YVO_4:Eu~(3+)@YVO_4核壳结构纳米发光材料中Eu~(3+)热扩散的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:长期以来,人们采用表面修饰的方法来削弱表面效应、提升纳米材料的发光效率,而在众多的表面修饰方法中,核壳结构是一种十分有效的方法。壳层的包覆可以提供一个保护层,将发光中心与外界的环境隔绝开来,阻断发光中心与表面猝灭中心的能量传递途径,从而有效的降低表面猝灭的程度,提升材料的发光效率。大量的研究工作围绕着壳层厚度的优化而展开,在这个过程中,人们发现了核壳结构纳米材料中的离子扩散现象。如果核壳结构纳米颗粒中的掺杂离子穿过壳层从纳米颗粒的核心中扩散到了表面,表面效应和表面猝灭将会重现,那么壳层的保护作用将失去意义。因此,离子扩散可能会对核壳结构纳米材料的发光性能造成重大影响。研究并了解核壳结构纳米材料中掺杂离子在多高的温度下能够发生何种程度的扩散,以及这种扩散会对材料的发光性能造成什么样的影响,是非常有必要的。
     本论文的研究主要包括以下三个部分:(一)采用共沉淀法制备YVO4:Eu3+纳米颗粒和不同壳层厚度的YVO4: Eu3+@YVO4核壳结构纳米颗粒。通过x射线粉末衍射,透射电子显微镜,光谱测试等手段对其形貌、大小以及发光性能进行表征,验证不同壳层厚度对核壳结构纳米颗粒发光性能的影响。(二)在保护条件下对YVO4:Eu3+@YVO4核壳结构纳米颗粒进行热处理,既要确保纳米颗粒之间不发生团聚,又要能够促使核心中的Eu3+向外扩散。然后以发光光谱以及发光衰减的测试和拟合为主要手段,表征出不同热处理阶段下Eu3+的扩散程度。
     (三)采用Monte Carlo方法对YVO4:Eu3+@YVO4核壳结构纳米颗粒中Eu3+的扩散过程以及发光衰减过程进行计算机模拟,并与实际测试得到的数据进行比对,获取扩散过程中的各项参数。
     这些研究能够让人们对YVO4:Eu3+@YVO4核壳结构纳米颗粒中Eu3+的扩散有一个比较直观的印象,有助于深化对表面效应和浓度猝灭效应的认识。所获取的数据可以作为其他核壳结构纳米材料的制备和应用的有益参考,也希望能够为高温条件下设计和制备高发光效率的核壳结构纳米材料拓宽思路、提供一些新的选择。
     如果能够在高温下对核壳结构纳米颗粒进行热处理而又不发生团聚,那么就有可能从三个方面同时实现发光效率的优化:1.高温处理提升材料的结晶度;2.将掺杂离子的扩散控制在内部局部的范围中避免表面猝灭;3.通过核心中掺杂浓度和扩散程度的设计,避免浓度猝灭。这样才能最大限度的提高核壳结构纳米材料的发光性能。
ABSTRACT:Core-shell structure has been used to weaken surface effect and raise luminescent efficiency of nano-materials. The shell can provide a protective layer, isolate the emission centers from the outer environment and cut off the energy transfer access between the emission centers and the surface quenching centers, which could reduce the degree of surface quenching and raise luminescent efficiency of nano-materials. A lot of research works revolve around optimizing the thickness of the shell, and then the ions'diffusion in the core-shell nano-materials was discovered. If the doped ions diffuse through the shell from the core of nanoparticles (NPs) to the surface, surface effects and surface quenching will reproduce and the protective effect of the shell would be meaningless. Thus, ions'diffusion might significantly influence the luminescent properties of core-shell nano-materials. It is quite necessary to study and find out the doped ions would diffuse at what temperature to what extent and how it will influence luminescent properties of core-shell nano-materials. My research mainly includes the following three parts:
     1. Synthesize YVO4:Eu3+NPs and YVO4:Eu3+@YVO4core-shell NPs with different shell thickness by co-precipitation method. Characterize the prepared nano-materials' phase, morphology, size and luminescent properties by X-ray diffraction, transmission electron microscopy, and photoluminescence spectrum. Verify the influence of shell thickness on luminescent properties of core-shell NPs.
     2. Heat-treat the YVO4:Eu3+@YVO4core-shell NPs under certain protective conditions. Make sure that the Eu3+diffuse outward without NPs'aggregation. Characterize Eu3+'s diffusion extent of different heat-treatment stages by photoluminescence spectrum, photoluminescence decay and fitting method.
     3. Simulate the diffusion process and luminescence decay of the YVO4:Eu3+@YVO4core-shell NPs, and compare the simulation result and the actual test data to obtain the parameters of the diffusion process.
     These studies will give a direct impression of Eu3+diffusion in YVO4: Eu3+@YVO4core-shell NPs and help understanding the surface effect and concentration effect. The acquired data should be reference to preparation and application of other core-shell structure of nano-materials. It also provides new options to design and synthesize high luminescent efficiency core-shell nano-materials at elevated temperatures.
     If the core-shell NPs can be annealed at high temperature without aggregation, then it is possible to optimize luminescent efficiency from three aspects:1. Improve the crystallinity of nano-materials at elevated temperature;2. Prevent surface quenching by controlling the ions'diffusion in a located range.3. Prevent concentration quenching by delicately design the doping concentration in the core and the diffusion extent.
引文
[1]Siegel, R., Nanostructured materials-mind over matter. Nanostructured Materials 1994,4 (1), 121-138.
    [2]徐海娥;闫翠娥,水溶性量子点的制备及应用.化学进展2005,17(5),800-808.
    [3]高善民;孙树声;刘兆明,纳米材料在化工生产领域中的应用.创新科技2006,(3),44-45.
    [4]巩雄;张桂兰;汤国庆;陈文驹;杨宏秀,纳米晶体材料研究进展.化学进展1997,9(4),349-360.
    [5]张居正;高善民;黄柏标;戴瑛;王菊;卢娟,特殊形貌CdSe纳米晶的制备.化学进展2010,22(10),1901-1909.
    [6]Efros, A. L.; Efros, A., Pioneering Effort I. Sov. Phys. Semicond 1982,16,772.
    [7]Brus, L., Zero-dimensional" excitons" in semiconductor clusters. Quantum Electronics, IEEE Journal of 1986,22 (9),1909-1914.
    [8]Kayanuma, Y., Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape. Phys Rev B 1988,38 (14),9797.
    [9]濑升,超微颗粒导论.武汉:武汉工业大学出版社:1991.
    [10]Kubo, R., Electronic Properties of Metallic Fine Particles. I. Journal of the Physical Society of Japan 1962,17 (6),975-986.
    [11]Du-Luo, Z.; Dao-Huo, L.,金刚石晶格上的对角无序与非对角无序非晶量子点.物理学报1994,43(6),991-999.
    [12]张锋;薛建设;喻志农;周伟峰;惠官宝,量子点发光在显示器件中的应用.液晶与显示2012,27(2),163.
    [13]Ball, P.; Garwin, L., Science at the atomic scale. Nature 1992,355,761-766.
    [14]Murray, C.; Norris, D. J.; Bawendi, M. G., Synthesis and characterization of nearly monodisperse CdE (E=sulfur, selenium, tellurium) semiconductor nanocrystallites. Journal of the American Chemical Society 1993,115 (19),8706-8715.
    [15]Sutherland, A. J., Quantum dots as luminescent probes in biological systems. Current Opinion in Solid State and Materials Science 2002,6 (4),365-370.
    [16]Proven, I., Probabilistic Fracture Mechanics and Reliability,1986. Martinus Nijhoff, Dordrecht, The Netherlands.
    [17]Halperin, W., Quantum size effects in metal particles. Reviews of Modern Physics 1986,58 (3), 533.
    [18]Tomanek, D.; Enbody, R. J., Science and application of nanotubes. Springer:2000.
    [19]Faraday, M., Preparation of Colloidal gold. Philos Trans R Soc London 1857,147,145.
    [20]Frens, G., Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature 1973,241 (105),20-22.
    [21]Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C., The optical properties of metal nanoparticles:the influence of size, shape, and dielectric environment. The Journal of Physical Chemistry B 2003,107 (3),668-677.
    [22]Chen, M.; Tsai, S.; Chen, M.; Ou, S.; Li, W.; Lee, K., Effect of silver-nanoparticle aggregation on surface-enhanced Raman scattering from benzoic acid. Phys Rev B 1995,51 (7),4507.
    [23]巩晓阳;曹万民,纳米材料用于吸收电磁波的物理机制.物理与工程2007,17(5),39-41.
    [24]Ajayan, P.; Marks, L., Quasimelting and phases of small particles. Physical review letters 1988, 60 (7),585.
    [25]Pawlow, P., The dependency of the melting point on the surface energy of a solid body. Z. Phys. Chem 1909,65,545-548.
    [26]Buffat, P.; Borel, J. P., Size effect on the melting temperature of gold particles. Physical Review A 1976,13(6),2287.
    [27]朱健民;黄石松;周舜华;马国斌,铁氧体纳米晶声化学制备和微结构HRTEM研究.电子显微学报2005,24(1),39-45.
    [28]钟维烈;艾树涛;姜斌,钦酸钡和饮酸铅的两个临界尺寸.2002.
    [29]张立德,纳米材料与纳米体系物理.中国科学基金1994.
    [31]陈大明,纳米陶瓷复合材料的制备与性能.材料导报1997,11(5),67-71.
    [32]靳喜海;高濂,纳米复相陶瓷的制备,显微结构和性能.无机材料学报2001,16(2),200-206.
    [33]牟季美;张立德,纳米复合材料发展趋势.物理1996,25(1),31-36.
    [34]Attard, G.; Barnes, C., Surfaces. Oxford University Press Oxford, UK:1998.
    [35]张立德;牟季美,纳米材料和纳米结构.北京:科学出版社:2002.
    [36]Mitchell, J. P.; Wilson, D. K. A Summary of Surface Effects of Radiation on Semiconductor Devices; DTIC Document:1965.
    [37]Sun, C. Q., Dominance of broken bonds and nonbonding electrons at the nanoscale. Nanoscale 2010,2(10),1930-1961.
    [38]Eilers, H.; Tissue, B. M., Laser spectroscopy of nanocrystalline Eu2O3 and Eu3+:Y2O3. Chemical physics letters 1996,251 (1),74-78.
    [39]Peng, H.; Song, H.; Chen, B.; Lu, S.; Huang, S., Spectral difference between nanocrystalline and bulk Y2O3:Eu3+. Chemical physics letters 2003,370 (3),485-489.
    [40]Wei, Z.; Sun, L.; Liao, C.; Yan, C.; Huang, S., Fluorescence intensity and color purity improvement in nanosized YBO3:Eu. Appl Phys Lett 2002,80,1447.
    [41]Luo, W.-X.; Huang, S.-H.; You, F.-T.; Peng, H.-S., The luminescent properties of YBO3:Eu3+ nanocrystal. Acta Phys Sin-Ch Ed 2007,56 (3),1765-1769.
    [42]Peng, H.; Song, H.; Chen, B.; Lu, S.; Huang, S., Spectral difference between nanocrystalline and bulk Y2O3:Eu3+. Chemical physics letters 2003,370 (3),485-489.
    [43]Peng, H.; Song, H.; Chen, B.; Wang, J.; Lu, S.; Kong, X.; Zhang, J., Temperature dependence of luminescent spectra and dynamics in nanocrystalline Y2O3:Eu+. The Journal of chemical physics 2003,118,3277.
    [44]Peng, H.; Huang, S.; Sun, L.; Yan, C., Analysis of surface effect on luminescent properties of Eu3+in YVO4 nanocrystals. Physics Letters A 2007,367 (3),211-214.
    [45]Yan, C. H.; Sun, L. D.; Liao, C. S.; Zhang, Y. X.; Lu, Y. Q.; Huang, S. H.; Lu, S. Z., Eu3+ion as fluorescent probe for detecting the surface effect in nanocrystals. Appl Phys Lett 2003,82 (20), 3511-3513.
    [46]Chang-Cheng, G.; Shi-Hua, H.; Fang-Tian, Y.; Kai, K.; Ying, F., Influence of Surface Quenching Effects on Luminescent Dynamics of ZnS:Mn2+Nanocrystals. Chinese Phys Lett 2008, 25 (2),698.
    [47]Song, H.; Chen, B.; Peng, H.; Zhang, J., Light-induced change of charge transfer band in nanocrystalline Y2O3:Eu3+. Appl Phys Lett 2002,81,1776-1778.
    [48]Seko, T.; Ogura, K.; Kawakami, Y.; Sugino, H.; Toyotama, H.; Tanaka, J., Excimer emission of anthracene, perylene, coronene and pyrene microcrystals dispersed in water. Chemical physics letters 1998,291 (3),438-444.
    [49]白春礼,纳米科技及其发展前景.科学通报2001,2.
    [50]Galasso, F. S., Structure and properties of inorganic solids. Pergamon:1970.
    [51]张思远;毕宪章,稀土光谱理论.长春:吉林科学技术出版社:1991.
    [52]Bachmann, V., Studies on luminescence and quenching mechanisms in phosphors for light emitting diodes.2007.
    [53]Van der Kolk, E.; Dorenbos, P.; Van Eijk, C.; Vink, A.; Weil, M.; Chaminade, J.-P., Luminescence excitation study of the higher energy states of Pr3+ and Mn2+ in SrAlF5, CaAlF5, and NaMgF3. J Appl Phys 2004,95 (12),7867-7872.
    [54]Tanaka, K.; Okamoto, S.; Kanemitsu, Y.; Kushida, T., Reversible photochromic processes in BaCIF:Sm2+. J Lumin 2001,94,519-522.
    [55]张晓君,稀土上转换发光材料研究进展.科技资讯2011,(27),52-52.
    [56]Chatterjee, D. K.; Rufaihah, A. J.; Zhang, Y., Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals. Biomaterials 2008,29 (7),937-943.
    [57]Zhang, P.; Steelant, W.; Kumar, M.; Scholfield, M., Versatile photosensitizers for photodynamic therapy at infrared excitation. Journal of the American Chemical Society 2007,129 (15),4526-4527.
    [58]Yang, Y.; Liu, F.; Liu, X.; Xing, B., NIR light controlled photorelease of siRNA and its targeted intracellular delivery based on upconversion nanoparticles. Nanoscale 2013,5 (1),231-238.
    [59]Peng, H.; Huang, S.; You, F.; Chang, J.; Lu, S.; Cao, L., Preparation and surface effect analysis of trivalent europium-doped nanocrystalline La2O2S. The Journal of Physical Chemistry B 2005,109 (12),5774-5778.
    [60]Peng, H.; Huang, S.; Sun, L., Surface state analysis of YVO4:Eu3+nanocrystals by electrostatic point charge model. J Lumin 2007,122,847-850.
    [61]L Klakamp, S.; Horrocks Jr, W. D., Lanthanide ion luminescence as a probe of DNA structure. 2. Non-guanine-containing oligomers and nucleotides. Journal of inorganic biochemistry 1992,46 (3),193-205.
    [62]Berner, V.; Darnall, D.; Birnbaum, E., Distance measurements between the metal-binding sites in thermolysin using terbium ion as a fluorescent probe. Biochemical and biophysical research communications 1975,66 (2),763-768.
    [63]Nyk, M.; Kumar, R.; Ohulchanskyy, T. Y.; Bergey, E. J.; Prasad, P. N., High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors. Nano letters 2008,8 (11),3834-3838.
    [64]Wang, M.; Mi, C.-C.; Wang, W.-X.; Liu, C.-H.; Wu, Y.-F.; Xu, Z.-R.; Mao, C.-B.; Xu, S.-K., Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF4:Yb,Er upconversion nanoparticles. Acs Nano 2009,3 (6),1580-1586.
    [65]Key, J.; Leary, J., Nanoparticles for multimodal in vivo imaging in nanomedicine. International Journal of Nanomedicine 2014,9,711-726.
    [66]Niu, J.; Wang, X.; Lv, J.; Li, Y.; Tang, B., Luminescent nanoprobes for in-vivo bioimaging. TrAC Trends in Analytical Chemistry 2014.
    [67]Chen, X.; Liu, Y.; Tu, D., Bioimaging Based on Lanthanide-Doped Nanoprobes. In Lanthanide-Doped Luminescent Nanomaterials, Springer:2014; pp 145-164.
    [68]Liu, C.; Hou, Y.; Gao, M., Are Rare-Earth Nanoparticles Suitable for In Vivo Applications? Advanced Materials 2014.
    [69]Xu, H.; Li, Q.; Wang, L.; He, Y.; Shi, J.; Tang, B.; Fan, C., Nanoscale optical probes for cellular imaging. Chemical Society Reviews 2014.
    [70]Stober, W.; Fink, A.; Bohn, E., A novel method for synthesis of silica nanoparticles. J. Colloid Interface Sci 1968,26,62-68.
    [71]Zhang, K.; Chen, H.; Chen, X.; Chen, Z.; Cui, Z.; Yang, B., Monodisperse silica-polymer core-shell microspheres via surface grafting and emulsion polymerization. Macromolecular materials and engineering 2003,288 (4),380-385.
    [72]Dong, B.; Cao, L.; Su, G.; Liu, W.; Qu, H.; Jiang, D., Synthesis and characterization of the water-soluble silica-coated ZnS:Mn nanoparticles as fluorescent sensor for Cu2+ions. J Colloid Interf Sci 2009,339 (1),78-82.
    [73]Ethiraj, A. S.; Hebalkar, N.; Kulkarni, S.; Pasricha, R.; Urban, J.; Dem, C.; Schmitt, M.; Kiefer, W.; Weinhardt, L.; Joshi, S., Enhancement of photoluminescence in manganese-doped ZnS nanoparticles due to a silica shell. The Journal of chemical physics 2003,118,8945.
    [74]Dong, B.; Cao, L.; Su, G.; Liu, W.; Qu, H.; Jiang, D., Synthesis and characterization of the water-soluble silica-coated ZnS:Mn nanoparticles as fluorescent sensor for Cu2+ions. J Colloid Interf Sci 2009,339 (1),78-82.
    [75]Wang, Y.; Qin, W.; Zhang, J.; Cao, C.; L., S.; Ren, X., Photoluminescence of colloidal YVO4: Eu/SiO2 core/shell nanocrystals. Opt Commun 2009,282 (6),1148-1153.
    [76]Yu, X. F.; Chen, L. D.; Li, M.; Xie, M. Y.; Zhou, L.; Li, Y.; Wang, Q. Q., Highly efficient fluorescence of NdF3/SiO2 core/shell nanoparticles and the applications for in vivo NIR detection. Advanced Materials 2008,20 (21),4118-4123.
    [77]Liu, T.; Xu, W.; Bai, X.; Song, H., Tunable silica shell and its modification on photoluminescent properties of Y2O3:Eu3+@ SiO2 nanocomposites. J Appl Phys 2012,111, 064312.
    [78]Pang, T.; Cao, W.; Xing, M.; Feng, W.; Xu, S.; Luo, X., Preparation and upconversion luminescence of monodisperse Y2O2S:Yb/Ho-silica/aminosilane core-shell nanoparticles. J Rare Earth 2010,28(4),509-512.
    [79]Liu, J.; Bu, W.; Zhang, S.; Chen, F.; Xing, H.; Pan, L.; Zhou, L.; Peng, W.; Shi, J., Controlled synthesis of uniform and monodisperse upconversion core/mesoporous silica shell nanocomposites for bimodal imaging. Chemistry-A European Journal 2012,18 (8),2335-2341.
    [80]Zheng, K.; Liu, Z.; Liu, Y.; Song, W.; Qin, W., Influence of core size on the upconversion luminescence properties of spherical Gd2O3:Yb3+/Er3+@SiO2 particles with core-shell structures. J Appl Phys 2013,114 (18),183109.
    [81]Shan, J.; Ju, Y., Controlled synthesis of lanthanide-doped NaYF upconversion nanocrystals via ligand induced crystal phase transition and silica coating. Appl Phys Lett 2007,91,123103.
    [82]Abdul Jalil, R.; Zhang, Y., Biocompatibility of silica coated NaYF4 upconversion fluorescent nanocrystals. Biomaterials 2008,29 (30),4122-4128.
    [83]Wang, Z.; Quan, Z.; Jia, P.; Lin, C.; Luo, Y.; Chen, Y.; Fang, J.; Zhou, W.; O'Connor, C; Lin, J., A facile synthesis and photoluminescent properties of redispersible CeF3, CeF3:Tb3+, and CeF3: Tb3+/LaF3 (core/shell) nanoparticles. Chem Mater 2006,18 (8),2030-2037.
    [84]Li, C.; Liu, X.; Yang, P.; Zhang, G.; Lian, H.; Lin, J., LaF3, CeF3, CeF3:Tb3+, and CeF3:Tb3+@ LaF3 (core-shell) nanoplates:Hydrothermal synthesis and luminescence properties. The Journal of Physical Chemistry C 2008,112 (8),2904-2910.
    [85]Gai, S.; Yang, P.; Li, X.; Li, C.; Wang, D.; Dai, Y.; Lin, J., Monodisperse CeF3, CeF3:Tb3+, and CeF3:Tb3+@ LaF3 core/shell nanocrystals:synthesis and luminescent properties. J Mater Chem 2011, 21 (38),14610-14615.
    [86]Boyer, J. C.; Gagnon, J.; Cuccia, L. A.; Capobianco, J. A., Synthesis, characterization, and spectroscopy of NaGdF4:Ce3+, Tb3+/NaYF4 core/shell nanoparticles. Chem Mater 2007,19 (14), 3358-3360.
    [87]Kompe, K.; Borchert, H.; Storz, J.; Lobo, A.; Adam, S.; Moller, T.; Haase, M., Green-Emitting CePO4:Tb/LaPO4 Core-Shell Nanoparticles with 70% Photoluminescence Quantum Yield. Angewandte Chemie International Edition 2003,42 (44),5513-5516.
    [88]Li, X.; Shen, D.; Yang, J.; Yao, C.; Che, R.; Zhang, F.; Zhao, D., Successive Layer-by-Layer Strategy for Multi-Shell Epitaxial Growth:Shell Thickness and Doping Position Dependence in Upconverting Optical Properties. Chem Mater 2012,25 (1),106-112.
    [89]Kalele, S.; Gosavi, S.; Urban, J.; Kulkarni, S., Nanoshell particles:synthesis, properties and applications. Current Science 2006,91 (8),1038-1052.
    [90]Selvan, S. T.; Tan, T. T. Y.; Yi, D. K.; Jana, N. R., Functional and multifunctional nanoparticles for bioimaging and biosensing. Langmuir 2009,26 (14),11631-11641.
    [91]Wang, M.; Abbineni, G.; Clevenger, A.; Mao, C.; Xu, S., Upconversion Nanoparticles: Synthesis, Surface Modification, and Biological Applications. Nanomedicine:Nanotechnology, Biology and Medicine 2011.
    [92]Wei, S. Y.; Wang, Q.; Zhu, J. H.; Sun, L. Y.; Lin, H. F.; Guo, Z. H., Multifunctional composite core-shell nanoparticles. Nanoscale 2011,3 (11),4474-4502.
    [93]Chaudhuri, R. G.; Paria, S., Core/Shell Nanoparticles:Classes, Properties, Synthesis Mechanisms, Characterization, and Applications. Chemical Reviews 2012,112 (4),2373-2433.
    [94]Quan, Z.; Wang, Z.; Yang, P.; Lin, J.; Fang, J., Synthesis and characterization of high-quality ZnS, ZnS:Mn2+, and ZnS:Mn2+/ZnS (core/shell) luminescent nanocrystals. Inorg Chem 2007,46 (4),1354-1360.
    [95]Cao, L.; Zhang, J.; Ren, S.; Huang, S., Luminescence enhancement of core-shell ZnS:Mn/ZnS nanoparticles. Appl Phys Lett 2002,80,4300.
    [96]Jiang, D.; Cao, L.; Su, G.; Liu, W.; Qu, H.; Sun, Y.; Dong, B., Shell thickness dependence of luminescence intensity in core/shell ZnS:Mn/ZnS nanoparticles. Materials Chemistry and Physics 2009,115(2),795-798.
    [97]Qu, Y.; Li, M.; Zhang, L.; Zhao, L., Preparation and characterization of upconversion luminescent LaF3:Yb3+, Er3+/LaF3 core/shell nanocrystals. Appl Surf Sci 2011,258 (1),34-37.
    [98]Qian, L. P.; Yuan, D.; Yi, G. S.; Chow, G. M., Critical shell thickness and emission enhancement of NaYF4:Yb, Er/NaYF4/silica core/shell/shell nanoparticles. J. Mater. Res 2009,24 (12),3559-3568.
    [99]Vetrone, F.; Naccache, R.; Mahalingam, V.; Morgan, C. G.; Capobianco, J. A., The active-core/active-shell approach:A strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles. Advanced Functional Materials 2009,19(18),2924-2929.
    [100]Yang, D.; Li, C.; Li, G.; Shang, M.; Kang, X.; Lin, J., Colloidal synthesis and remarkable enhancement of the upconversion luminescence of BaGdF5:Yb3+/Er3+nanoparticles by active-shell modification. J Mater Chem 2011,21 (16),5923-5927.
    [101]Ningthoujam, R.; Singh, L. R.; Sudarsan, V.; Dorendrajit Singh, S., Energy transfer process and optimum emission studies in luminescence of core-shell nanoparticles:YVO4:Ei-YVO4 and surface state analysis. J Alloy Compd 2009,484 (1-2),782-789.
    [102]DiMaio, J.; Kokuoz, B.; James, T.; Harkey, T.; Monofsky, D.; Ballato, J., Photoluminescent characterization of atomic diffusion in core-shell nanoparticles. Opt Express 2008,16 (16), 11769-11775.
    [103]Zheng, J.; Ji, W.; Wang, X.; Ikezawa, M.; Jing, P.; Liu, X.; Li, H.; Zhao, J.; Masumoto, Y., Improved Photoluminescence of MnS/ZnS Core/Shell Nanocrystals by Controlling Diffusion of Mn Ions into the ZnS Shell. The Journal of Physical Chemistry C 2010.
    [104]王选遥;杨彦龙,试论数字技术对插图艺术的影响.长春师范学院学报:自然科学版2010,(4),131-135.
    [105]Michael, B. B.; Bever, B., Encyclopedia of materials science and engineering. Pergamon Press 1986,4,3124.
    [106]吕雁,计算机仿真与建模技术综述.电子科技2001,11,24.
    [107]Landman, U.; Barnett, R.; Cleveland, C.; Luedtke, W., Materials by numbers. Physica D: Nonlinear Phenomena 1993,66 (1),87-107.
    [108]O'Dowd, N. P., Crack growth in an elastic-plastic material and effects on near tip constraint. Computational materials science 1994,3 (2),207-217.
    [109]郭俊梅;潘健生,计算材料学与材料设计.贵金属1999,20(4),62-68.
    [110]张跃;谷景华;尚家香;马岳,计算材料学基础.北京航空航大大学出版社:2007.
    [111]Heermann, D. W., General Introduction to Computer Simulation Methods. In Computer Simulation Methods in Theoretical Physics, Springer:1986; pp 9-12.
    [112]Raabe. D;项金钟;吴兴惠,计算材料学.北京:化学工业出版社2002.
    [113]Hohenberg, P.; Kohn, W., Inhomogeneous electron gas. Physical review 1964,136 (3B), B864.
    [114]倪军;刘华,计算机物理前沿及其与计算机技术的交义.物理2002,31(7).
    [115]陈灵娜.新型碳基纳米材料的电子结构和输运性质的理论研究[D].中南大学,2011.
    [116]Alder, B.; Wainwright, T., Phase transition for a hard sphere system. The Journal of Chemical Physics 1957,27(5),1208.
    [117]王德明.应用分形理论及分子动力学模拟方法对气液界面现象的研究[D].重庆:重庆大学,2004.
    [118]吴恒安.纳米尺度下结构和材料力学行为的分子动力学模拟研究[D].合肥:中国科学 技术大学,2002.
    [119]梁海弋.纳米铜力学行为的分子动力学模拟[D].合肥:中国科学技术大学,2001.
    [120]冯康,基于变分原理的差分格式.应用数学与计算数学1965,2(4),238-262.
    [121]马文淦;张子平,计算物理学合肥:中国科学技术大学出版社.1992
    [122]高明慧,数字通信系统中的Monte Carlo仿真.电脑与电信2010,(7),44-46.
    [123]Palilla, F. C.; Levine, A. K.; Rinkevics, M., Rare earth activated phosphors based on yttrium orthovanadate and related compounds. Journal of The Electrochemical Society 1965,112 (8), 776-779.
    [124]Panayiotakis, G.; Cavouras, D.; Kandarakis, I.; Nomicos, C., A study of X-ray luminescence and spectral compatibility of europium-activated yttrium-vanadate (YV04:Eu) screens for medical imaging applications. Applied Physics A 1996,62 (5),483-486.
    [125]Sohn, K.-S.; Zeon, I. W.; Chang, H.; Lee, S. K.; Park, H. D., Combinatorial search for new red phosphors of high efficiency at VUV excitation based on the YRO4 (R= As, Nb, P, V) system. Chem Mater 2002,14 (5),2140-2148.
    [126]Minami, T.; Utsubo, T.; Miyata, T.; Suzuki, Y., PL and EL properties of Tm-activated vanadium oxide-based phosphor thin films. Thin Solid Films 2003,445 (2),377-381.
    [127]Erdei, S.; Schlecht, R.; Ravichandran, D., Hydrolyzed colloid reaction (HCR) technique for phosphor powder preparation. Displays 1999,19 (4),173-178.
    [128]Zhang, H.; Fu, X.; Niu, S.; Sun, G.; Xin, Q., Low temperature synthesis of nanocrystalline YV04:Eu via polyacrylamide gel method. J Solid State Chem 2004,177 (8),2649-2654.
    [129]Haase, M.; Riwotzki, K.; Meyssamy, H.; Kornowski, A., Synthesis and properties of colloidal lanthanide-doped nanocrystals. J Alloy Compd 2000,303,191-197.
    [130]Huignard, A.; Gacoin, T.; Boilot, J. P., Synthesis and luminescence properties of colloidal YV04:Eu phosphors. Chem Mater 2000,12 (4),1090-1094.
    [131]Huignard, A.; Buissette, V.; Laurent, G.; Gacoin, T.; Boilot, J. P., Synthesis and characterizations of YVO4:Eu colloids. Chem Mater 2002,14 (5),2264-2269.
    [132]Zhu, H.; Hu, H:; Wang, Z.; Zuo, D., Synthesis of YVO4:Eu3+/YBO3 Heteronanostructures with Enhanced Photoluminescence Properties. Nanoscale research letters 2009,4 (9),1009-1014.
    [133]Lii, Q.; Guo, F.; Sun, L.; Li, A.; Zhao, L., Silica-/titania-coated Y2O3:Tm3+, Yb3+ nanoparticles with improvement in upconversion luminescence induced by different thickness shells. J Appl Phys 2008,103,123533.
    [134]Yu, J.; Li, C.; Liu, S., Effect of PSS on morphology and optical properties of ZnO. J Colloid Interf Sci 2008,326 (2),433-438.
    [135]Zhang, X.-H.; Ho, K. M.; Wu, A.-H.; Wong, K. H.; Li, P., Hydrothermal Microemulsion Synthesis of Oxidatively Stable Cobalt Nanocrystals Encapsulated in Surfactant/Polymer Complex Shells. Langmuir 2010,26 (8),6009-6014.
    [136]Xiao, X.; Liu, R.; Liu, F.; Zheng, X.; Zhu, D., Effect of poly (sodium 4-styrene-sulfonate) on the crystal growth of hydroxyapatite prepared by hydrothermal method. Materials Chemistry and Physics 2010,120 (2),603-607.
    [137]Zhou, N.; Wang, B.; Liu, C.; Zhu, G., Fabrication of Fe3O4/PAH/PSS@Pd Core-Shell Microspheres by Layer-by-Layer Assembly and Application in Catalysis. J Colloid Interf Sci 2014.
    [138]Yanhong, L.; Guangyan, H., Synthesis and luminescence properties of nanocrystalline YVO4: Eu3+. J Solid State Chem 2005,178 (3),645-649.
    [139]Huignard, A.; Buissette, V.; Franville, A. C.; Gacoin, T.; Boilot, J. P., Emission processes in YVO4:Eu nanoparticles. The Journal of Physical Chemistry B 2003,107 (28),6754-6759.
    [140]Blasse, G., Concentration Quenching of Eu Fluorescence. The Journal of Chemical Physics 1967,46,2583.
    [141]Blasse, G.; Kiliaan, H.; de Vries, A., Concentration quenching of Gd3+luminescence in solids. J Lumin 1988,40,639-640.
    [142]Tang, S.; Huang, M.; Wang, J.; Yu, F.; Shang, G.; Wu, J., Hydrothermal synthesis and luminescence properties of GdVO4:Ln3+(Ln= Eu, Sm, Dy) phosphors. J Alloy Compd 2012,513, 474.
    [143]Murakami, S.; Herren, M.; Rau, D.; Morita, M., Photoluminescence and decay profiles of undoped and Fe3+, Eu3+-doped PLZT ceramics at low temperatures down to 10 K. Inorganica Chimica Acta 2000,300,1014-1021.
    [144]Fujii, T.; Kodaira, K.; Kawauchi, O.; Tanaka, N.; Yamashita, H.; Anpo, M., Photochromic behavior in the fluorescence spectra of 9-anthrol encapsulated in Si-Al glasses prepared by the sol-gel method. The Journal of Physical Chemistry B 1997,101 (50),10631-10637.
    [145]Wang, H.; Yu, M.; Lin, C.; Liu, X.; Lin, J., Synthesis and luminescence properties of monodisperse spherical Y2O3:Eu3+@SiO2 particles with core-shell structure. The Journal of Physical Chemistry C 2007,111 (30),11223-11230.
    [146]Asian, K.; Wu, M.; Lakowicz, J. R.; Geddes, C. D., Fluorescent core-shell Ag@SiO2 nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms. Journal of the American Chemical Society 2007,129 (6),1524-1525.
    [147]Yang, J.; Zhang, F.; Chen, Y.; Qian, S.; Hu, P.; Li, W.; Deng, Y.; Fang, Y.; Han, L.; Luqman, M., Core-shell Ag@SiO2@mSiO2 mesoporous nanocarriers for metal-enhanced fluorescence. Chem. Commun.2011,47(42),11618-11620.
    [148]Yuan, P.; Lee, Y. H.; Gnanasammandham, M. K.; Guan, Z. P.; Zhang, Y.; Xu, Q.-H., Plasmon Enhanced Upconversion Luminescence of NaYF4:Yb,Er@SiO2@Ag Core-shell Nanocomposites for Cell Imaging. Nanoscale 2012.
    [149]Liu, Y.; Zhang, J. M.; Dai, Z.; Wei, J., The Core-Shell CdTe@SiO2 Particles Prepared via Reverse Microemulsion Method and their Fluorescence Properties. Advanced Materials Research 2013,601,7-11.
    [150]Chang, M.; Tie, S., Fabrication of novel luminor Y2O3:Eu3+@SiO2@YVO4:Eu3+with core/shell heteronanostructure. Nanotechnology 2008,19,075711.
    [151]Wang, H.; Yu, M.; Lin, C.; Lin, J., Core-shell structured SiO2@YVO4:Dy3+/Sm3+phosphor particles:sol-gel preparation and characterization. J Colloid Interf Sci 2006,300 (1),176-182.
    [152]Bao, A.; Lai, H.; Yang, Y.; Liu, Z.; Tao, C.; Yang, H., Luminescent properties of YVO4: Eu/SiO2 core-shell composite particles. Journal of Nanoparticle Research 2010,12 (2),635-643.
    [153]Stober, W.; Fink, A.; Bohn, E., Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interf Sci 1968,26 (1),62-69.
    [154]Hench, L. L.; West, J. K.; Zhu, B. F.; Ochoa, R. In Gel-silica hybrid optics, San Dieg-DL Tentative, International Society for Optics and Photonics:1990; pp 230-240.
    [155]Tamon, H.; Kitamura, T.; Okazaki, M., Preparation of silica aerogel from TEOS. J Colloid Interf Sci 1998,197 (2),353-359.
    [156]Einarsrud, M.-A.; Britt Kirkedelen, M.; Nilsen, E.; Mortensen, K.; Samseth, J., Structural development of silica gels aged in TEOS. J Non-Cryst Solids 1998,231 (1),10-16.
    [157]Bhagat, S. D.; Rao, A. V., Surface chemical modification of TEOS based silica aerogels synthesized by two step (acid-base) sol-gel process. Appl Surf Sci 2006,252 (12),4289-4297.
    [158]Hegde, N. D.; Hirashima, H.; Rao, A. V., Two step sol-gel processing of TEOS based hydrophobic silica aerogels using trimethylethoxysilane as a co-precursor. Journal of Porous Materials 2007,14 (2),165-171.
    [159]吴启坚;吴清仁;杨媛;曹旗;任玉萍;水春生;骆颖哲,酸-碱二步催化制备Si02溶胶及其稳定性研究.武汉理工大学学报2011,33(7),14-19.
    [160]Pan, G.; Song, H.; Bai, X.; Liu, Z.; Yu, H.; Di, W.; Li, S.; Fan, L.; Ren, X.; Lu, S., Novel Energy-Transfer Route and Enhanced Luminescent Properties in YVO4:Eu3+/YBO3:Eu3+ Composite. Chem Mater 2006,18(18),4526-4532.
    [161]Wiglusz, R.; Bednarkiewicz, A.; Strek, W., Role of the sintering temperature and doping level in the structural and spectral properties of Eu-doped nanocrystalline YVO4. Inorg Chem 2011,51 (2),1180-1186.
    [162]俞勇强.微孔中流体扩散系数的分子动力学模拟.浙江.浙江大学.2006,7:2-6
    [163]曹博;包良满;李公平;何山虎,Cu/SiO2/Si (111)体系中Cu和Si的扩散及界面反应.物理学报2007,55(12),6550-6555.
    [164]Kakimoto, K.; Umehara, T.; Ozoe, H., Molecular dynamics analysis on diffusion of point defects. J Cryst Growth 2000,210 (1),54-59.
    [165]Papanicolaou, N.; Papathanakos, V.; Papageorgiou, D., Self-diffusion on Al (100) and Al(111) surfaces by molecular-dynamics simulation. Physica B:Condensed Matter 2001,296 (1),259-263.
    [166]于立新.稀土掺杂一维纳米发光材料的合成和发光性质.中国科学院研究生院(长春光学精密机械与物理研究所),2005.
    [167]黄世华,离子中心的发光动力学.科学出版社:2002.
    [168]Blasse, G., Energy transfer in oxidic phosphors. Physics Letters A 1968,28 (6),444-445.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700