments on the coaxial swirl injector of YF-75 engine, the injector can self-oscillate. This behavior is the result of the coupling between the gas vortex and the gas channel. It can affect the droplet distribution.Different inspiring methods are used to experimentally study the acoustic characteristics of the small chamber.Combustion instability of tripropellant rocket engine under different condition is experimentally studied. It is not absolute to improve the hydrogen/oxygen combustion stability by adding hydrogen.The experiment method to determinant the driving mechanism is put forward. The third control method of combustion instability besides the passive control and the active control is also brought forward.The research of the author shows that the chemistry dynamics can explain well almost all the combustion instability phenomenon, and the chemistry dynamics may be the driving mechanism of combustion instability in liquid rocket engine.
引文
[1] Agarkov, A. F., Denisov, K. R, Dranovsky, M. L., Zavorohin, I. A., Ivanov, V. N., Pikalov, V. P., and Shibanov, A. A., Injector Flame Stabilization Effects on Combustion Instability, Champter 10 of Ref. 87.
    [2] Anon., 4400-Hz Vibration Investigation Final Report, Rocketdyne Engineering R-8742, Rockwell International, Rocketdyne Div., Canoga Park, CA, June 1971
    [3] Billoud, G., Galland, M. A., Huu, C. H. And Candel, S., Adaptive Active Control of Combustion Instabilities, Combust. Sci. And Tech., Vol. 81, 257-283, 1992.
    [4] Brailovsky, I, and Sivashinsky, G., Negative Burning Speed in Oscillatory Premixed Gas Combustion, Combust. Sci. And Tech., 1992, Vol. 87, pp. 389-400.
    [5] Bulgakov, V. K., Karpov, A. I., and Lipanov, A. M., Numerical Studies of Solid Propellant Erosive Burning, Journal of Propulsion and Power, Vol. 9, No. 6, 1993.
    [6] Burstein, S. A., Chinitz, W., and Schechter, H. Ss., A Nonlinear Model of Combustion Instability in Liquid Propellant Rockets Engines, AIAA/SAE 8th Joint Propulsion Specialist Conf., AIAA 72-1146, 1972
    [7] Cairnie, L. R., Harrison, A. J., and Summers, R., in Proc. 1st Int. Specialist Meetting of the Combustion Institute, The Combustion Institute, Bordeaux, 1981
    [8] J. Cavanagh and R. A. Cox, Computer Modeling of Cool Flames and Ignition of Acetaldehyde, Combustion and Flame, 82: 15-39 (1990)
    [9] Charles, E. M., Analytical Models for Combustion Instability, Chapter 15 of Ref. 87
    [10] C. L. Chen, S. R. Chakravarthy and B. L. Bihari, Numerical Solution of Acoustic Equation with Unstructured Grids Using a CFD-Bases Approach, AIAA 92-2698
    [11] Chen, J. Y., Kaiser, T., and Kollmann, W., Transient Behavior of Simplified Reaction Mechanisms for Methane Nonpremixed Combustion, Combust. Sci. And Tech., 1993, Vol. 92, pp. 313-347.
    [12] Culick, F. E. C., Stability of Longitudinal Oscillations with Pressure and Velosity Coupling in a Solid Propellant Rocket, Combustion Science and Technology, Vol. 2, No. 4, 1970, pp. 179-201.
    [13] Darrieus, G. (1938). Unpublished Manuscript, also(1946) in Sixth International Congress of Applied Mechanics.
    [14] Dixon, D. J., and Skirrow, G., in Comprehensive Chemical Kinetics (C. H. Bamford and C. F. H. Tipper, Eds.), 1977, Vol. 17
    [15] Dowing, A. P., Nonlinear Acoustically-Coupled Combustion Oscillations, AIAA 96-1749.
    [16] R. Doulatov, Valley Glen, Bifurcational Models of Liquid Rocket Combustion, AIAA 2000-3285
    [17] R. Doulatov, Beliy V. V., Rossikhin, I. V., Bifurcation of Liquid Rocket Combustion in Gas-Gas System, 35th JPC, Cleveland OH, AIAA 99-2788, 1999
    [18] R. Doulatov, Belly V. V., Rossikhin, I. V., Bifurcation of Liquid Rocket Combustion, 34th JPC, Cleveland OH, AIAA 98-3512, 1998
    [19] Edwards, N. R., Mcintosh, A. C., and Brindley, J., The Development of Pressure Induced Instabilities in Premixed Flames, Combustion Sci. And Tech., 1994. Vol. 99, pp. 179-199.
    [20] S. S. E. H. Elnashaie and M. E. Abashar Chaotic Behaviour of Periordically Forced Fluidized-bed Catalytic Reactors with Conscutive Exothermic Chemical Reactions, Chemical Engineering Science Vol. 49. No. 15, pp. 2483-2498, 1994
    [21] Eric A. Hurlbert, J. L. Sun and B. J. Zhang, Instability Phenomina in Earth Storable Bipropellant Rocket Ening, Chapter 5 of
    [22] Ghafourian A., Mahalingam S., Dindi H. and Daily J. W., A Review of Atomization in Liquid Rocket Engines, AIAA 91-0283, 1991
    [23] W. E. Gifford and R. C. Longsworth. Surface Heat Pumping, Adv. Cryog. Eng., 1966;11: 171.
    [24] Glarborg, P., Kee, R. J., Gred, J. F., and Miller, J. A. (1986), PSR: A Fortran Program for Modeling Well-Stirred Reactors, Sandia National Laboratories Report, SAND86-8209.
    [25] Gonzalez, M., Acoustic Instability, of a Premixed Flame Propagation in a Tube, Combustion and Flame, 1996, pp245-259.
    [26] Gray, P., Griffiths, J. F., Hasko, S. M., and Lignola, P. G., Proc. Roy. Soc. (London) A374: 313 (1981).
    [27] Gray, R, Griffiths, J. F., Hasko, S. M., and Lignola, R G., Combust. Flame 43: 175 (1981)
    [28] Grenda, J., Venkateswaran, S., and Merkle, C. Three-Dimensional Analysis of Combustion Instabilities in Liquid Rocket Engines, AIAA 93-0235
    [29] Grenda, J., Venkateswaran, S., and Merkle, C., Liquid Rocket Combustion Instability Analysis by CFD Methods, AIAA 91-0285
    [30] Grenda, J., Venkateswaran, S., and Merkle, C. L., Analyses of Liquid Rocket Instabilities Using a Computational Tested, Twenty-fifth Symposium (International) on Combustion (Irvine, CA), Combustion Inst. Pittsburgh, PA, 1994, pp.1619-1625
    [31] Griffiths, J. F., and Hasko, S. M., Proc. Roy. Soc. A393: 371 (1984)
    [32] Gutmark, E., Parr, T. P., Use of Chemiluminescence and Neural Networks in Active Combustion Control, 23rd Symposium (International) on Combustion, 1990.
    [33] Gutmak, E., Parr, T. P., Hanson, D. M. Shadow, K. C. And Hewer, G. A., Wavelet Analysis of a Controlled Pulsating Flame, Proceedings of.the International Symposium on Pulsating Combustion Volume Ⅱ Monterey Calif., Aug. 1991.
    [34] M. Habiballah and I. Dubois, Numerical Analysis of Engine Instability, Chaper 18 of Liquid Rocket Engine Combustion Instability, Progress in Astronautics and Aeronautics, Volume 169, 1995.
    [35] Harrje, D. T., and Readon, F. H., Liquid Propellant Rocket Instability, Russian ed. Mir, Moscow, 1975.
    [36] Hoffman, R. J., and Beltran, M. R., Breen, B. P., and Wright, R. O., Extension of the Priem-Guentert Annular Combustion Instability Model to a Bi-Propellant System, Third Intergency Chemical Rocket Propulsion Group Combustion Conference, CPIA Pub. 138, Vol. Ⅰ, Chemical Propulsion Information Agency, Laurel, MD, Feb. 1967, p. 309
    [37] Ian F. Murray, Modeling Acoustically Induced Oscillations of Droplets, AIAA 97-0014
    [38] Ishino, Y., Kojima, Ohiwa, T., and Yamaguchi, S. (1993) Phase Characteristics of Coherent Structure in Acoustic Excited Plane Diffusion Flames. Proc. Ninth Symp. TSF, pp. 31-1-1-6.
    [39] Ishino, Y., Kojima, T., Ohiwa, N., and Yamaguchi, S. (1996) Acoustic Excitation of Diffusion Flames with Coherent Structure in a Plane Shear Layer (Application of Active Combustion Control to Two-Dimensional Phase-Locked Averaging). JSME Int. J. 39(1), 156-163.
    [40] Liang, P., and Ungewitter, R., Multi-phase Simulations of Coaxial Injector Combustion, AIAA 92-0345
    [41] P. G. Lignola and F. P. Di Maio, Some Remarks on Modeling CSTR Combustion Processes, Combustion and Flame, 80: 256-263 (1990)
    [42] GH. JUNCU, S. BILDEA and O. FLOAREA: Steady-state Multiplicity Analysis of the Heterrogeneous Axial Dispersion Fixed-bed Reactor Chemical Engineering Science, Vol. 49, No. 1, pp.123-130, 1994
    [43] Jin Zhou, Xiaoping Hu, Yuhui Huang and Zhengguo Wang, Flowrate and Acoustics Characteristics of Coaxial Swirling Injector of Hydrogen/Oxygen Rocket Engine, AIAA96—3135
    [44] John J. Hutt and Marvin Rocker, High-Frequency Injection-Coupled Combustion Instability, Chapter 12 of Ref. 87
    [45] Kaiser, E. W., Westbook, C. K., and Pitz, W. J., Int. J. Chem. Kinet. 18: 655(1986)
    [46] F. Kappei, J. Y. Lee, C. E. Johnson, E. Lubarskey, Y. Neumeier, and B. T. Zinn, Investigation of Oscillatory, Combustion Processes In Actively Controlled Liquid Fuel Combustor, AIAA 2000-3348
    [47] Kemal, A. And Bowman, C. T., Active Adaptive Control of Combustion, 4th IEEE Conference on Control Applocations Albany, NY, pp. 667-672, 1995.
    [48] Kim, Y. M., Chen, C. R, Ziebarth, J. R, and Chert, Y. Ss., Prediction of High Frequency Combustion Instability in Liquid Propellant Rocket Engines, AIAA 92-3763, 1992
    [49] Klein, N., Pressure Oscillations in a Liquid Propellant Gun-Possible Dependence on Propellant Burning Rate. U. S. ABRL Rept. BRL-TR-3361, 1992
    [50] Klingenberg, G., Lawton, B., Pressure Oscillations in Regenrative Lquid Propellant Gun, 13th International Symposium on Ballistics, Arlington, 1992, p207-214
    [51] E. Larroche, M. Habiballah, P. Kuentzmann, Numerical Analysis of Liquid Rocket Combustion Instability: Preliminary 3D Acoustic Calculations, AIAA 2000-3497
    [52] Lee, Y. C., Gore, M. R., and Ross, C. C., Stability and Control of Liquid Propellant Rocket Systems, ARS Journal, 23, 75, 1953.
    [53] Ma, T., Van Moorhem, W. K., and Shorthill, R. W., Experimental Investigation of Velocity Coupling in Combustion Instability, Journal of Propulsion, Vol. 7, No. 5, 1990.
    [54] Ma, T., Van Moorhem, W. K., and Shorthill, R. W., An Innovative Method of Investigating the Role of Turbulence in the Velocity Coupling Phenomenon, Journal of Vibration and Acoustics, Vol. 112, Oct., 1990.
    [55] F. P. Di Maio, P. G. Lignola and P, Talarico, Thermokinetic Oscillation ins Acetaldehyde CSTR Combustion, Combust. Sci. and Tech., 1993, Vol. 91, pp, 119-142
    [56] Marble, F. E. And Cox, D. W., Servo-Stabilization of Low-Frequency Oscillations in Liquid Bipropellant Rocket Motor, ARS Journal, 23, 63, 1953
    [57] Maksimov. Yu. M., Pal, A., T., Lavrenchuk. G. B., Naiborodenko, Yu. S. And Merzhanov, A. G. (1979), Spin Combustion of Gasless Systems.
    [58] Margolis, S. B., A New Route of Chaos in Gasless Combustion, Combust. Sci. And Tech., 1992. Vol. 88 pp223-246
    [59] Margolis, S. B., A New Route of Chaos in Gasless Combustion, Combust Sci. and Tech., 1992. Vol. 88 pp 223-246.
    [60] Margolis, S. B. (1983). An Asymptotic Theory of Condensed Two-phase Flame Propagation SSIAM J. Appl. Math. 43, 351-369
    [61] Mcgreevy, J. L., and Matalon, M., Hydrodynamic Instability of Premixed Flame Under Confinement, Combust. Sci. And Texh. 1994, Vol. 100, pp.75-94.
    [62] K. Meadows and J. Hardin, Removing Spurious Reflections from CFD Solutions by Using the Complex Cepstrum, AIAA 90-3947
    [63] Merzhanov. A. G., Filonenko. A. K. And Borovinskaya. I. P. (1973). New Phenomena in Combustion of Condensed Systems. Dokl. Phys. Chem. 208, 122-125
    [64] Morse, P. M., and Ingrad, K. U., Theoretical Acoustics, 1st ed., Princeton Univ. Press, Princeton, N J, 1968, Chap. 9. 1
    [65] Neumeier, Y., Nabi, A., and Zinn, B. T., Investigation of the Open Loop Performance of Active Control System Utilizing a Fuel Injector Actuator, AIAA 96-2757.
    [66] Neumeier, Y., and Ben T. Zinn, Active Control of Combustion Instabilities With Real Time Observation of Unstable Combustor Modes, AIAA 96-0758
    [67] Nkonga, B., Fernandez, G. And Guillard, H., and Larrouturou, B., Numerical Investigations of the Tulip Flame Instability-Comparisons with Experimental Results, Combust. Sci. And Tech., 1992, Vol. 87. pp. 69-89.
    [68] Oefelein, J. C. And Yang, V., A comprehensive Review of Liquid-Propellant Combustion Instabilities in F-1 Engines, Interim Version, Department of Mechanical Engineering, Propulsion Engineering Research Center, The Pennsylvania State University, University Park, Pennsylvania, 1992.
    [69] Padmanabhan, K. T., Bowman, C. T. And Powell, J. D., An Adaptive Optimal Combustion Control Strategy, Combust. Flame, Vol. 100, pp. 101-110, 1995.
    [70] M. Z. Pindera and M. G. Giridharan, Numerical Studies of Acoustic Interactions with Spray Combustion, AIAA 94-0685
    [71] Priem, R. J., and Habiballah, D. C., Combustion Instability Limits Determined by a Nonlinear Theory and a One-Dimensional Model, NASA-CR-920, 1968.
    [72] Price, E. W., Velicity Coupling in Oscillatory Combustion of Solid Propellants, AIAA Journal, Vol. 17, 1979, pp. 799-800.
    [73] Pugh, S. A., Kim H-R., and Ross, J., J. Chem. Phys. 86: 776 (1987)
    [74] W. Pun, S. L. Palm, and F. E. C. Culick, PLIF Measurements of Combustion Dynamics in a Burner Under Forced Oscillatory Comditons, AIAA-2000-3123
    [75] Rayleigh, Lord, The Explanation of Certain Acoustical Phenomena, Royal Institution Proceedings, Vol. Ⅷ. London, 1878, pp. 536-542
    [76] Reardon, F. H., Correlation of Sensitive-Time-Lag-Theory Combustion Parameters with Thrust Chamber Design and Operating Variables, Fifth Interagency Chemical Rocket Propulsion Group Combustion Conference, CPIA Pub. 183, Chemical Propulsion Information Agency, Laurel, MD, Dec. 1968, pp.237-244
    [77] N. O. Rhys and C. W. Hawk, Tripropellant Combustion: Chemical Kinetics and Combustion Instability, AIAA 95-3151.
    [78] Roberts, T. A. And Beddini, R. A., A Comparison of Acoustic and Steady-State Erosive Burning in Solid Rocket Motors, AIAA 89-2664, July, 1989.
    [79] Roberts, T. A. And Beddini, R. A., Response of Solid Propellant Combustion to the Presence of a Turbulent Acoustic Boundary Layer, AIAA 88-2942, July, 1988.
    [80] N. O. Rhys and C, W. Hawk, Tripropellant Combustion: Chemical Kinetics and Combustion Instability, AIAA 95-3151.
    [81] Schmidt, M. G. and Micci, M. M., Combustion Performance of RP-1/O_2/H_2 Tripropetlants, AIAA 98-3686
    [82] C. Seywert G. Isella F. E. C. Culick, Active Feedback Control of Combustor Dynamics with Time Delay and Noise, AIAA 2000-3124
    [83] A. F. Sirignano, J.-P. Delplanque, C. H. Chiang, and R. Bhatia, Liquid-Propellant Droplet Vaporization: A Rate-Controlling Process for Combustion Instability, Chapter 11 of
    [84] Tsien, H. S. (1952). Servo-Stabilization of Combustion in Rocket Motors, ARS Journal, 22, 256.
    [85] T. Wakabayashi, Y. Mizutani, M. Katsuki and F. Akamatsu, Observations of the Structure of a Spray Flame in 2-D Counterflow Burner. AIAA 98-0720
    [86] Vigor Yang, Josef M. Wicker, and Myong Won Yoon, Aoustic Waves in Combustion Chambers, Chapter 13 of Liquid Rocket Engine Combustion Instability, Progress in Astronautics and Aeronautics, Volume 169, 1995.
    [87] Vigor Yang William Anderson, Liquid Rocket Engine Combustion Instability, Chapter 2., Progress in Astronautics and Aeronautics, Volume 169, American institute of Aeronautics and Astronautics, Inc. 370L'Enfant promenade, SW, Washington, DC 20024-225 18, 1996
    [88] Wren, G. R, Coffee, T. R, Pressure Oscillations in Regenerative Liquid Propellant Guns, Journal of Propellants, Explosives and Pyrotechnics, 1995, 20(1): 225-231
    [89] Xiaoping Hu, Jin Zhou, Zhengguo Wang and Liangsheng Zhong, Experimental Studies on Atomization and flux Distributions of Gas-Liquid Coaxial Injectors, AIAA 96-3023, 1996
    [90] Yatsuyanagi, N., Sato, K., Sakamoto, H., Ono, F., Tamura, H., Stabilizing Effect of Hydrogen Injection on LOX/Kerosene Unstable Combustion Proceedings of Seventeenth International Symposium on Space Technology and Science, Tokyo, Japan, 1990.
    [91] Zinn, B. T., and Neumeier, Y., An Overview of Active Control of Combustion Instabilities, AIAA 97-0461.
    [92] 爱因斯坦,爱因斯坦文集,第一卷
    [93] [俄] A.B.安德列耶夫等著,气液喷嘴动力学,任汉芬庄逢辰译,宇航出版社,1996
    [94] [美] D.T.哈杰,F.H.里尔登等著,液体推进剂火箭发动机不稳定燃烧,朱宁昌,张宝炯译,孙敬良校。
    [95] Luigi Crocco 程心一,液体火箭发动机燃烧不稳定性理论,张逸民译,国防工业出版社.
    [96] G. Nicolis and I. Prigogine Self-organization in Nonequilibrium Systems,非平衡系统的自组织,徐裼申等译,中国科学出版社,1986
    [97] 彭加勒,科学的价值,光明日报出版社
    [98] Wartofsky,M,W.,科学思想的概念基础,求实出版社
    [99] 陈予恕,非线性系统振动系统的分岔和混沌理论,高等教育出版社,1993
    [100] 程显辰,脉动燃烧,中国铁道出版社,1994年,北京
    [101] 顾仲权,马扣根,陈卫东,振动主动控制,国防工业出版社,1997年
    [102] 黄东涛,边晓东,刘克,江先金,朱之樨,非线性驻波现象的数值模拟与试验结果的比较,声学学报,Vol.24,No.3,May,1999
    [103] 洪鑫,博士论文,上海航天局八零一研究所,1998。
    [104] 楼祺洪等,脉冲放电气体激光器,科学出版社,1993年
    [105] 刘式适,刘式达等,非线性大气动力学,国防工业出版社,1996年
    [106] 刘卫东,博士论文,国防科学技术大学研究生院,1996。
    [107] 马大猷,热声学的基本理论和非线性,声学学报,Vol.24,No.4.Jul,1999,pp337-350
    [108] 沈柯,激光器原理,北京工业学院出版社,1986
    [109] 孙锦山,朱建士,理论爆轰物理,国防工业出版社,1995年
    [110] 吴国盛,科学的历程,湖南科技出版社,1995
    [111] 项国波,非线性系统,知识出版社,1990
    [112] 徐南荣,宋文忠,夏安邦,系统辨识,东南大学出版社,1989
    [113] 赵文涛,火箭发动机非线性燃烧稳定性数值仿真,博士论文,国防科学技术大学研究生院,1997。
    [114] 郑维敏,正反馈,清华大学出版社,1998年
    [115] 聂万胜,博士论文,国防科学技术大学研究生院,1999
    [116] 程正兴,小波分析算法与应用,西安交通大学出版社,1997
    [117] 胡昌华等,基于Matalab的系统分析与设计—小波分析,西安电子科技大学 出版社,1999
    [118] 潘士先,谱估计和自适应滤波,北京航空航天大学出版社,1990

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700