用户名: 密码: 验证码:
定量估算大气颗粒物中有机污染物来源的同位素示踪法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大气颗粒物作为大气污染的重要组成形式,对环境、气候、人类健康造成了巨大的危害。颗粒物的粒径不同,进入人体的部位不同,从而对人体产生的危害也就不同。细颗粒PM_(2.5)(空气动力学直径(Da), Da≤2.5微米)与粗颗粒物(2.5微米≤Da≤10微米)相比,更易沉积到肺叶、呼吸细支气管及肺泡,更易造成呼吸道和肺部疾病。大气颗粒物中绝大多数有机物是三致(致癌、致畸、致变)物质,且81.9%的有机物集中于PM_(2.5)中。为了保护人的身体健康,必须减少或消除PM_(2.5)中的有机污染物。为此,首先必要定量估算PM_(2.5)中有机污染物的来源。
     大气颗粒物中有机污染物的成分复杂,目前常规的元素含量分析法、发展中的扫描质子微探针(SPM)和同步X荧光(SXRF)都难以实现对它来源的定量估算。本研究将同位素技术应用于环境科学,用放射性碳及稳定碳同位素比定量估算大气颗粒物中有机污染物的来源。
     大气颗粒物中有机污染物的主要来源有:非石化产物(植物燃烧产物,土壤扬尘)和石化产物(煤燃烧产物和机动车尾气排放物)。碳三种同位素: 12C、~(13)C和~(14)C.其中~(14)C是半衰期为5730年的放射性β核素。石化燃料(煤,石油等)的形成时间长达百万、千万年甚至更久,石化燃料中不存在~(14)C。这就给我们提供了用~(14)C区分大气颗粒物中有机污染物来源的非常简便、有效的方法。
     有机物污染物中的碳以有机碳(OC)的形式存在。当OC中的~(14)C被测定,并用现代碳百分比(pMC)表示时,它直接反映大气颗粒物中有机污染物中非石化燃料的分担率(fnon-fossil)。这样OC中的石化燃料分担率(ffossil)可确定为1-fnon-fossil。通过比较OC、植物燃烧产物、土壤颗粒和建筑材料中的~(14)C,由~(14)C的质量守恒,可区分大气颗粒物中有机污染物来自土壤粉尘和植物燃烧产物的分担率。石化燃料起因的大气颗粒物中不存在~(14)C,但有~(13)C的存在.比较OC、非石化燃料、煤燃烧产物以及机动车尾气排放物中的δ~(13)C,根据δ~(13)C的质量守恒,可区分大气颗粒物中有机污染物中来自燃煤排放物和机动车尾气的分担率。
     现有测量~(14)C的仪器方法有液体闪烁室法(LSC)和加速器质谱仪法(AMS)。使用LSC和AMS测量~(14)C时,所需样品碳量分别为1000mg和1mg。大气颗粒物中碳的含量相对1000 mg较少。因此对大气颗粒物中~(14)C的测定只能是AMS的方法。为此,AMS前处理系统是有必要的。此系统的目的是将样品中不同形态的碳转变成石墨。
     在本研究中,一套完整的环境和生物样品石墨化系统被研发。此系统中真空度高达8 - 2.5Pa,能处理各种形态(固态,气态)样品,工作效率高达10个/天。此外,本研究对上海市宝山区的大气颗粒物中有机污染物进行分析,结果表明,宝山区冬季大气颗粒物中有机污染物的来源主要来自石化产物,占到了总量的64.74%,而非石化产物只有35.26%,而且,表层土壤(0– 5cm)以降尘为主。
Atmospheric particles as an important component of air pollution have caused immense harm to human health, environment, and climate. Particles with different sizes can access to different parts of the body, so that the harm is also different. Compared with coarse particles (aerodynamic diameter (Da), 2.5 microns≤Da≤10 microns), fine particles, PM_(2.5) (Da≤2.5 microns) are more easily deposited in lung, bronchia, and alveolus. They cause more respiratory and lung disease. Most of particles existed as organic matters are carcinogenic, teratogenic, and mutagenic material, and 81.9 percent of the organic matters focus in PM_(2.5). In order to protect people's health, we have to reduce and eliminate the organic pollutants in PM_(2.5). For that, it is necessary to quantitatively estimate sources of the organic pollutants.
     The ingredients of organic pollutants are complex. The general methods such as the conventional element content analytic method, scanning proton microprobe (SPM) and simultaneous X-ray fluorescence (SXRF) are difficult to quantify the originations of the organic pollutants. In present study, an isotope technology was used in environmental science. Specific activities of ~(14)C and carbon isotopic compositions were used to quantify the originations of organic pollutants in atmospheric particles. Organic pollutants in atmospheric particles originate from: non-fossil products (soil dust, plant burning products) and fossil products (vehicle burning and oil burning products). Carbon is a popular molecule in nature. It has a radiocarbon (~(14)C) with a half life of 5730y and two kinds of stable carbon isotopes (12C and ~(13)C). as well known, there are no ~(14)C in fossil fuels. This has provided us a very simple and effective way to distinguish atmospheric particle sources of organic pollutants with 14 C.
     Carbon existed in organic pollutants is as the form of organic carbon (OC). Since ~(14)C only exists in non-fossil materials, the ~(14)C values of OC, indicated by percent modern carbon, reflect a distribution of non-fossil carbon to all OC. The distribution of fossil carbon can then be obtained. Every material has intrinsic carbon stable isotopic composition (δ~(13)C), so that using a mass approach balance ofδ~(13)C can further separate non-fossil sources as well as fossil materials sources. Based on this thought above, a method was developed to separate the sources of OC in PM_(2.5) using specific activities of ~(14)C and stable carbon isotopic composition in this paper.
     The current apparatus used to measure the ~(14)C are liquid scintillation chamber (LSC) and accelerator mass spectrometry (AMS), and the required amount of carbon is 1000 mg and 1 mg, respectively. 1000 mg of carbon in atmospheric particles is hard to be obtained, so the AMS is the only way to be used for determining the ~(14)C of particulate matter. Thus, an AMS pre-treatment system, which is used to convert different kinds of carbon into a graphite.
     In this study, a complete set of AMS pre-treatment system was developed. In this system, the vacuum degree reaches as high as 8 - 2.5Pa, it can handle various forms (solid, gaseous) samples, and the working efficiency reaches as high as for 10/days. In addition, the atmospheric particles of the Baoshan District of Shanghai are studied for analysis of organic pollutants. The results showed that the source of organic pollutants in the Baoshan District in winter is mainly fossil products, accounting for 64.74 percent of the total organic pollutants, The distribution of non-fossil accounting for 35.26 percent. Surface layer soil (0 - 5cm) is mainly falling dust.
引文
[1]王平利,戴春雷,张成江。城市大气中颗粒物的研究现状及健康效应。中国环境监测, 2005;21(1):83-87
    [2]王明星,张仁健。大气气溶胶研究的前沿问题。气候与环境研究,2001;6(1):119-124
    [3] Robert D. Brook, Barry Franklin, Wayne Cascio, Yuling Hong, George Howard, Michael Lipsett, Russell Luepker, Murray Mittleman, Jonathan Samet, Sidney C, Smith, Jr and Ira Tager. Air Pollution and Cardiovascular Disease: A Statement for Healthcare Professionals From the Expert Panel on Population and Prevention Science of the American Heart Association. Circulation, 2004;109:2655-2671
    [4] http://www.epa.gov/air/oaq_caa.html/
    [5]中国环境状况公报(2006年)
    [6]王玮,陈宗良。大气气溶胶中无机碳和有机碳。环境科学丛刊, 1991;12 (2): 27 -34.
    [7] Baulig, A.,et al., Biological effects of atmospheric particles on human bronchial epithelial cells: comparison with diesel exhaust particles. Toxicology in Vitro, 2003;17: 567-573.
    [8] Obot, C. J., et al., Surface components of airborne particulate matter induce macrophage apoptosis through scavenger receptors, Toxicology and Applied Pharmacology 2002;184:98-106.
    [9] Kijnzli, N., et al., Public health impact of outdoor traffic-related air pollution: a European assessment. Lancet, 2000; 365:795-801.
    [10] Auana, K., et al., Exposure-response functions for health effects of ambient air pollution applicable for China: a Meta analysis. Science of the Total Environment , 2004;329:3-16.
    [11] Dockery, et al., An association between air pollution and mortality in six U. S.Cities. New England Journal of Medicine, 1993;329: 1753-1759.
    [12] Neas, L. M., Fine particulate matter and cardiovascular disease. Fuel Processing Technology, 2000;151:669 -674.
    [13] Pope, C. A., et al., Particulate air pollution as a predictor of mortality in a prospective study of U. S. adults. Am Respir Crit Care Med , 1995;151:669-674.
    [14]李红,曾凡刚。可吸入颗粒物对人体健康危害的研究进展。环境与健康杂志, 2002;19(1): 85 - 87
    [15]王帅杰,朱坦。大气颗粒物源解析技术研究进展。环境污染治理技术与设备,2002;3(8):8-12.
    [16]姬亚芹,朱坦,冯银厂,白志鹏,刘红霞。用富集因子法评价我国城市土壤风沙尘元素的污染。南开大学学报(自然科学版),2006;32(9):94-99
    [17] Szalóki I., János Osán, Van Grieken R. E. X-ray spectrometry. Analytical Chemistry, 2004;76(12):3445-3470
    [18] Toyoda M., Kaibuchi K., Sono M. N., et al. X-ray analysis of a single aerosol particle with combination of scanning electron microscope and synchrotron radiation X-ray microscope. Spectrochimica Acta part B, 2004; 59:1311-1315.
    [19]唐小玲,毕新慧,陈颖军,盛国英,傅家谟。不同粒径大气颗粒物中有机碳(OC)和元素碳( EC)的分布。环境科学研究,2006;19(1):104-108
    [20] Japar S M , Brachaczek W W, Grose R A. The contribution of element carbon to the optical properties of rural atmospheric aerosols. Atmospheric Environment , 1986 ;20 : 1281-1289
    [21] Clarke A G, Karani G N. Characterisation of the carbonate content of atmospheric aerosols. Journal of Atmospheric Chemistry, 1992 ;14 :119-128
    [22]董树屏,刘咸德,祁辉,张烃,Willy Manhaunt。大气颗粒物中元素碳的直接测定。中国环境监测,2004;20(3):20-23
    [23] Chen S , Liao S , Jian W, et al . Particle size distribution of aerosol carbons in ambient air. Environ Intern , 1997 ;23: 475-488
    [24] Offenberg J H , Baker J E. Aerosol size distributions of elemental and organic carbon in urban and over-water atmospheres . Atmospheric Environment,2000;34:1509-1517
    [25]黄虹,李顺诚,曹军骥,邹长,陈新庚。气溶胶有机碳元素碳基本特征研究的前沿动向。环境科学与技术,2005;28(3): 112-115
    [26] Ho K F , Lee S C , Yu J C ,et al. Carbonaceous characteristics of atmospheric particulate matter in Hong Kong. Atmospheric Environment, 2002;300: 59-67
    [27]邹长伟,黄虹,曹军骥。大气气溶胶含碳物质基本特征综述。环境污染与防治,2006; 28(4): 270-274
    [28] Offenberg J H , Baker J E. The influence of aerosol size and organic carbon content on gas/ particle partitioning of polycyclic aromatic hydrocarbons. Atmospheric Environment , 2002 ;36 : 1 205~1 220
    [29]李杨。西安大气中碳气溶胶的理化特征及其来源解析。[硕士学位论文] .西安:中国中国科学院地球环境研究所, 2004
    [30] Andracchio A , Cavicchi C , Tonelli D , et al . A new approach for the fractionation of water-soluble organic carbon in atmospheric aerosols and cloud drops. Atmospheric Environment , 2002; 36:5 097~5 107
    [31] Yang H , Li Q F , Yu J Z. Comparison of two methods for the determination of water-soluble organic carbon in atmospheric particles. Atmospheric Environment , 2003 ;37:865~870
    [32] Penner J E , Novakov T. Carbonaceous particles in the atmosphere : a historical perspective to the Fifth International Conference on Carbonaceous Particles in the atmosphere. Journal of Geophysical Research , 1996 ;101:19373~19378
    [33] Chang S G, Toossi R , Novakov T. The importance of soot particles and nitrous acid in oxidizing SO2 in atmospheric aqueous droplets. Atmospheric Environment , 1981;15:1287~1292
    [34] Grenfell T C , Perovich D K, Ogren J A. Spectral albedos of an alpine snowpack. Cold Regions Science and Technology , 1981 ;4:121~127
    [35] Donnet J , Voet A. Carbon black : physics , chemistry , and elastomer reinforcement . New York : Marcel Dekker , Inc. , 1976; 58~87
    [36] Akhter M S , Chughtal A R , Smit h D M. The struscture of hexane soot .Ⅰ: Spectroscopic studies. Applied Spectroscopy , 1985 ;39:143~153
    [37] Sharma S , Brook J R , Cachier H , et al. Light absorption and thermal measurements of black carbon in different regions of Canada. Journal of Geophysical Research , 2002;107:AAC 1121~11211
    [38] Cadle S H , Mulawa P A. Atmospheric Carbonaceous Species Measurement Method Comparison Study : General Motors Results. Aerosol Science and Technology. 1990;12 :128—141.
    [39] Satoshi Kadowaki. Characterization of Carbonaceous Aerosols in the Nagoya Urban Area. 1. Elemental and Organic Carbon Concentrations and the Origin of Organic Aerosols . Environ Sci Technol . 1990;24 (5) : 741—744.
    [40] Lin J J , Tai H S. Concentrations and distributions of carbonaceous species in ambient particles in Kaohsiung city , Taiwan. Atmospheric Environment , 2001 ;35 : 2 627~2 636
    [41] Cao J J , Lee S C , Ho K F , et al. Characteristics of carbonaceous aerosol in Pearl River Delta Region , China during 2001 winter period. Atmospheric Environment , 2003;37 : 1 451~1 460
    [42] Wu P C , Su H J , Lin C Y. Characteristics of indoor and outdoor airborne fungi at suburban and urban homes in two seasons. The Science of the Total Environment ,2000 ,253 :111~118
    [43] Bauer H , Kasper G A , Loflund M , et al . The contribution of bacteria and fungal spores to t he organic carbon content of cloud water , precipitation and aerosols. Atmospheric Research , 2002; 64:109~119
    [44] Lary D J , Lee A M , Toumi R , et al . Carbon aerosols and atmospheric photochemistry. Journal of Geophysical Research , 1997;102:3 671~3 682
    [45] Szidat, S., et al THEODORE, a two-step heating system for the EC/OC determination of radiocarbon (14C) in the environment. Nuclear Instruments and Methods in Physics Research B. 2004;223-224, 829-836.
    [46]国家环境保护总局。环境空气质量标准,GB 3095-1996,1996
    [47]上海统计局。上海统计年鉴2007
    [48] Ye, B., Ji, X., Yang, H., Yao, X., Chan, C.K., Cadle S.H., Chan, T., Mulawa, P.A.,. Concentration and chemical composition of PM2.5 in Shanghai for a 1-year period. Atmos. Environ, 2003; 37:499–510
    [49]贺泓,翁端,资新运。柴油车尾气排放污染控制技术综述。环境科学, 2007;28(6): 1169-1177.
    [50] Weisheng Yue, Yan Li, Xiaolin Li, Source identification of PM10, collected at a heavy-traffic roadside, by analyzing individual particles using synchrotron radiation[J]. J.Synchrotron Rad, 2004; 11:428-431
    [51]李晓林,岳伟生,刘江峰等。应用同步辐射微束X射线荧光光谱法研究单个大气PM2. 5颗粒物的源特征。岩矿测试,2006;25(3):206-210

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700