钙钛矿型铁电薄膜异质结构的取向生长及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钙钛矿型(AB03)铁电薄膜作为电子功能陶瓷领域里最重要的一类铁电材料,具有优异的非挥发存储铁电性以及其它多种重要的传感特性:绝缘介电性、压电性、热释电性、电光性等。能够实现电能与电能、机械能与电能、热能与电能以及光能与电能之间的相互转换,为多种电子元器件的微型化与集成化创造了条件。在能源,国防,汽车,自动化等多个核心领域有着重要的应用前景。
     值得注意的是,目前电子器件中使用的铁电薄膜绝大多数为单一成分的多晶结构,按照晶粒取向平均以后,具有较小的剩余极化强度和较差的电学性能,异质结构的界面调控作用变得十分微弱,也无法进行薄膜的成分调控,这严重制约了AB03型铁电薄膜异质结构的性能探索和高效应用。因此,对于AB03型铁电薄膜的取向生长,以及通过取向和异质结构设计进行性能调控的研究具有重要的理论意义和应用价值。
     在实验研究方面,本文基于BTO铁电薄膜材料,运用多靶射频磁控溅射的制备技术取向生长BTO基薄膜异质结构,研究薄膜的取向生长规律,以及“顶电极-铁电薄膜-底电极-基底”异质结构界面和取向对铁电薄膜微观结构和性能的调控作用。在理论方面,主要基于PZT铁电薄膜,研究其压电特性。本文主要的研究内容如下:
     (1)调节磁控溅射镀膜工艺参数,以LSCO为底电极,在STO、MgO等单晶基片上沉积BTO铁电薄膜。研究射频功率、溅射气压、镀膜气氛及降温速率等对BTO薄膜晶体取向、微观形貌以及电畴结构的影响。优化实验工艺条件后,进一步研究薄膜厚度对其性能的影响作用,为后续研究工作奠定实验基础。
     (2)分别采用贵金属Pt和导电氧化物LSCO作为底电极,在(100)-MgO单晶基底上以相同的工艺条件沉积BTO薄膜。结果表明,底电极为Pt时,BTO薄膜为多晶结构;底电极为LSCO时,BTO薄膜为(001)外延单晶结构。但在(001)取向上介电性能较差,致包含其它取向的前者具有较优的介电性能。另外,BTO薄膜的结晶结构可通过Pt电极层的织构取向来调控,而Pt的织构取向强烈依赖其生长温度,低温(200℃)为(111)高度择优,随着生长温度的升高,逐渐由(111)向(200)转变,温度越高,(200)织构取向越明显。
     (3)选用钙钛矿结构的导电氧化物LSCO、LNO和SRO作为底电极,分别得到BTO/OBE/STO异质结构。所有BTO薄膜均是外延取向结构,并具有良好的铁电性及高击穿场强。比较分析发现,界面压应力越大,BTO薄膜的介电常数和介电调谐率就越高;底电极功函数越大,薄膜的漏电流越大,越容易击穿。同时运用金属-半导体接触理论,研究了这些BTO/OBE异质界面空间电荷状态和传输行为,理论计算出这些薄膜异质结构的界面势垒高度(0.79-0.88eV)、空间电荷密度(5.14×1019-1.51×1020cm-3)、自由载流子浓度(3.7×1018-1.1×1019cm-3)、耗散层厚度以及界面层厚度(δ(Ⅴ))等特征物理量,并分析它们对BTO薄膜电学性能的调控作用。研究表明这些异质结构的界面电荷传输机制从低压段到高压段分别为肖特基、离子和Pool-Frenkel发射传导机制。
     (4)选用不同取向的单晶基底材料,以SRO作为底电极,制备形成不同的BTO/SRO/Sub(hkl)异质结构。根据晶格匹配程度,探讨薄膜的取向生长机理及其对电学性能的影响。结果表明,BTO薄膜的晶体结构受基底晶格常数和取向的影响。此外,BTO薄膜表现出强烈的电学性能各向异性,比较发现,(111)取向的BTO薄膜具有最佳的介电性能,(001)取向的BTO薄膜具有最佳的铁电性能。另外,将BTO/LSCO/Sub异质结构制成悬臂梁测量其压电位移,发现通过使用不同的基底材料可以对BTO薄膜的压电力常数e31,f进行有效的调控。
     (5)用射频磁控溅射在(100)-STO基底上沉积(001)高度择优取向的BTO-STO超晶格纳米复合薄膜。由于超晶格界面应变的作用,其低频介电常数可达等厚度BTO薄膜的3.6-4.5倍,且随对称超晶格组分厚度的减小而增大。
     (6)运用连续介质力学,计算了“PZT外延铁电薄膜-弹性基底”弹性耦合体的压电系数随异质结构厚度系数的变化关系,发现薄膜的压电系数与测试方法、基底弹性性能、薄膜晶体结构和电机械性能、异质结构的取向等因素密切相关。
     本论文工作得到国家自然科学基金、教育部留学归国人员科研启动基金、山东省优秀中青年科学家科研奖励基金、清华大学新型陶瓷与精细工艺国家重点实验室开放基金等科研项目的资助。
As a most important kind of ferroelectric materials in the filed of electric functional ceramics, perovskite (ABO3) ferroelectric thin films have excellent nonvolatile storage ferroelectric and some other important sensing properties: insulation dielectric, piezoelectric, pyroelectric, electro-optic, etc. It can achieve the conversion between electrical energy and electrical energy, mechanical energy and electrical energy, thermal energy and electrical energy, or light energy and electrical energy, creating conditions for miniaturization and integration of various electronic components. It has important application prospect in the areas of energy, national defense, automotive, automation, etc.
     It is worth noting that, the ferroelectric thin films used in electronic devices are usual single component with polycrystalline structure, their residual polarization is small and electrical performance is poor. At the same time, the effect of interface tailoring in heterostructures become very weak, as well as for the film compositions. This has limited the investigations on perovskite ferroelectric films in both properties research and efficient applications. Therefore, it has important theoretical significance and application value for the research on orientation growth and performance tailoring in ABO3-type ferroelectric thin films.
     In the part of experimental research, based on BTO materials, oriented BTO-base films heterostructures were prepared by using multiple target radio frequency magnetron sputtering (RFMS), then, the rules of orientation growth were investigated, as well as the taioring effect of interface and orientation on the microstructures and properties of ferroelectric films in the heterostructure of "top electrode-ferroelectric thin film-bottom electrode-substrate". In the part of theoretical research, the piezoelectric properties of PZT ferroelectric film heterostructures were investigated. The main research contents are summarized as follows:
     (1) BTO ferroelectric thin films were deposited on single crystal substrates of STO and MgO with LSCO as bottom electrode in different RFMS parameters. The influences of the radio frequency power, sputtering pressure, deposition atmosphere and cooling rate on crystal orientation, microstructure and domain structure of BTO films were investigated. After the process conditions were optimized, the influences of film thickness on the electrical performance were further studied, and provide experimental foundation for the following researches.
     (2) BTO films were deposited on (100) MgO substrates, noble metal Pt and oxide LSCO were used as bottom electrode, respectively. The results showed that BTO film on Pt/MgO was polycrystalline structure, and (001) epitaxial on LSCO/MgO. It has poor dielectric properties in the orientation of (001), so the former one, which contains other orientations, exhibited better dielectric properties. In addition, the crystalline structure of BTO films can be controlled effectively by controlling the texture orientation of Pt layer, which was strongly depending on its growth temperature,(111) highly preferred orientation in low temperature(200℃), and gradually transferred to (200) with increasing growth temperature.
     (3) Different conductive oxides LSCO, LNO and SRO were used as bottom electrode, and the BTO/OBE/STO epitaxial heterostructures were obtained. All BTO films had good ferroelectric and high breakdown voltage characteristics. Comparative analysis found that the greater interfacial compressive stress, the higher dielectric constant and tunability of BTO film; the bigger bottom electrode work function, the greater leakage current of BTO film. Heterointerface space charge states were investigated by using metal-semiconductor contact theory, and the interface barrier height (0.79-0.88eV), space charge density (5.14x1019-1.51x1020cm-3), free carrier concentration (3.7x1018-1.1x1019cm-3), the thicknesses of depletion layer and interface layer(δ(V)) were calculated, then the influence of these parameters on related electrical properties of BTO films were analyzed. The interface transmission mechanism was schottky, Ionic and Pool-Frenkel emission from low voltage range to high voltage range, respectively.
     (4) Different single crystal substrates with different orientations were used to deposited BTO films, and BTO/SRO/Sub(hkl) heterostructures were formed. According to the degree of lattice matching, the oriented growth mechanism and its influence on the electrical performances of BTO film were investigated. The results showed that the crystal structure of BTO film was influenced by the lattice parameters and the orientation of substrate. The electric properties of BTO films exhibited a strong anisotropy, the best dielectric performance for (111)-BTO film, the best ferroelectric performance for (001)-BTO film. In addition, BTO/LSCO/Sub heterostructures were prepared as piezoelectric cantilever beams, the piezoelectric coefficient e31,f can be tailored by using different substrate materials.
     (5) Highly (001) preferred orientation BTO-STO superlattice nano-composite films were deposition on (100)-STO substrate by RFMS. Because of the effect of the superlattice interface strain, the low frequency dielectric constant of BTO-STO superlattices were3.6-4.5times lager than BTO films in the same conditions, and increased with decreasing of the single layer thickness for symmetry superlattice.
     (6) The thickness ratio dependence of the piezoelectric coefficient of "epitaxial PZT ferroelectric thin film-elastic substrate" elastic couples were calculated by using the continuum mechanics, along with the change of heterostructure coefficient of thought with the representation method, it showed that the piezoelectric coefficient of PZT films closely related to the characterization methods, elastic properties of substrates, crystal structure and electromechanical properties of films, and the orientation of heterostructures.
     This work was supported by National Natural Science Foundation of China (Nos.51002088and91122024), Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry (ROCS, SEM). Shandong Province Outstanding Young Scientist Research Fund (No. BS2010CL029), and Open Fund of State Key Laboratory of New Ceramic and Fine Processing of Ministry of Education in Tsinghua University.
引文
[1]钟维烈.铁电体物理学[M].北京:科学出版社,1996.
    [2]许煜寰.铁电与压电材料[M].北京:科学出版社,1978.
    [3]王仁卉,郭可信.晶体学中的对称群[M].北京:科学出版社,1990.
    [4]J Y Li, K Bhattacharya. A mesoscopic electromechanical theory of ferroelectric films and ceramics [J]. Fundamental Physics of Ferroelectrics (ed. R.E.Choen), AIP,2002.
    [5]N Setter, D Damjanovic, L Eng, G Fox, S Gevorgian, S Hong, A Kingon, H Kohlstedt, N Y Park, G B Stephenson, I Stolitchnov, A K Taganstev, D V Taylor, T Yamada, S Streiffer. Ferroelectric thin films: Review of materials, properties, and applications [J]. Journal of Applied Physics,2006,100(5):051606.
    [6]D W Chapman. Some thin-film properties of a new ferroelectric composition [J]. Journal of Applied Physics,1969,40(6):2381-2385.
    [7]M H Francombe. Ferroelectric films and their device applications [J]. Thin Solid Films 1972,13(2):413-433.
    [8]B S Sharma, S F Vogel, P I Prentky. Retention in thin ferroelectric films [J]. Ferroelectrics.1973,5(1):69-75.
    [9]J B Blum, S R Gurkowich. Sol-gel-derived PbTiO3 [J]. Journal of Materials Science.1985,20(12):4479-4483.
    [10]K D Budd, S K Dey, D A Payne. Sol-Gel Processing of PbTiO3, PbZrO3, PZT and PLZT thin films [C]//British Ceramic Proceedings.1988,36:107-121.
    [11]符春林.铁电薄膜材料及其应用[M].北京:科学出版社,2009.
    [12]J F Scott, C A Paz de Araujo, L D McMillan. Integrated ferroelectrics [J]. Condensed Matter News,1992,1(3):16-20.
    [13]J F Scott, C A Paz de Araujo. Ferroelectric memories [J]. Science,1989, 246(4936):1400-1405.
    [14]S S Eaton, D B Butler, M Parris, D Wilson, H McNeillie. A ferroelectric nonvolatile memory [C]. Solid-State Circuits Conference (1988). Digest of Technical Papers. ISSCC.1988 IEEE International. IEEE,1988:130.
    [15]J F Scott. Ferroelectric Memories [M]. Berlin: Springer-Verlag,2000.
    [16]R Ramesh. Thin film ferroelectric materials and devices. Massachusetts:Kluwer Academic publishers.1997.
    [17]张福学,王丽坤.现代压电学(中册)[M].北京:科学出版社,2002.
    [18]K Amanuma, T Hase, Y Miyasaka. Preparation and ferroelectric properties of SrBi2Ta209 thin films [J]. Applied Physics Letters,1995,66(2):221-223.
    [19]C A Paz de Araujo, J D Cuchiaro, L D McMillan, M C Scott, J F Scott. Fatigue-free ferroelectric capacitors with platinum electrodes [J]. Nature,1995, 374(6523):627-629.
    [20]S B Desu, T Li. Fatigue-free SrBi2(TaxNb1-x)2O9 ferroelectric thin films [J]. Materials Science and Engineering: B,1995,34(1):L4-L8.
    [21]F Yan, G Zhao, N Zhao, N Song, Y Chen. Synthesis and characterization of photochemical sol-gel derived lanthanum doped Bi4Ti3O12 film and its micro-patterns [J]. Journal of Sol-gel Science and Technology,2012,64(3): 524-529.
    [22]Z Mo, X Miao, L Liang, W Deng, B Li, D Bao. Room-temperature pulsed laser deposition and dielectric properties of amorphous Bi3.95Er0.05Ti3O12 thin films on conductive substrates [J]. Applied Physics A,2013,111(4):1113-1117.
    [23]X A Mei, R F Liu, C Q Huang, J Liu. Ferroelectric Property and Microstructures of La-Doped Bi4Ti3O12 Thin Films [J]. Key Engineering Materials,2013,537: 114-117.
    [24]W C Liu, C L Mak, K H Wong, D Y Wang, H L W Chan. Optical properties of epitaxial and polycrystalline Sr1.8Ca0.2NaNb5O15 thin-film waveguides grown by pulsed laser deposition [J]. Journal of Applied Physics,2006,100(3):033507.
    [25]W C Liu. Raman and optical characterization of tungsten bronze niobates thin films and nanocrystals [J]. Dissertation,2009.
    [26]R Zhang, R Xu. Chemical Vapor Deposition of Sr1-xBaxNb2O6 Thin Films Using Metal Alkoxide Precursors [J]. Journal of Materials Research,2000,15(08): 1702-1708.
    [27]M Kadota, Y Suzuki, Y Ito(?). FBAR using LiNbO3 thin film deposited by CVD[C]//Proceedings of Symposium on Ultrasonic Electronics.2010,31(2010): 339-340.
    [28]M Kadota, T Ogami, K Yamamoto, H Tochishita, Y Negoro. High-frequency lamb wave device composed of MEMS structure using LiNbO3 thin film and air gap [J]. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on,2010,57(11):2564-2571.
    [29]C Zhou, Y Yang, J Zhan, T Ren, X Wang, S Tian. Surface acoustic wave characteristics based on c-axis (006) LiNbO3/diamond/silicon layered structure [J]. Applied Physics Letters,2011,99(2):022109.
    [30]W C Shih, X Y Sun, T L Wang, M S Wu. Growth of c-axis oriented LiNbO3 film on sapphire by pulsed laser deposition for surface acoustic wave applications [J]. Ferroelectrics,2009,381(1):92-99.
    [31]T Kimura, M Kadota, Y Ida. Improvement of characteristics of leaky surface acoustic wave on LiTaO3 [J]. Electronics and Communications in Japan,2013, 96(2):25-31.
    [32]J Gou, J Wang, M Yang, Z Huang, W Li, Y Jiang. Preparation and characterization of LiTaO3 films derived by an improved sol-gel process [J]. Acta Metallurgica Sinica (English Letters),2013,26(3):299-302.
    [33]D Zhang, W Luo, Y Bao, F.Gao, W Qian. Thickness effect and etching implement of silicon substrate of LiTaO3 thin film infrared detector [C]//5th International Symposium on Advanced Optical Manufacturing and Testing Technologies. International Society for Optics and Photonics,2010:76580Q-6.
    [34]V Stenger, M Shnider, S Sriram, D Dooley, M Stout. Thin Film Lithium Tantalate (TFLT) pyroelectric detectors [C]//SPIE OPTO. International Society for Optics and Photonics,2012:82610Q.
    [35]S S Kim, M H Park, J K Chung, W J Kim. Structural study of a sol-gel derived pyrochlore Bi2Ti2O7 using a Rietveld analysis method based on neutron scattering studies [J]. Journal of Applied Physics,2009,105(6):061641.
    [36]Y Hou, T Lin, Z Huang, G Wang, Z Hu, J Chu, X Xu, M Wang. Electrical and optical properties of Bi2Ti2O7 thin films prepared by metalorganic decomposition method [J]. Applied Physics Letters,2004,85(7):1214-1216.
    [37]Y Hou, Z Huang, J Xue, Y Wu, X Shen, J Chu. Study of the ferroelectricity in Bi2Ti2O7 by infrared spectroscopic ellipsometry [J]. Applied Physics Letters, 2005,86(11):112905.
    [38]杨烈宇.材料表面薄膜技术[M].北京:人民交通出版社,1991.
    [39]郑伟涛.薄膜材料与薄膜技术[M].北京:化学工业出版社,2004.
    [40]C Cao. Donglu Shi (Ed.), Functional Thin Films and Functional Materials, Springer, Heidelberg,2003, p.86.
    [41]K Iijima, Y Tomita, R Takayama, I Ueda. Preparation of c-axis oriented PbTiO3 thin films and their crystallographic, dielectric, and pyroelectric properties [J]. Journal of Applied Physics,1986,60(1):361-367.
    [42]R Ramesh, S Aggarwal, O Auciello. Science and technology of ferroelectric films and heterostructures for non-volatile ferroelectric memories [J]. Materials Science and Engineering: R: Reports,2001,32(6):191-236.
    [43]O Auciello, R Ramesh. Laser-ablation deposition and characterisation of ferroelectric capacitors for nonvolatile memories [J]. MRS Bulletin,1996,21(6): 31-36.
    [44]K Suu. H Ishiwara, M Okuyama, Y Arimoto (Eds.), Ferroeletric Random Accesss Memories e Fundamentals and Applications, Springer, Heidelberg,2004, p.71.
    [45]H Adachi, T Mitsuyu, O Yamazaki, K Wasa. Ferroelectric (Pb,La)(Zr,Ti)O3 epitaxial thin films on sapphire grown by rf-planar magnetron sputtering [J]. Journal of Applied Physics,1986,60(2):736-741.
    [46]J Im, O Auciello, P K Baumann, S K Streiffer, D Y Kaufman, A R Krauss. Composition-control of magnetron-sputter-deposited (BaxSr1-x)Ti1+yO3+z thin films for voltage tunable devices [J]. Applied Physics Letters,2000,76(5): 625-627.
    [47]N Izyumskaya, Y I Alivov, S J Cho, H Morkoc, H Lee, Y S Kang. Processing, structure, properties, and applications of PZT thin films [J]. Critical Reviews in Solid State and Materials Sciences,2007,32(3-4):111-202.
    [48]S S Park, C H Yang, S G Yoon, J H Ahn, H G Kim. Characterization of Ferroelectric SrBi2Ta2O9 Thin Films Deposited by a Radio Frequency Magnetron Sputtering Technique [J]. Journal of the Electrochemical Society,1997,144(8): 2855-2858.
    [49]E A Paisley, H S Craft, M D Losego, H Lu, A Gruverman, R Collazo, Z Sitar, J P Maria. Epitaxial PbxZr1-xTi03 on GaN [J]. Journal of Applied Physics,2013, 113(7):074107.
    [50]K Sreenivas, M Sayer, D J Baar, M Nishioka. Surface acoustic wave propagation on lead zirconate titanate thin films [J]. Applied Physics Letters,1988,52(9): 709-711.
    [51]K Sreenivas, M Sayer. Characterization of Pb(Zr,Ti)O3 thin films deposited from multielement metal targets [J]. Journal of Applied Physics,1988,64(3): 1484-1493.
    [52]K Sreenivas, M Sayer, P Garrett. K Sreenivas, M Sayer, P Garrett. Properties of DC magnetron-sputtered lead zirconate titanate thin films [J]. Thin Solid Films, 1989,172(2):251-267.
    [53]R Takayama, Y Tomita, K Iijima, I Ueda. Preparation and characteristics of pyroelectric infrared sensors made of c-axis oriented La-modified PbTiO3 thin films [J]. Journal of Applied Physics,1987,61(1):411-415.
    [54]P J Kelly, R D Arnell. Magnetron sputtering: a review of recent developments and applications [J]. Vacuum,2000,56(3):159-172.
    [55]K-Ⅱ Park, S Xu, Y Liu, G. T Hwang, S J L Kang, Z L Wang, K J Lee. Piezoelectric BaTiO3 thin film nanogenerator on plastic substrates [J]. Nano Letters,2010,10(12):4939-4943.
    [56]J Lu, S Stemmer. Low-loss, tunable bismuth zinc niobate films deposited by rf magnetron sputtering [J]. Applied Physics Letters,2003,83(12):2411-2413.
    [57]H J Lee, I W Kim, J S Kim, C W Ahn, B H Park. Ferroelectric and piezoelectric properties of NaKNbO3 thin films prepared by radio frequency magnetron sputtering [J]. Applied Physics Letters,2009,94:092902.
    [58]W Ji, K Yao, Y C Liang. Bulk photovoltaic effect at visible wavelength in epitaxial ferroelectric BiFeO3 thin films [J]. Advanced Materials,2010,22(15): 1763-1766.
    [59]S B Krupanidhi, H Hu, V Kumar. Multi-ion-beam reactive sputter deposition of ferroelectric Pb(Zr,Ti)O3 thin films [J]. Journal of Applied Physics,1992,71(1): 376-388.
    [60]C H Huang, Y K Wang, H T Lue, J Y Huang, M Z Lee, T Y Tseng. Memory properties of metal-ferroelectric-semiconductor and metal-ferroelectric-insulator-semiconductor structures using rf sputtered ferroelectric Sro.8Bi2.5Ta1.2Nb0.8O9 thin films [J]. Journal of the European Ceramic Society,2004,24(8):2471-2476.
    [61]L W Martin, Y H Chu, R Ramesh. Advances in the growth and characterization of magnetic, ferroelectric, and multiferroic oxide thin films [J]. Materials Science and Engineering:R: Reports,2010,68(4):89-133.
    [62]H M Smith, A F Turner. Vacuum deposited thin films using a ruby laser [J]. Applied Optics,1965,4(1):147-148.
    [63]H Schwarz, H A Tourtellotte. Vacuum deposition by high-energy laser with emphasis on barium titanate films [J]. Journal of Vacuum Science and Technology,1969,6(3):373-378.
    [64]D Dijkkamp, T Venkatesan, X D Wu, SA Shaheen, N Jisrawi, Y H Min-Lee, W L Mclean, M.Croft. Preparation of Y-Ba-Cu oxide superconductor thin films using pulsed laser evaporation from high T c bulk material [J]. Applied Physics Letters, 1987,51(8):619-621.
    [65]X D Wu, T Venkatesan, A Inam, X X Xia, Q Lia, W L McLean, C C Chang, D M Wang, R Ramesh, L Nazar, B Wilkens, S A Schwarz, R T Ravi, J A Martinez, P England, J M Tarascon, R E Muenchausen, S Foltyn, R C Estler, R C Dye, A R Garcia, N S Nogar. Pulsed laser deposition of high Tc superconducting thin films: Present and future[C]//MRS Proceedings. Cambridge University Press,1990, 191(1).
    [66]H N Lee, H M Christen, M F Chisholm, C M Rouleau, D H Lowndes. Strong polarization enhancement in asymmetric three-component ferroelectric superlattices [J]. Nature,2005,433(7024):395-399.
    [67]Y H Chu, M P Cruz, C H Yang, L W Martin, P L Yang, J X Zhang, K Lee, P Yu, L Q Chen, R Ramesh. Domain control in multiferroic BiFeO3 through substrate vicinality [J]. Advanced Materials,2007,19(18):2662-2666.
    [68]H M Christen, G Eres. Recent advances in pulsed-laser deposition of complex oxides [J]. Journal of Physics: Condensed Matter,2008,20(26):264005.
    [69]L You, N T Chua, K Yao, L Chen, J L Wang. Influence of oxygen pressure on the ferroelectric properties of epitaxial BiFeO3 thin films by pulsed laser deposition [J]. Physical Review B,2009,80(2):024105.
    [70]S A Harrington, J Zhai, S Denev, V Gopalan, H Wang, Z Bi, S A T Redfern, S H Baek, C W Bark, C B Eom, Q Jia, M E Vickers, J L M Driscoll. Thick lead-free ferroelectric films with high Curie temperatures through nanocomposite induced strain [J]. Nature Nanotechnology,2011,6(8):491-495.
    [71]Y H Chu, Q He, C H Yang, P Yu, L W Martin, P Shafer, R Ramesh. Nanoscale control of domain architectures in BiFeO3 thin films [J]. Nano Letters,2009,9(4): 1726-1730.
    [72]A Infortuna, P Muralt, M Cantoni, A Tagantsev, N Setter. Microstructural and electrical properties of (Sr, Ba)Nb2O6 thin films grown by pulsed laser deposition [J]. Journal of the European Ceramic Society,2004,24(6):1573-1577.
    [73]H Tabata, H Tanaka, T Kawai. Formation of Bi-based layered perovskite oxide films by a laser ablation technique [J]. Japanese Journal of Applied Physics,1995, 34(part 1):5146-5149.
    [74]S M Zanetti, J R Duclere, M Guiloux-Viry, V Bouquet, E R Leite, E Lono, J A Varela, A Perrin. Ferroelectric SBN thin films grown by an SBN/Bi2O3 PLD sequential process [J]. Journal of the European Ceramic Society,2001,21(12): 2199-2205.
    [75]J Lappalainen, J Frantti, V Lantto. Electrical and mechanical properties of ferroelectric thin films laser ablated from a Pbo.97Nd0.02(Zr0.5sTi0.45)O3 target [J]. Journal of Applied Physics,1997,82:3469-3477.
    [76]C H Jeon, C S Kim, K B Han, H S Jhon, S Y Lee. Hydrogen post-annealing effect of the ferroelectric properties of (Pb0.72La0.28) Tio.9303 films fabricated by pulsed laser deposition [J]. Materials science & engineering. B, Solid-State Materials for Advanced Technology,2004,109(1-3):170-173.
    [77]F Craciun, P Verardi, M Dinescu, G Guidarelli. Reactive pulsed laser deposition of piezoelectric and ferroelectric thin films [J]. Thin Solid Films,1999,343: 90-93.
    [78]G Koebernick, W Haessler, R Pantou, F Weiss. Thickness dependence on the dielectric properties of BaTiO3/SrTiO3-multilayers [J]. Thin Solid Films,2004, 449:80-85.
    [79]H Du, D W Johnson, W Zhu, J E Graebner, G W Kammlott, S Jin, J Roberts, R Willett, R M Fleming. Growth and measurements of ferroelectric lead zirconate titanate on diamond by pulsed laser deposition [J]. Journal of Applied Physics, 1999,86(4):2220-2225.
    [80]H N Lee, S Senz, A Pignolet, D Hesse. Epitaxial growth of non c-oriented ferroelectric SrBi2Ta2O9 thin films on SrTiO3 substrates [J]. Journal of the European Ceramic Society,2001,21(10):1565-1568.
    [81]A Y Cho, J R Arthur. Molecular beam epitaxy [J]. Progress in Solid State Chemistry 1975,10:157-192.
    [82]L L Chang, L Esaki, W E Howard, R Ludeke, G Schul. Structures grown by molecular beam epitaxy [J]. Journal of Vacuum Science and Technology,1973, 10(5):655-662.
    [83]R Ludeke, L L Chang, L Esaki. Molecular beam epitaxy of alternating metal-semiconductor films [J]. Applied Physics Letters,1973,23(4):201-203.
    [84]A Y Cho, F K Reinhart. Growth of three dimensional dielectric waveguides for integrated optics by molecular beam epitaxy method [J]. Applied Physics Letters, 1972,21:355-356.
    [85]Y Wang, C Ganpule, B T Liu, H Li, K Mori, B Hill, M Wuttig, R Ramesh, J Finder, Z Yu, R Droopad, K Eisenbeiser. Epitaxial ferroelectric Pb(Zr,Ti)O3 thin films on Si using SrTiO3 template layers [J]. Applied Physics Letters,2002, 80(1):97-99.
    [86]K J Choi, M Biegalski, Y L Li, A Sharan, J Schubert, R Uecker, P Reiche, Y B Chen, X Q Pan, V Gopalan, L Q Chen, D G Schlom, C B Eom. Enhancement of ferroelectricity in strained BaTiO3 thin films [J]. Science,2004,306(5698): 1005-1009.
    [87]S Abel, M Sousa, C Rossel, D Caimi, M D Rossell, R Erni, J Fompeyrine, C Marchiori. Controlling tetragonality and crystalline orientation in BaTiO3 nano-layers grown on Si [J]. Nanotechnology,2013,24(28):285701.
    [88]H M Manasevit. The use of metalorganics in the preparation of semiconductor materials: Growth on insulating substrates [J]. Journal of Crystal Growth,1972, 13:306-314.
    [89]P J Wright, M J Crossbie, P A Lane, D J Williams, A C Jones, T J Leedham, H O Davies. Metal organic chemical vapor deposition (MOCVD) of oxides and ferroelectric materials [J]. Journal of Materials Science: Materials in Electronics, 2002,13(11):671-678.
    [90]M de Keijser, G J M Dormans. Chemical vapor deposition of electroceramic thin films [J]. MRS Bulletin,1996,21(6):37-43.
    [91]H Ishiwara, M Okuyama, Y Arimoto (Eds.). Ferroelectric Random Access Memories e Fundamentals and Applications [M], Springer, Heidelberg,2004, p. 95.
    [92]S Regnery, P Ehrhart, F Fitsilis, R Waser, Y Ding, C L Jia, M Schumacher, F Schienle, H Juergensen. (Ba,Sr)TiO3 thin film growth in a batch processing MOCVD reactor [J]. Journal of the European Ceramic Society,2004,24(2): 271-276.
    [93]F Fitsilis, S Regnery, P Ehrhart, R Waser, F Schienle, M Schumacher, M Dauelsberg, P Strzyzewski, H Juergensen. BST thin films grown in a multiwafer MOCVD reactor [J]. Journal of the European Ceramic Society,2001,21(10): 1547-1551.
    [94]P Schafer, R Waser, P Schafer, R Waser. MOCVD of perovskite thin films using an aerosol-assisted liquid delivery system [J]. Advanced Materials for Optics and Electronics,2000,10(3-5):169-175.
    [95]S K Dey, P V Alluri, S K Dey, P V Alluri. PE-MOCVD of dielectric film films: challenges and opportunities [J]. MRS Bulletin,1996,21(6):44-48.
    [96]J Fukushima, K Kodaira, T Matsushita. Preparation of ferroelectric PZT films by thermal decomposition of organometallic compounds [J]. Journal of Materials Science,1984,19(2):595-598.
    [97]A I Kingon, E R Meyers, B A Tuttle (Eds.). Ferroelectric Thin Films I-V [M], Materials Research Society Symposium Proceedings,200,243,310,361, and 433.
    [98]G W Taylor, CA Paz de Araujo. Proceedings of the International Symposium on Integrated Ferroelectrics [J].1996.
    [99]J T Evans, W D Miller, J A Bullington. Ferroelectrics:A New Non-Volatile Technology; Krysalis Microelectronics Corp.Product Literature,1987.
    [100]R W Schwartz. Chemical solution deposition of perovskite thin films [J]. Chemistry of Materials,1997,9(11):2325-2340.
    [101]S Iakovlev, C H Solterbeck, M Kuhnke, M Es Souni. Multiferroic BiFeO3 thin films processed via chemical solution deposition: Structural and electrical characterization [J]. Journal of Applied Physics,2005,97:094901.
    [102]Y Guo, K Suzuki, K Nishizawa, T Miki, K Kato. Chemical Solution Deposition and Electrical Properties of (100)-Predominant BaTiO3 Thicker Films [J]. Integrated Ferroelectrics,2007,88(1):51-57.
    [103]X Zhu, D Shi, S Dou, Y Sun, Q Li, L Wang, W Li, Y Weikong, R Zheng, Z Chen, C Kong. (001)-oriented Bi2Sr2Co2Oy and Ca3Co4O9 films:Self-assembly orientation and growth mechanism by chemical solution deposition [J]. Acta Materialia,2010,58(12):4281-4291.
    [104]M A Hamad. Room temperature giant electrocaloric properties of relaxor ferroelectric 0.93PMN-0.07PT thin film [J]. AIP Advances,2013,3(3): 032115-6.
    [105]D Guo, Y Gong, C Wang, Q Shen, L Zhang. BaZrxTi2-xO5 thin films prepared by sol-gel method [J]. Journal of Alloys and Compounds,2013,557:34-39.
    [106]Mueller H. Properties of Rochelle salt [J]. Physical Review,1940,57(9): 829-839.
    [107]Mueller H. Properties of Rochelle salt III [J]. Physical Review,1940,58(6): 565-573.
    [108]V L Ginzburg, Zh Eksp. Polarization and piezoelectric effect in BaTiO3 near the ferroelectric-transition point [J]. Teor. Fiz.1949,19:36-41.
    [109]A F Devonshire. Theory of ferroelectrics [J]. Advances in Physics.1954,3(10): 85-130.
    [110]N A Pertsev, A G Zembilgotov, A K Tagantsev. Effect of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films [J]. Physical Review Letters,1998,80(9):1988-1991.
    [111]N A Pertsev, A K Tagantsev, N Setter. Phase transitions and strain-induced ferroelectricity in SrTiO3 epitaxial thin films [J]. Physical Review B,2000,61(2): R825-R829.
    [112]N A Pertsev, V G Kukhar, H Kohlstedt, R Waser. Phase diagrams and physical properties of single-domain epitaxial Pb(Zr1-xTix)O3 thin films [J]. Physical Review B,2003,67(5):054107.
    [113]V B Shirokov, Y I Yuzyuk, B Dkhil, V V Lemanov. Phenomenological description of phase transitions in thin BaTiO3 films [J]. Physics of the Solid State,2008,50(5):928-936.
    [114]V B Shirokov, Y I Yuzyuk, V V Lemanov. Phenomenological description of thin SrTiO3 films [J]. Physics of the Solid State,2009,51(5):1025-1032.
    [115]V B Shirokov, Y I Yuzyuk, B Dkhil, V V Lemanov. Phenomenological theory of phase transitions in epitaxial BaxSr1-xTiO3 thin films [J]. Physical Review B, 2009,79(14):144118.
    [116]A G Zembilgotov, N A Pertsev, U Bottger, R Waser,. Effect of anisotropic in-plane strains on phase states and dielectric properties of epitaxial ferroelectric thin films [J]. Applied Physics Letters,2005,86(5):052903.
    [117]J Wang, T Y Zhang. Effects of nonequally biaxial misfit strains on the phase diagram and dielectric properties of epitaxial ferroelectric thin films [J]. Applied Physics Letters,2005,86(19):192905.
    [118]J H Qiu, Q Jiang. Effects of external mechanical loading on phase diagrams and dielectric properties in epitaxial ferroelectric thin films with anisotropic in-plane misfit strains [J]. Journal of Applied Physics,2007,101(3):034110.
    [119]J H Qiu, Q Jiang. Anisotropic in-plane misfit strains dependence of phase diagrams and dielectric behavior in epitaxial Pb(Zr1-xTix)O3 thin films [J]. Physics Letters A,2007,370(1):82-89.
    [120]A N Morozovska, S V Kalinin, E A Eliseev, V Gopalan, S V Svechnikov. Interaction of a 180 ferroelectric domain wall with a biased scanning probe microscopy tip: effective wall geometry and thermodynamics in Ginzburg-Landau-Devonshire theory [J]. Physical Review B,2008,78(12): 125407.
    [121]Y P Shi, A K Soh. Modeling of enhanced electrocaloric effect above the Curie temperature in relaxor ferroelectrics [J]. Acta Materialia,2011,59(14): 5574-5583.
    [122]J Zhang, A A Heitmann, S P Alpay, G A Rossetti Jr. Aspects of the Electrocaloric Behavior of Ferroelectric Thin Films:A Review of the Predictions of the Landau-Ginzburg Theory [J]. Integrated Ferroelectrics,2011,125(1): 168-175.
    [123]A N Morozovska, Y Gu, V V Khist, M D Glinchuk, L Q Chen, V Gopalan, E A Eliseev. Low-symmetry monoclinic ferroelectric phase stabilized by oxygen octahedra rotations in strained EuxSr1-xTiO3 thin films [J]. Physical Review B, 2013,87(13):134102.
    [124]J C Slater. The Lorentz Correction in Barium Titanate [J]. Physical Review, 1950,78:748-761.
    [125]J C Slater. Theory of the Transition in KH2PO4 [J]. The Journal of Chemical Physics,2004,9(1):16-33.
    [126]P W Anderson. Fizika Dielectric (ed. G Skanavi). Moscow, Akad. Nauk. SSSR, 1960.
    [127]W Cochran. Crystal stability and the theory of ferroelectricity [J]. Advances in Physics,1960,9(36):387-423.
    [128]W Cochran. Crystal stability and the theory of ferroelectricity [J]. Physical Review Letters,1959,3(9):412-414.
    [129]L Zhang, W L Zhong, W Kleemann. A study of the quantum effect in BaTiO3 [J]. Physics Letters A,2000,276(1):162-166.
    [130]C Wang, B Teng, X Zhang, Z Lu, L Liu, D Cheng, X Lu. Investigation of the seeding-layer effect for a ferroelectric thin film with the transverse Ising model [J]. Physica A: Statistical Mechanics and its Applications,2009,388(8): 1472-1478.
    [131]H Wu, Y G Zhan, W Z Shen. Quantum Effect on SrRuO3/BaTiO3/SrRuO3 Ferroelectric Ultrathin Film Capacitor [J]. Ferroelectrics,2010,401(1):246-250.
    [132]X Yang, Y Wang, C K Wang, Q G Song. Phase diagrams of a ferroelectric superlattice: A Green's function technique study [J]. Solid State Communications, 2011,151(23):1833-1837.
    [133]L L Boyer, R E Cohen, H Krakauer, W A Smith. First principles calculations for ferroelectrics-a vision [J]. Ferroelectrics,1990,111(1):1-7.
    [134]K M Rabe, P Ghosez. First-principles studies of ferroelectric oxides [M]. Physics of ferroelectrics. Springer Berlin Heidelberg,2007:117-174.
    [135]刘长乐,王平初,铁电相变的软膜理论[J].物理学进展,1981,1(1):446-486
    [136]何进等.微波介质陶瓷材料综述.电子元件与材料[J],1995(4):7-13
    [137]Y J Wu, X M Chen. Dielectric ceramics of Ba6-3xR8+2xTi18O54 microwave dielectric ceramics [J]. Journal of the American Ceramic Society,2002,85(3): 579-584
    [138]L M Sheppard. The Challenges of Ceramic Machining [J]. American Ceramic Society Bulletin (USA),1992,71(11):1590-1596.
    [139]S Yokoyama, Y Honda, H Morioka, T Oikawa, H Funakubo, T H Iijima, S K Matsuda. Large piezoelectric response in (111)-oriented epitaxial Pb(Zr,Ti)O3 films consisting of mixed phases with rhombohedral and tetragonal symmetry [J]. Applied Physics Letters,2003,83(12):2408-2410.
    [140]T Oikawa, M Aratani, H Funakubo, K Saito, M Mizuhira. Composition and orientation dependence of electrical properties of epitaxial Pb(ZrxTi1-x)O3 thin films grown using metalorganic chemical vapor deposition [J]. Journal of Applied Physics,2004,95:3111-3115.
    [141]J Miao, J Yuan, H Wu, S B Yang, B Xu, L X Cao, B R Zhao. Crystal orientation dependence of the dielectric properties for epitaxial Ba(Zr0.05Ti0.85)03 thin films [J]. Applied Physics Letters,2007,90(2):022903.
    [142]T Shimizu, D Suwama, H Taniguchi, T Taniyama, M Itoh. Comparative study of phase transitions in BaTiO3 thin films grown on (001)-and (110)-oriented SrTiO3 substrate [J]. Journal of Physics: Condensed Matter,2013,25(13):132001.
    [143]Y V Zorenko, V I Gorbenko. Growth and luminescence properties of single-crystalline films of RAlO3 (R= Lu, Lu-Y, Y, Tb) perovskite [J]. Physics of the Solid State,2009,51:1697-1704.
    [144]O Trithaveesak, J Schubert, C Buchal. Ferroelectric properties of epitaxial BaTiO3 thin films and heterostructures on different substrates [J]. Journal of Applied Physics,2005,98(11):114101.
    [145]W F Qin, J Zhu, J Xiong, J L Tang, W J Jie, X H Wei, Y Zhang, Y R Li, Electrical behavior of Y-doped Bao.6Sro.4Ti03 thin films [J]. J. Mater Sci:Mater Electron.2007,18:973-976.
    [146]K Saito, T Kurosawa, T Akai. Structural characterization and 90 domain contribution to ferroelectricity of epitaxial Pb (Zr0.35Ti 0.65)03 thin films [J]. Journal of Applied Physics,2003,93(1):545-550.
    [147]Y Imai, R Tanaka, T Akiike, M Hanawa, I Tsukada, A Maeda. Superconductivity of FeSe0.5Te0.5 thin films grown by pulsed laser deposition [J]. Japanese Journal of Applied Physics,2010,49(2):023101.
    [148]R Brown, V Pendrick, D Kalokitis, B H T Chai. Low-loss substrate for microwave application of high-temperature superconductor films [J]. Applied Physics Letters,1990,57(13):1351-1353.
    [149]S Hontsu, J Ishii, T Kawai, S Kawai. LaSrGaO4 substrate gives oriented crystalline YBa2Cu3O7-y films [J]. Applied Physics Letters,1991,59:2886-2888.
    [150]D Mateika, H Kohler, H Laudan, E Volkel. Growth of single crystals of rare earth gallates [J]. Journal of Crystal Growth,1991,109(1):447-456.
    [151]M D Biegaiski, J H Haeni, S Trolier-McKinstry, D G Schlom, C D Brandle, A V Graitis. Thermal expansion of the new perovskite substrates DyScO3 and GdScO3 [J]. Journal of Materials Research,2005,20(4):952-958.
    [152]J H Lee, L Fang, E Vlahos, X Ke, Y W Jung, L F Kourkoutis, J W Kim, P J Ryan, T Heeg, M Roeckerath, V Goian, M Bernhagen, R Uecker, P C ammel, K M Rabe, S Kamba, J Schubert, J W Freeland, D A Muller, C J Fennie, P Schiffer, V Gopalan, E J Halperin, D G Schlom. A strong ferroelectric ferromagnet created by means of spin-lattice coupling [J]. Nature,2010,466(7309):954-958.
    [153]F He, B O Wells. Lattice strain in epitaxial BaTiO3 thin films [J]. Applied Physics Letters,2006,88(15):152908.
    [154]M C Wang, F Y Hsiao, C S Hsi, N C Wu. Crystal structure and ferroelectricity of nanocrystalline barium titanate thin films [J]. Journal of Crystal Growth,2002, 246(1):78-84.
    [155]Y P Guo, K Suzuki, K Nishizawa, T Miki, K Kato. Dielectric and piezoelectric properties of highly (100)-oriented BaTiO3 thin film grown on a Pt/TiOx/SiO2/Si substrate using LaNiO3 as a buffer layer [J]. Journal of Crystal Growth,2005, 284(1):190-196.
    [156]J Zhu, X Zhu, H Zeng, M Jiang, X Li, J Zhu, D Xiao, Y Li, Microstructure, domain structures and ferroelectric properties in (Pbo.8La0.1Ca0.1)Ti03/Pb (Zr0.2Tio.8)03 bilayered thin film [J]. Thin Solid Films.2009,518:392-395
    [157]D Fu, H Suzuki, T Ogawa. High-piezoelectric behavior of c-axis-oriented lead zirconate titanate thin films with composition near the morphotropic phase boundary [J]. Applied Physics Letters,2002,80(19):3572-3574.
    [158]W J Lin, T Y Tseng, H B Lu, S L Tu, S J Yang, I N Lin, Growth and ferroelectricity of epitaxial-like BaTiO3 films on single-crystal MgO, SrTiO3, and silicon substrates synthesized by pulsed laser deposition [J]. Journal of Applied Physics,1995,77(12):6466-6471.
    [159]R Bouregba, N Sama, C Soyer, G Poullain, D Remiens. Interface depolarization field as common denominator of fatigue and size effect in Pb(Zro.54Tio.46)03 ferroelectric thin film capacitors [J]. Journal of Applied Physics,2010,107(10): 104102.
    [160]C C Yang, M S Chen, T J Hong, C M Wu, J M Wu, T B Wu. Preparation of (100)-oriented metallic LaNiO3 thin films on Si substrates by radio frequency magnetron sputtering for the growth of textured Pb(Zr0.53Ti0.47)03 [J]. Applied Physics Letters,1995,66(20):2643-2645.
    [161]J P George, J Beeckman, W Woestenborghs, P F Smet, W Bogaerts, K Neyts. Preferentially oriented BaTiO3 thin films deposited on silicon with thin intermediate buffer layers [J]. Nanoscale Research Letters,2013,8(1):1-7.
    [162]K H Yoon, J H Sohn, B D Lee, D H Kang. Effect of LaNiO3 interlayer on dielectric properties of (Bao.5Sro.5)Ti03 thin films deposited on differently oriented Pt electrodes [J]. Applied Physics Letters,2002,81(26):5012-5014.
    [163]V Srikant, E J Tarsa, D R Garke, J S Speck. Crystallographic orientation of epitaxial BaTiO3 films: the role of thermal expansion mismatch with the substrate. Journal of Applied Physics,1995,77(4):1517-1520.
    [164]C M Foster, Z Li, M Buckett, D Miller, P M Baldo, L E Rehn, G R Bai, D Guo, H You, K L Merkle. Substrate effects on the structure of epitaxial PbTiO3 thin films prepared on MgO, LaAlO3, and SrTiO3 by metalorganic chemical-vapor deposition [J]. Journal of Applied Physics,1995,78(4):2607-2622.
    [165]V Nagarajan, C S Ganpule, H Li, L S Riba, A L Roytburd, E D Williams, R Ramesh. Control of domain structure of epitaxial PbZr0.2Tio.8O3 thin films grown on vicinal (001) SrTiO3 substrates [J]. Applied Physics Letters,2001,79(17): 2805-2807.
    [166]M G Norton, C Scarfone, J Li, C B Carter, J W Mayer, Epitaxy of barium titanate thin films grown on MgO by pulsed-laser ablation [J]. Journal of Materials Research.1991,6(10):2022-2025.
    [167]H Tabata, H Tanaka, T Kawai. Formation of artificial BaTiO3/SrTiO3 superlattices using pulsed laser deposition and their dielectric properties [J]. Applied Physics Letters,1994,65(15):1970-1972.
    [168]A Visinoiu, M Alexe, H. N Lee, D N Zakharov, A Pignolet, D Hesse, U Gosele. Initial growth stages of epitaxial BaTiO3 films on SrTiO3 (001) substrate surfaces [J]. Journal of Applied Physics,2002,91(12):10157-10162.
    [169]S Matsubara, S Miura, Y Miyasaka, N Shohata. Preparation of epitaxial ABO3 perovskite-type oxide thin films on a (100) MgAl2O4/Si substrate [J]. Journal of Applied Physics,1989,66(12):5826-5832.
    [170]Y Sakashita, H Segawa. Preparation and characterization of LiNbO3 thin films produced by chemical-vapor deposition [J]. Journal of Applied Physics,1995, 77(11):5995-5999.
    [171]H N Lee, D. N Zakharov, S Senz, A Pignolet, D Hesse. Epitaxial growth of ferroelectric SrBi2Ta2O9 thin films of mixed (100) and (116) orientation on SrLaGaO4 (110) [J]. Applied Physics Letters,2001,79(18):2961-2963.
    [172]L A Wills, W A Feil, B W Wessels, L M Tonge, T J Marks. Growth studies of ferroelectric oxide layers prepared by organometallic chemical vapor deposition [J]. Journal of Crystal Growth,1991,107(1):712-715.
    [173]H N Lee, D Hesse. Anisotropic ferroelectric properties of epitaxially twinned Bi3.25La0.75Ti3O12 thin films grown with three different orientations [J]. Applied Physics Letters,2002,80(6):1040-1042.
    [174]M Mitsuya, N Nukaga, K Saito, M Osada, H Funakubo. Low temperature direct crystallization of SrBi2(Ta1-xNbx)2O9 thin films by thermal metalorganic chemical vapor deposition and their properties [J]. Japanese Journal of Applied Physics, 2001,40(5R):3337-3342.
    [175]董维杰,崔玉国,杨志欣,孙宝元.电压驱动与电流积分器相结合实现压电电荷控制[J].计算机测量与控制,2002,10(4):260-262.
    [176]曾亦可,刘梅冬.铁电薄膜电滞回线测量研究[J].功能材料,1998,29(6):600-603.
    [177]H Imai, I Kanno, R Yokokawa, K Wasa, H Kotera. Orientation dependence of transverse piezoelectric properties of epitaxial BaTiO3 films [J]. Japanese Journal of Applied Physics,2010,49(9):09MA09.
    [178]营井秀郎.等离子体电子工程学[M].北京:科学出版社,2002.
    [179]徐学基,诸定昌.气体放电物理学[M].上海:复旦大学出版社,1996.
    [180]吴自勤,王兵.薄膜生长[M].北京:科学出版社,2001.
    [181]T Watanabe, A Saiki, K Saito, H Funakubo, Film thickness dependence of ferroelectric properties of c-axis-oriented epitaxial Bi4Ti3O12 thin films prepared by metalorganic chemical vapor deposition [J]. Journal of Applied Physics,2001, 89(7):3934-3938.
    [182]R Dittmann, R Plonka, E Vasco, N A Pertsev, J Q He, C L Jia, S H Eifert, R Waser, Sharp ferroelectric phase transition in strained single-crystalline SrRuO3/BaSrTiO3/SrRuO3 capacitors [J]. Applied Physics Letters,2003,83(24): 5011-5013.
    [183]Z G Ban, S P Alpay, Phase diagrams and dielectric response of epitaxial barium strontium titanate films: A theoretical analysis [J]. Journal of Applied Physics, 2002,91(11):9288-9296.
    [184]M M Saad, P Baxter, R M Bowman, J M Gregg, F D Morrison, J F Scott, Intrinsic dielectric response in ferroelectric nano-capacitors [J]. Journal of Physics: Condensed Matter,2004,16(41):L451-L456.
    [185]陈楷.陶瓷材料物理性能[M].北京:中国建筑工业出版社,1980
    [186]H C Li, W Si, A D West, X X Xi. Thickness dependence of dielectric loss in SrTiO3 thin films [J]. Applied Physics Letters,1998,73(4):464-466.
    [187]J Slutsker, A Artemev, A L Roytburd. Morphological transitions of elastic domain structures in constrained layers [J]. Journal of Applied Physics,2002, 91(11):9049-9058.
    [188]A L Roytburd, S P Alpay, L A Bendersky, V Nagarajan, R Ramesh. Three-domain architecture of stress-free epitaxial ferroelectric films [J]. Journal of Applied Physics,2001,89(1):553-556.
    [189]E Soergel. Visualization of ferroelectric domains in bulk single crystals [J]. Applied Physics B,2005,81(6):729-751.
    [190]S Wada, K Yako, H Kakemoto, T Tsurumi, T Kiguchi. Enhanced piezoelectric properties of barium titanate single crystals with different engineered-domain sizes [J]. Journal of Applied Physics,2005,98(1):014109.
    [191]Y B Park, J L Ruglovsky, H A Atwater. Microstructure and properties of single crystal BaTiO3 thin films synthesized by ion implantation-induced layer transfer [J]. Applied Physics Letters,2004,85:455-457.
    [192]A F Xie, B Y Gu, G Z Yang, Z B Zhang. Image of near-field second-harmonic generation for inversely poled mesoscopic LiNbO3 domains [J]. Physical Review B,2001,63(5):054104.
    [193]C S Ganpule, V Nagarajan, B K Hill, A L Roytburd, E D Williams, R Ramesh, S P Alpay, A Roelofs, R Waser, L M Eng. Imaging three-dimensional polarization in epitaxial polydomain ferroelectric thin films [J]. Journal of Applied Physics, 2002,91(3):1477-1481.
    [194]P C McIntyre, C J Maggiore, M Nastasi. Orientation selection in thin platinum films on (001) MgO [J]. Journal of Applied Physics,1995,77(12):6201-6204.
    [195]J Narayan, P iwari, K Jagannadham, O W Holland. Formation of epitaxial and textured platinum films on ceramics-(100) MgO single crystals by pulsed laser deposition [J]. Applied Physics Letters,1994,64(16):2093-2095.
    [196]T J Zhang, H Ni. Pyroelectric and dielectric properties of sol-gel derived barium strontium titanate (Bao.64Sro.36Ti03) thin films [J]. Sensors and Actuators A: Physical,2002,100(2):252-256.
    [197]R R Das, P Bhattacharya, R S Katiyar, A S Bhalla. Leakage current behavior of SrBi2Ta2O9 ferroelectric thin films on different bottom electrodes [J]. Journal of Applied Physics,2002,92(10):6160-6164.
    [198]J T Cheung, P E D Morgan, D H Lowndes, X Y Zheng, J Breen. Structural and electrical properties of La0.5Sr0.5CoO3 epitaxial films [J]. Applied Physics Letters, 1993,62(17):2045-2047.
    [199]M Avrekh, O R Monteiro, I G Brown. Electrical resistivity of vacuum-arc-deposited platinum thin films [J]. Applied Surface Science,2000, 158(3):217-222.
    [200]S Sun, Y Wang, P A Fuierer, B A Tuttle. Annealing effects on the internal bias field in ferroelectric PZT thin films with self-polarization [J]. Integrated Ferroelectrics,1999,23(1-4):25-43.
    [201]A K Tagantsev, M Landivar, E Colla, N Setter. Identification of passive layer in ferroelectric thin films from their switching parameters [J]. Journal of Applied Physics,1995,78(4):2623-2630.
    [202]P Zubko, D J Jung, J F Scott. Space charge effects in ferroelectric thin films [J]. Journal of Applied Physics,2006,100(11):114112
    [203]杨艳,张树人,刘敬松,张洪伟,刘蒙.铁电薄膜漏电流研究现状[J].绝缘材料,2006,39(4):51-55.
    [204]沈效农,王弘.铁电薄膜导电过程与机理[J].功能材料,1996,27(4):295-301.
    [205]L Pintilie, M Alexe. Metal-ferroelectric-metal heterostructures with Schottky contacts. I. Influence of the ferroelectric properties [J]. Journal of Applied Physics,2005,98(12):124103.
    [206]L Pintilie, M Alexe. Metal-ferroelectric-metal structures with Schottky contacts. II. Analysis of the experimental current-voltage and capacitance-voltage characteristics of Pb(Zr,Ti)O3 thin films [J]. Journal of Applied Physics,2005; 98(12):124104.
    [207]S M Sze. Physics of Semiconductor Devices,2nd ed. (Wiley, New York,1981).
    [208]D C Lupascu. Strain coupled Hall effect in ferroelectric-ferroelastic lead zirconate titanate [J]. Physical Review B,2004,70(18):184124.
    [209]C N Berglund, W S Baer. Electron transport in single-domain, ferroelectric barium titanate [J]. Physical Review,1967,157(2):358.
    [210]X Fang, T Kobayashi. Study of pulsed laser deposition of RuO2 and SrRuO3 thin films [J]. Applied Physics A,1999,69(1):S587-S590.
    [211]B Nagaraj, S Aggarwal, R Ramesh. Influence of contact electrodes on leakage characteristics in ferroelectric thin films [J]. Journal of Applied Physics,2001, 90(1):375-382.
    [212]T H Yang, Y W Ham, K C Chiu, C L Fan, J M Wu. Promising electron field emitters composed of conducting perovskite LaNiO3 shells on ZnO nano-rod arrays [J]. Journal of Materials Chemistry,2012,22(33):17071-17078.
    [213]J H Joo, J M Seon, Y C Jeon, K Y Oh, J S Roh, J J Kim. Improvement of leakage currents of Pt/(Ba, Sr)TiO3/Pt capacitors [J]. Applied Physics Letters, 1997,70(22):3053-3055.
    [214]S Zafar, R E Jones, B Jiang, B White, V Kaushik, S Gillespie. The electronic conduction mechanism in barium strontium titanate thin films [J].Applied Physics Letters,1998,73(24):3533-3535.
    [215]H P R Frederikse, W R Hosler, W R Thurber. Magnetoresistance of semiconducting SrTiO3 [J]. Physical Review,1966,143:648-651.
    [216]I Kanno. Ferroelectric thin films for piezoelectric MEMS.8th International Conference on the Physical Properties and Application of Advanced Materials (ICPMAT), Weihai, Shandong, China.
    [217]H Chen, C Yang, B Wang, H Ji, J Zhang. Structural, dielectric, and insulating properties of barium strontium titanate thin films grown on various oriented LaAlO3 substrates [J]. Journal of Applied Physics,2009,105(3):034112.
    [218]X Du, Q M Wang, U Belegundu, A Bhalla, K Uchino. Crystal orientation dependence of piezoelectric properties of single crystal barium titanate [J]. Materials Letters,1999,40(3):109-113.
    [219]S Song, L Gao, J Zhai, X Yao, Z Cheng. Crystal orientation dependence of the in-plane dielectric properties for Ba (Sn0.15Ti0.85)O3 thin films [J]. Applied Surface Science,2008,254(16):5120-5123.
    [220]H L Skriver, N M Rosengaard. Surface energy and work function of elemental metals [J]. Physical Review B,1992,46(11):7157-7168.
    [221]J S Chawla, D Gall. Epitaxial Ag (001) grown on MgO (001) and TiN (001): twinning, surface morphology, and electron surface scattering [J]. Journal of Applied Physics,2012,111(4):043708.
    [222]M Zgonik, P Bernasconi, M Duelli, R Schlesser, P Gunter, M H Garrett, D Rytz, Y Zhu, X Wu. Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals [J]. Physical Review B,1994,50(9):5941-5949.
    [223]林鸿溢.超晶格[J].现代物理知识,1999,2:006.
    [224]L L Chang, L Esaki, W E Howard, R Ludeke. The growth of a GaAs-GaAlAs superlattice [J]. Journal of Vacuum Science and Technology,1973,10(1):11-16.
    [225]J W Matthews, A E Blakeslee. Defects in epitaxial multilayers:I. Misfit dislocations [J]. Journal of Crystal Growth,1974,27:118-125.
    [226]D Bao. Multilayered dielectric/ferroelectric thin films and superlattices [J]. Current Opinion in Solid State and Materials Science,2008,12(3):55-61.
    [227]L Kim, D Jung, J Kim, Y S Kim, J Lee. Strain manipulation in BaTiO3/SrTiO3 artificial lattice toward high dielectric constant and its nonlinearity [J]. Applied Physics Letters,2003,82(13):2118-2120.
    [228]J Kim, Y Kim, Y S Kim, J Lee, L Kim. Large nonlinear dielectric properties of artificial BaTiO3/SrTiO3 superlattices [J]. Applied Physics Letters,2002,80(19): 3581-3583.
    [229]陈涛,芦苇,朱建国.BTO/LAO超晶格性能研究[J].电子科技大学学报,2008,37:54-57
    [230]S Trolier-McKinstry, F Griggio, C Yaeger, P Jousse, D Zhao, S S N Bharadwaja, T N Jackson, S Jesse, S V Kalinin, K Wasa. Designing piezoelectric films for micro electromechanical systems [J]. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on,2011,58(9):1782-1792.
    [231]C J Doll, L B Pruitt. Design of piezoresistive versus piezoelectric contact mode scanning probes [J]. Journal of Micromechanics and Microengineering,2010, 20(9):095023.
    [232]A Safari, E K Akdogan. Piezoelectric and acoustic materials for transducer applications [M]. Springer,2008.
    [233]J Lu, Y Zhang, T Itoh, Design, fabrication, and integration of piezoelectric MEMS devices for applications in wireless sensor network[C]//Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP),2011 Symposium on. IEEE,2011:217-221.
    [234]K Lefki, G J M Dormans. Measurement of piezoelectric coefficients of ferroelectric thin films [J]. Journal of Applied Physics,1994,76(3):1764-1767.
    [235]A Barzegar, D Damjanovic, N Ledermann, P Muralt. Piezoelectric response of thin films determined by charge integration technique:substrate bending effects [J]. Journal of Applied Physics,2003,93(8):4756-4760.
    [236]C S Ganpule, A L Roytburd, V Nagarajan, A Stanishevsky, J Melngailis, E D Williams, R Ramesh. Nanoscale electromechanical phenomena in ferroelectric thin films[C]//Materials Research Society Symposium Proceedings. Warrendale, Pa.; Materials Research Society; 1999,2001,655:CC1.5-CC1.6.
    [237]J F Nye. Physical properties of crystals [M]. Oxford: Clarendon Press,1957.
    [238]J Ouyang, S Y Yang, L Chen, R Ramesh, A L Roytburd. Orientation dependence of the converse piezoelectric constants for epitaxial single domain ferroelectric films [J]. Applied Physics Letters,2004,85(2):278-280.
    [239]A L Roytburd. Equilibrium structure of epitaxial layers [J]. Physica Status Solidi (a),1976,37(1):329-339.
    [240]L Chen, J H Li, J Slutsker, J Ouyang, A L Roytburd. Contribution of substrate to converse piezoelectric response of constrained thin films [J]. Journal of Materials Research,2004,19(10):2853-2858.
    [241]A L Roytburd. Piezoresponse of constrained ferroelectric films [J]. Integrated Ferroelectrics,2001,38(1-4):119-124.
    [242]M Pokorny, M Sulc, R Herdier, D Remiens, E Dogheche, D Jenkins Measurement Methods for the d33 Coefficient of PZT Thin Films on Silicon Substrates:A Comparison of Double-Beam Laser Interferometer (DBI) and Single-Beam Laser Vibrometer (LDV) Techniques [J]. Ferroelectrics,2007, 351(1):122-130.
    [243]R Lou-Moeller, C C Hindrichsen, L H Thamdrup, T Bove, E Ringgaard, A F Pedersen, E V Thomsen. Screen-printed piezoceramic thick films for miniaturised devices [J]. Journal of Electroceramics,2007,19(4):333-338.
    [244]H L W Chan. Double Beam Laser Interferometer to Measure Piezoelectric Displacements for Elimination of Substrate Effect in Thin Films[C]//Proceedings of the Second International Symposium on Instrumentation Science and Technology.2002.
    [245]J Ouyang, A L Roytburd. Intrinsic effective piezoelectric coefficients of an epitaxial ferroelectric film [J]. Acta Materialia,2006,54(2):531-538.
    [246]D V Taylor, D Damjanovic. Piezoelectric properties of rhombohedral Pb(Zr, Ti)O3 thin films with (100), (111), and "random" crystallographic orientation [J]. Applied Physics Letters,2000,76(12):1615-1617.
    [247]A L Roytburd. Thermodynamics of polydomain heterostructures. I. Effect of macrostresses [J]. Journal of Applied Physics,1998,83(1):228-238.
    [248]D Isarakorn, D Briand, S Gariglio, A Sambri, N Stucki, J-M Triscone., F Guy, S-H Baek, C-B Eom, J W Reiner, C H Ahn, N F de Rooij. Establishment of a technology platform for epitaxial piezoelectric MEMS[C]//Proceedings of 22nd International Conference Eurosensors.2008,1:819-822.
    [249]I Kanno, K Morimoto, R Yokokawa, K Wasa, H Kotera, N Yamauchi, J Ogawa, T Matsushima, K Aizawa. High efficiency energy harvester of transferred epitaxial PZT films on stainless steel sheets[C]//Micro Electro Mechanical Systems (MEMS),2010 IEEE 23rd International Conference on. IEEE,2010: 152-155.
    [250]E K Reilly, P K Wright. Modeling, fabrication and stress compensation of an epitaxial thin film piezoelectric microscale energy scavenging device [J]. Journal of Micromechanics and Microengineering,2009,19(9):095014.
    [251]YB Jeon, R Sood, J-h Jeong, S-G Kim. MEMS power generator with transverse mode thin film PZT [J]. Sensors and Actuators A: Physical,2005,122(1): 16-22.
    [252]P Muralt. Recent progress in materials issues for piezoelectric MEMS [J]. Journal of the American Ceramic Society,2008,91(5):1385-1396.
    [253]T Mitsui, S Nomura, M Adachi, J Harada, T Ikeda, E Nakamura, K Wakino. In: Hellwege K-H, Hellwege AM, editors. Landolt-Bornstein (Berlin: Springer) 1981,16:其中a:p.3; b: p.64; c:p.123; d:p.79.
    [254]M J Haun, E Furman, S J Jiang, L E Cross. Thermodynamic theory of the lead zirconate-titanate solid solution system, part I:phenomenology [J]. Ferroelectrics, 1989,99(1):13-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700