开放源类大气微粒子排放特性与控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,大气微粒子已成为我国许多大中城市环境空气中的首要污染物,对环境和人体健康危害严重。
     大气微粒子的来源非常广泛,主要来源可分为固定源、开放源、移动源等,各种源类对城市环境空气中微粒子的贡献率不同。以济南为例,环境空气中首要污染物可吸入颗粒物浓度超过国家环境空气质量二级标准,在空气污染中的分担率为49.1%。在部分北方城市,开放源在可吸入颗粒物污染中的分担率达到了40-80%,是环境空气中可吸入颗粒物的主要来源。
     开放源类是一种复合源类,具有源强不确定、排放随机和排放位置不定等特点。不同城市工业布局、能源结构、地理环境、气象条件和地形条件不同,开放源的组成也不同。因此,了解开放源类微粒子排放特性,对于改善城市人居环境、控制城市空气颗粒物污染具有重要的理论意义;对于落实可持续发展战略、实现国家“十二五”时期继续加强一次颗粒物排放控制的规划目标具有重要的现实意义。
     以往的研究主要体现在对微粒子的基本理化特性、毒理学性质和微粒子的来源等方面,对于城市开放源类微粒子产生机理方面的研究较少。国内研究大多还是跟随国外的研究成果,研究水平停留在适应性研究方面。此外,国内针对有规律性、有组织性的微粒子污染源研究较多,特别是对电力、钢铁、采矿等行业的大型固定微粒子释放源的研究比较充分,而对城市开放源类释放的微粒子污染物研究相对薄弱。
     本文选择对济南市大气颗粒物贡献较大的建筑尘、道路尘、黄河沙、裸露地面尘四种开放源作为研究对象,利用与维也纳工业大学合作开发建立的实验室微粒子控制模拟实验装置,采用粉体物料自由下落逸出随机粉尘的实验研究方法,讨论了在开放源类粉体物料自由下落过程中微粒子排放特性。并在一定动力因素条件下,探讨了物料微粒子含量、质量流量、含水率、样品种类、空气湿度、加湿流量、加湿压力等因素对开放源物料中微粒子排放率的影响。
     实验结果表明,下落物料质量流量、空气湿度与微粒子排放率成幂指函数关系,随着质量流量、空气湿度的增加,微粒子排放率减小,且这种减小速度逐渐变慢。微粒子的粒径不同是对微粒子排放率影响最大的因素,粒径与微粒子排放率之间呈现指数关系。不同物料对微粒子排放率也有影响,裸露地面尘含有的微粒子最多,黄河沙最少,但裸露地面尘微粒子排放率最低,黄河沙微粒子排放率最高。含水率越高的样品,微粒子排放率越低,但含水率增加到1.34%之后物料物理特性发生明显变化,不再适用本项研究设定的条件。加湿方式是降低物料自由下落过程中微粒子排放率简单且有效的方法,在线加湿时,雾化喷头的空气压力和加水流量不同,微粒子排放率不同:当采用气水两相喷嘴,空气压力为0.3MPa时,微粒子排放率函数值最小;当加水流量为40mL/min时,微粒子排放率最低。
     本文研究了在一定动力因素条件下开放源物料自由下落过程中微粒子的排放率;建立了微粒子含量、质量流量、含水率、样品种类、空气湿度、加湿流量、加湿压力等影响因素与微粒子排放率之间的数学模型,并利用SigmaPlot数学分析软件对方程进行优化;通过研究发现粒径是对样品自由下落过程中微粒子排放率影响最大的因素。所获结论对开放源类物料在转运、装卸、堆放等操作过程中大气微粒子的排放估算和综合防治具有重要的理论意义和应用价值。
Fine particulate matter of air,which have become the main pollutants of many medium-sized and large cities in China, is seriously harmful to environment and human health.
     Sources of them are widely distributed and mainly divided into stationary source, open source and mobile source according to their different contribution rates to air. Take the city of Jinan for example, the concentration of respirable particulate matter(RPM) of air beyond the corresponding requirements of ambient air quality standard(GB3095-1996). Open-sources materials,which takes 40-80% contents in the RPM(converse 49.1% of air pollutants),is the main source of RPM of air pollutants.
     Open-sources materials with its characteristics of uncertain source strength, various discharge location and random emission is classified for a compound-source one. It owns different composition with different urban industrial distribution energy structure, geographical location, weather conditions and terrain conditions. Therefore, it is necessary to understand the fine particle emission characteristics of the open source. Becauseit not only has theoretical significance for improving the urban living environment and controlling pollution in air,but also has important practical significance for the full implementation of the sustainable development strategy and achievement of national pollutants emissions planning objectives in the next five years.
     Previous studies have focused on fine particles (RPM) of the basic physical and chemical properties, toxicological properties and sources of fine particles,but few research about the producing mechanism of fine particles for urban open-sources materials and the domestic research were always follow the foreign results and just remain in the adaptation of the level of research. In addition the domestic research have mainly focused on the laws, and organized fine particles especially for the release of large fixed sources of fine particles which were produced by power steel, mining and other industries but less focused on the release of urban fine particle pollutants of open source.
     In this experiment, four kinds of open-sources materials as subjects(construction dust, road dust, the yellow river sand, ground dust)were selected. Computer measurement and control platform with powder material free-falling dust overflow experimental methods were used to research the fine particulate matter emission in free-fall process under online humidifying condition of open-sources materials. Under certain dynamic conditions(horizontal wind speed), the relationship between rate of the emission and water flow, nozzle pressure type of material, size distribution, moisture content, mass flow had been discussed.
     As the results shows, there exsits exponential relationship between emission rate and free-falling material mass flow, moisture content. With increasing of mass flow and moisture content, the rate of fine particle emissions rate decreased, and the reducing speed gradually slows down. Fine particle size is the most important factor which can affect its emission rate and their exsits a exponential function relationship between them. Different materials can also affect the emission rate of fine particle size. In this experiment, ground dust discharged the most RPM but with the least emission rate and the yellow river sands discharged the least but with the most emission rate. The higher the moisture content of samples have,the lower fine particle emissions rate have, but it is not applicable to the situation above when moisture content is beyond 1.34%, physical properties of materials will change significantly. Humidification is a simple and effective method to reduce the fine particle emissions rate of free-fall materials.When Online humidification were used, the particle emissions rate are different with the different air pressure of atomizing nozzle and water flow. When gas-water two-phase nozzle is used and the air pressure is 0.3MPa, fine particle emissions rate have minimum function value. When the water flow rate is 40mL/min, the fine particulate emissions rate is the lowest.
     In this paper, the rate of emission of fine particulate in the free-fall process of open-sources materials under uncertain dynamic conditions was studied. The mathematical model had been established between the rate of fine emission and water flow, nozzle pressure type of material, size distribution, moisture content, mass flow. Then the models were modified by SigmaPlot mathematical analysis software.It was found that the fine particle size is the most important factor which can affect its emission rate in the materials free-fall process. The operating conditions of water line was optimized. It can provide a reference by the results for making source control programs of fine particles and selection of technical measures to control open-sources fine particle emissions.
引文
[1]朱广一.大气可吸入颗粒物研究进展[J].环境保护科学,2002,(28):3-5.
    [2]冯银厂,吴建会,朱坦,等.济南市环境空气中TSP和PM10来源解析研究[J].环境科学研究,2004,17(2):1-5.
    [3]胡军.解读可吸入颗粒物[N].中国消费报,2002-11-29(A06).
    [4]Ballester F,Tenias JM,Perez-Hoyos S.Air Pollution and emergency hospital admissions for Cardiovasctlar diseases inValencia[J].Spain J Epidemiol Conununity Health,2001,55:57-65.
    [5]Gary N.Sharon N Y Jane Q K,et al.An association between fine Partieles and asthmeme emergency department visits for children in Seattle[J].Environ Health PersPective,199107(6):489-493.
    [6]黄雪莲,金星,郭新彪.沙尘暴PM25、PM1o对大鼠肺泡巨噬细胞吞噬功能的影响[J].卫生研究,2004,33(2):154-157.
    [7]黄雪莲,金显,郭新彪.沙尘暴PM2.5、PM1o对大鼠肺泡巨噬细胞炎性因子分泌的影响[J]环境与健康杂志,2004,21(1):38-40.
    [8]董晨,宁伟民,施烨闻.PM25颗粒物引起血管内皮细胞氧化损伤的研究[J].卫生研究2005,34(2):169-171.
    [9]Dejmek J.Environ Health Perspect[J].2000,108(12):1159-1164.
    [10]时宗波,邵龙义,T.P.Jones城市大气可吸入颗粒物对质粒DNA的氧化性损伤[J].科学通报,2004,49(7):673-678.
    [11]唐孝炎(主编),李金龙,粟欣,陈旦华.大气环境化学[M],1991,高等教育出版社,北京191-197.
    [12]刘淑琴,王鹏.环境中的多环芳烃与致癌性[J].环境保护,1995,9:42-50.
    [13]林治卿,袭著革,杨丹风.采暖期大气中不同粒径颗粒物污染及其重金属分布状况[J]环境与健康杂志,2005,22:33-34.
    [14]J.H.塞思菲尔德.空气污染的物理和化学基础[M].北京:科学出版社,1986:22-26.
    [15]蒋红梅,王定勇.大气可吸入颗粒物的研究进展[J].环境科学动态,2001(1):11-15.
    [16]Chan Y C,Simpso R W,Mctalnsh G H.et al.Source apportionment of PM2.5 and PM10 aerosols in Brisbanc(Australia) by receptor modeling[J]. Atmospheric Environment 1999,33:3237-3250.
    [17]周军,柴国勇,陈元.城市大气中PM25污染控制的意义[J].甘肃环境研究与监测,2003,16(1):29-31.
    [18]李红,邵龙义,单忠健,等.气溶胶中有机物的研究进展和前景[J].中国环境监测,2001,17(3):62-67.
    [19]刘泽常,刘玉堂,侯鲁健等.济南市PM10市时空变化规律研究[J],山东建筑大学学报,2010,25(1):75-78.
    [20]济南市大气颗粒物来源解析及污染防治对策研究[M].南开大学出版社,2001.152-158.
    [21]纪玉玲,江婷.浅谈大气中可吸入颗粒物的变换规律[J].中国疗养医学.2004,5(13):267-268.
    [22]尹振东.气象条件对可吸入颗粒物浓度的影响[J].环境科学与管理.2005,3(19):46-47.
    [23]刘泽常,王志强,李敏,等.大气可吸入颗粒物研究进展[J].山东科技大学学报(自然科学版),2004,23(4):98-99.
    [24]朱坦,孙韧,张林,等.大港地区大气颗粒物中多环芳烃分布及污染源识别的研究[J].中国环境科学,1998,18(4):289-292.
    [25]Chow.J.C, J.G.Watson, J.E.Huock,et al. A Laboratory resuspension chamber to measure fugitive dust size distribution sand chemical compositions[J].Atmospheric Environment,1994,28(21):3463-3481.
    [26]Watson. J.G., J.C.Chow. Source characterization of major emission sources in the Imperial and Mexicali Valleys along the US/Mexico border[J].the Science of the Total Environment,2001,27(6):33-47.
    [27]Plinke M., D. Leith, D. Holstein, and M.G. Boundy experimental examination of factors that affect dust generation [J]. Am. Ind. Hyg. Assoc. J.,1991,52(9):521-528.
    [28]Sutter.S.L., J.W. Johnson. Investigation of accident generated aerosols releases from free fall spills[J]. Am. Ind. Hyg. Assoc. J.,1992,43(7):540-544.
    [29]Cooper. P., Liu. Z. Q., and Glutz, A. Air Entrainment Processes and Dust Control in Bulk Materials Handling operations[C].6th International Conference on Bulk Materials Storage, Handling and Transportation, the University of Wollongong, Australia,1998:95-99.
    [30]Trenker C., Hoflinger W.. Influence of the moisture content of falling bulk materials on PM10 or PM2.5 values of the emitted fugitive dust[C]. Partec,2001, Germany:653-656.
    [31]G.Rheina-wolbeek, W.Hoeflinger. The 5TH Internationail Conference for Conveying and Handling of Particulate Solids[C]. Italy,2006 (8):27-31.
    [32]Jason A. Roney, Bruce R. White.Estimating, fugitive dust emission rates using an environmental boundary layer wind tunnel [J].Atmospheric Environment,2006,40:7668-7685.
    [33]Cheryl McKenna Neuman, J. Wayne Boulton, Steven Sanderson.Wind tunnel simulation of environmental controls on fugitive dust emissions from mine tailings [J].Atmospheric Environment 2009,43:520-529.
    [34]陈魁,白志鹏,朱坦等.颗粒物再悬浮采样器研究与测试[C].第十届全国大气环境学术会议,2004,11:403-408.
    [35]王帅杰,朱坦,洪刚.石家庄市地面起尘量估算方法[J].城市环境与城市生态,2003,16(6):248-250.
    [36]王帅杰,贺军.城市空气颗粒物开放源基础理论初探[J].环境科学与技,2006,29:156-158
    [37]J.S. Evans, D.W. Cooper, J.J. Harrington.Strategies for the optimal control of dust emissions form unpaved roads[J].APCA,1991,33 (4):312-317.
    [38]Chuen-Jinn Tsai, Chung-Tso Chang. An investigation of dust emissions from unpaved surfaces in Taiwan[J]. Separation and Purification Technology,2002,29:181-188.
    [39]V. Sai Bhaskar, Mukesh Sharma. Assessment of fugitive road dust emissions in Kanpur, India[J].Transportation Research Part D,2008,13:400-403.
    [40]Fan Shou-bin, Tian Gang, Li Gang, et al.Road fugitive dust emission characteristics in Beijing during Olympics Game 2008 in Beijing, China[J]. Atmospheric Environment,2009,43:6003-6010.
    [41]郝瑞彬,刘飞.我国城市扬尘污染现状及控制对策[J].环境保护科学,2003,120(29):1-4.
    [42]谢邵东,齐丽.料堆风蚀扬尘排放量的一个估算方法[J].中国环境科学,2004,24(1):49-52.
    [43]赵斌,马建中.天津市大气污染源排放清单的建立[J].环境科学学报,2008,28(2):369-375.
    [44]刘玉峰,丛晓春,张旭.露天堆场扬尘量分布的计算[J].环境污染与防治,2006,28(2):146-148.
    [45]刘彩霞.天津市开放源可吸入颗粒物污染问题分析[J].中国环境监测,2006,22(4):80-84.
    [46]张利文,白志鹏,郭光焕等.开放源对环境空气质量影响的评估技术与实例[J].环境科学研究,2006,19(3):90-93.
    [47]王铮,华蕾,胡月琪等.北京市无组织排放源颗粒物的粒度分布[J].中国环境监测,2007,23(2):75-78.
    [48]Peter Werner Grundnig, Wilhelm Hoeflinger, Gerd Mauschitz, etc.Influence of air humidity to the suppression of fugitive dust by using a water-spraying system[J]. China Particuology,2006,4(5):229-233.
    [49]W.Hoeflinger,J.Faschingleitner,G.Mauschitz,etc. Influence of water evaporation on dust minimisation efficiency using enclose water spraying systems[C]. Proceedings of CHOPS+ICBMH,2009,08:3-7.
    [50]Sabah A. Abdul-Wahab.Impact of fugitive dust emissions from cement plants on nearby communities[J].ecological modelling,2006,195:338-348.
    [51]陈洁,邓顺熙.逸散性颗粒物排放源控制技术[J].陕西环境,1999,6(2):32-34.
    [52]杨三明,张大元,陈刚才.重庆市主城区空气中颗粒物污染分析[J].重庆环境科学,2001,23(5):18-20.
    [53]邢玉兰,全宝玲,李钢等.使用覆盖剂控制物料堆扬尘污染的研究[J].城市管理与科技,2001,3(1):36-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700