时域积分方程在分析金属/介质及场—路混合问题中的算法研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究电磁场数值计算理论和算法的最终目的是解决各种实际的复杂电磁场问题。在复杂目标雷达散射截面(RCS)计算、宽带天线设计、电磁兼容性分析等领域,经常需要对金属/介质混合结构的三维目标电磁建模并仿真。围绕这一背景,我们选择了电磁场时域积分方程(TDIE)理论作为理论基础,以时间递推法(MOT)作为数值求解方法,研究了金属/介质混合结构的辐射、散射以及场-路混合问题,开发了可用于解决工程中的一些电磁计算问题的通用计算程序。论文内容分为两部分,第一部分主要阐述了用于分析金属/介质混合体辐射、散射的时域积分方程理论及基于MOT的求解技术;第二部分阐述了用TDIE结合电路中的改进节点分析(MNA)法模拟场-路混合问题的方法。
     第一部分基于等效原理和边界条件,推导了针对金属/均匀介质混合体的辐射和散射问题的各种时域电磁场积分方程,包括时域电场积分方程(TD-EFIE)、时域磁场积分方程(TD-MFIE)、时域混合场积分方程(TD-CFIE)和时域C-PMCHW(Poggio-Miller-Chang-Harrington-Wu)耦合积分方程四种形式,并比较了各类积分方程的适用范围和优缺点;在此基础上,阐述了基于RWG函数的MOT求解各种混合体时域积分方程的一般方法。研究了混合体的建模剖分和数据提取,以及算法实现过程中的数学推导、矩阵元素的计算、计算后参数的提取和处理等问题。
     论文对各种类型的时间基函数进行了评估,比较了它们所包含的高频分量;提出了用于金属/介质混合问题的阻抗矩阵预存储的方法,并给出了所需存储空间的计算公式,该方法大大节省了阻抗元素重复计算的时间。在阻抗矩阵元素计算中,研究了一种基于Duffy变换的包含时间迟滞项的奇异积分的精确计算方法,提高了计算精度,改善了MOT求解积分方程中的晚时不稳定性。最后通过一些金属/介质混合结构的辐射和散射算例验证了算法的正确性,并得出采用时域E-PMCHW耦合积分方程计算金属/介质混合体比采用TD-EFIE更稳定的结论。
     第二部分针对复杂电磁结构体与电路互连的混合问题,将场分析中的TDIE法与电路分析中的MNA法相结合,实现了一种可同时模拟复杂电磁结构与线性、非线性集总电路间耦合的方法。这种方法的基础是在电路和电磁结构体间引入“耦合电流”的思想,并将完善的电流连续性方程和广义基尔霍夫定律应用于电磁结构与电路的耦合分析中。
     最后采用时域E-PMCHW算法分析了微带功分器和微带滤波器的性能;计算了一种小型介质谐振腔加载贴片天线和一种圆盘单极振子印刷超宽带天线的阻抗匹配性能和远场辐射特性,通过计算分析,得出了影响各天线谐振频率和反射损耗带宽的天线结构参数。对于非线性器件,计算了应用于混频器中的微波二极管的特性。这些例子展示了时域E-PMCHW算法具有比其他形式的积分方程法更优良的稳定性和在时域计算上的优势。
The objective of studying and developing modern computing electromagnetic theory and algorithm is to solve all kinds of engineering electromagnetic problems. In the areas of computing radar cross section(RCS) of complex objects and broadband antenna design and Electromagnetic Compatibility(EMC) analysis, we often have to simulate the electromagnetic characteristics of some objects with complex metallic/ dielectric structures. Under these backgrounds, this thesis choses time domain integral equation (TDIE) theory as the theoretical foundation, marching-on-in-time(MOT) scheme as numerical solver, and investigates the scattering, radiation of the complex metallic/dielectric structures and mixed electromagnetic(EM)-circuit Simulation, and develops general electromagnetic computing software to solve the electromagnetic computing problems in engineering. The content of this thesis is made up of two parts, the first part expounds TDIE theory for complex metallic/dielectric structures and its resolving technique based on MOT; the second part expounds a formulation for mixed EM-circuit simulation using TDIE.
     In the first part of this thesis, the TDIE including time-domain electric field integral equation (TD-EFIE), time-domain magnetic field integral equation (TD-MFIE), time- domain combined field integral equation (TD-CFIE) and time-domain combining PMCHW(Poggio, Miller, Chang, Harrington, Wu) formulation for complex metallic/dielectric structures are elaborated uniformly based on the surface equivalence principle and boundary conditions firstly. For an attempt to choose optimal TDIE for different structures, the applicability and excellence as well as disadvantages of different TDIEs are compared. Then the solving procedures of these TDIEs based on the RWG function using MOT are elaborated, including the model building of complex objects, data extraction, some mathematical formulations in realizing the algorithm, calculating the matrix elements, the parameter extraction and the post processing after the simulation, etc.
     Different temporal bases functions are evaluated and their high frequency components are compared for the cause of their impact on late-time stability in this thesis. In addition, the method of impedance matrix prestorage for composite structures is presented, which largely saves the time of repeatedly computing impedance elements, and the required memory is formulated. In the procedure of computing impedance matrix elements, an improved method of accurate evaluation of retarded time integrals with singularity in self-impedance elements in MOT scheme is presented, which improve the late-time stability of MOT scheme. Some numerical results of practical complex antenna and scattering problems are presented to illustrate the validity of the method and better stability of TD-E-PMCHW compared with TD-EFIE for complex metallic/dielectric structures.
     In the second part, for the interconnection between complex metallic/dielectric EM structures and circuits, a simultaneous simulation scheme of EM section and linear/ nonlinear lumped circuit section is developed through combining TDIE used in EM simulation and MNA used in circuit simulation. The scheme is based on thought of "coupling current" serving as the bridge to connect the circuit section and EM section. Following the "coupling current", the "modified" continuity equation and "generalized" Kirchoff's Law are used to analyzing the coupling between the EM section and circuit section.
     Finally, a microstrip power splitter and a microstrip filter are analyzed using TD-E-PMCHW algorithm. In addition, a miniature dielectric resonator loaded patch antenna and a printed circular disc monopole Antenna for UWB systems are computed, and the performance of impedance match and radiation of the two antennas is analyzed. Through analysis effect of the antennas' structure parameters on resonant frequency and return loss bandwith is gained. For nonlinear elements in circuits, a diode applied in a mixer is computed. All these examples demonstrate the better stability in analysis of complex structure of TD-E-PMCHW algorithm compared with other TDIEs and the advantages of computation in time domain.
引文
[1]Rao S M.Time Domain Electromagnetics[M].San Diego & San Francisco:Academic Press,1999.
    [2]Harrington R F.Time-Harmonic Electromagnetic Fields[M].New York:John Wiley & Sons,2001.
    [3]Sengupta D L,Sarkar T K.Maxwell,Hertz,the Maxwellians,and the Early History of Electromagnetic Waves[J].IEEE Antennas and Propagation Magazine,2003,45(2):14-19.
    [4]傅君眉,冯恩信.高等电磁理论[M].西安:西安交通大学出版社,2000.
    [5]盛新庆.计算电磁学要论[M].北京:科学出版社,2004.
    [6]王秉中.计算电磁学[M].北京:科学出版社,2002.
    [7]Akleman F,Sevgi L.A Novel Finite-Difference Time-Domain Wave Propagator [J].IEEE Transactions on Antennas and Propagation,2000,48(3):839-841.
    [8]Martin H C,Carey G F.Introduction to Finite Element Analysis:Theory and Application[M].New York:McGraw Hill,1973.
    [9]Harrington R F.Filed Computation by Moment Method[M].Marlabar:FL:Krieger,1982.
    [10]Rao S M,Sarkar T K.An Efficient Method to Evaluate the Time-Domain Scattering from Arbitrarily Shaped Conducting Bodies[J].Microwave and Optical Technology Letters,1998,17(5):321-325.
    [11]Harrington R F.Boundary Integral Formulations for Homogeneous Material Bodies[J].Journal of Electromagnetic Waves and Application,1989(3):1-15.
    [12]毛钧杰,何建国.电磁场理论[M].长沙:国防科技大学出版社,1998.
    [13]Zhao J-S,Chew W C.Integral Equation Solution of Maxwell's Equations from Zero Frequency to Microwave Frequencies[J].IEEE Transactions on Antennas and Propagation,2000,48(10):1635-1645.
    [14]Yang C Y,Jandhyala V.Combined Circuit-Electromagnetic Simulation Using Multiregion Time Domain Integral Equation Scheme[J].IEEE Transactions on Electromagnetic Compatibility.2006,48(1):2-9.
    [15]Yilmaz A E,Jin J M,Michielssen E,A TDIE-Based Asynchronous Electromagnetic-Circuit Simulator[J].IEEE Microwave and Wireless Components Letters,2006.16(3):122-124.
    [16]Pasi Yl(a|¨)-Oijala,Taskinen M.Application of Combined Field Integral Equation for Electromagnetic Scattering by Dielectric and Composite Objects[J].IEEE Transactions on Antennas and Propagation,2005,53(3):1168-1173.
    [17]Yilmaz A E,Jin J M,Michielssen E.A Stable Time-domain Integral Equation Formulation for Composite Structures[A].In:IEEE[C]:2006,2963-2966.
    [18]Sui W,Chrisrensen D A,Dumey C H.Extending the Two-Dimensional FT-DT Method to Hybrid Electromagnetic Systems with Active and Passive Lumped E lements[J].IEEE Transactions on Microwave Theory and Techniques,1992,40:72 4-730.
    [19] Dodson S J, Walker S P, Bluck M J. Implicitness and Stability of Time Domain Integral Equation Scattering Analyses [M]: Imperial College of Science Technology and Medicine.
    
    [20] Manara G, Monorchio A, Reggiannini R. A Space-Time Discretization Criterion for a Stable Time-Marching Solution of the Electric Field Integral Equation [J].IEEE Transactions on Antennas and Propagation, 1997,45 (3): 527-532.
    
    [21] Gedney S, Finite-Diference Time-Domain Analysis of Microwave circuit Devices on Performance Vector/Parallel Computers [J]. IEEE Trans Theory and Technidques. 1994,13, 262-264.
    [22] May M P, Taflove A, Baron J. FD-TD Modeling of Digital Signal Propagation in 3D Circuits with Passive and Active loads [J]. IEEE Trans Theory and Technidques [J]. 1994, 42(8): 1514-1523.
    
    [23] Thomas V A, Jones M E, Pi ket-May M, Taflove A, Harrigan E. The Use of SPICE Lumped Circuits as Sbu-grid Models for FDTD High-Speed Electronic Circuit Design [J]. IEEE Microwave and Guided Wave Let. 1994,4(5): 141-143.
    [24] Th omas V A, Ling K, Jones M E. FDTD Analysis of An Active Antenna [J].IEEE Microwave and Guided Wave Let, 1994,4(9): 296-298.
    [25] Ciampolini P, Mezzanotte P, Poselli L. Accurate and Efficient Circuit Simulation with Lumped-Element FDTD Technique [J]. IEEE Trans. Microwave Theory and Techniques, 1996,44(12): 2207-2215.
    [26] Ruehli A E, Equivalent Circuit Models for Three-Dimensional Multiconductor Systems [J]. IEEE Transactions on Microwave Theory and Techniques, 1974,22(3):216-221.
    [27] Heeb H, Ruehli A E. Three-Dimensional Interconnect Analysis Using Partial Element Equivalent Circuits [A], IEEE Trans.On Circuits Sys. 1992, 39(11): 974-982.
    [28] Ruehli E, Heeb H. Circuit Models for Three-Dimensional Geometries Including Dielectrics [J]. IEEE Transactions on Microwave Theory and Techniques, 1992,40(7): 1507-1516.
    [29] Jung B H, Sarkar T K. Analysis of Scattering from Arbitrarily Shaped 3-D Conducting Dielectric Composite Objects Using a Combined Field Integral Equation [J]. Journal of Electromagnetic Wave and Applications, 2004, 18 (6):729-743.
    [30] Rao S M, Sarkar T K. Numerical Solution of Time Domain Integral Equations for Arbitrarily Shaped Conductor Dielectric Composite Bodies [J]. IEEE Transactions on Antennas and Propagation, 2002, 50 (12): 1831-1837.
    [31] Erdin I, Nakhla M S, Achar R. Circuit Analysis of Electromagneticradiation and Field Coupling Effects for Networks with Embedded Full-Wave Modules [J].IEEE Transactions on Electromagnetic Compatibility. 2000,42(11): 449-460.
    [32] Aygun K, Shanker B, Michielssen E. Analysis of Nonlinearly Loaded Antennas and Circuits Using the Multilevel Plane Wave Time Domain Algorithm [A]. in Proc.Int. Conf. Electromagnetics Advanced Applications, Turin, Italy, Sep. 1999:741-744.
    [33] Aygun K, Fischer B, Cangellaris A, Michielssen E. Fast Time Domain Analysis of Nonlinearly Loaded Printed Circuit Board Structures [A]. National Radio Science Meeting, Boulder, CO, Jan. 2002.__
    [34] Erdin I, Nakhla M. Mixed Circuit/Electromagnetic Analysis of Field Coupling to High Speed Interconnects in Inhomogeneous Medium [A]. Int: IEEE Electromagnetic Compatibility Symp., vol. 1, Aug. 1999: 446-449.
    
    [35] Khazaka R, Nakhla M. Analysis of High-Speed Interconnects in the Presence of Electromagnetic Interference [J]. IEEE Transactions on Microwave Theory and Techniques, 1998,46(7):940-947.
    
    [36] Feliziani M, Maradei F. Circuit-Oriented FEM: Solution of Circuit-Field Coupled Problems by Circuit Equations [J]. IEEE Trans. Magn., 2002, 38(3): 965-968.
    
    [37] Costa M Ck, Nabeta S I, Cardoso J R. Modified Nodal Analysis Applied to Electric Circuits Coupled with FEM in the Simulation of a Universal Motor [J]. IEEE Trans. Magn., 2000, 36(7): 1431-1434.
    
    [38] Davies P J. A stability analysis of a time marching scheme for the general surface eletric field integral equation [J]. Applied Numerical Mathematics, 1998, 27:33-57.
    
    [39] Hu, J-L., C.H. Chan, and Y. Xu, A new temporal basis function for the time-domain integral equation method [J]. IEEE Microwave and Wireless Components Letters, 2001. 11(11): 465-466.
    
    [40] Hu J-L, Chan C H. An improved temporal basis function for the time domain electric field integral equation method [J]. Electron. Lett., 1999, 35: 883-885.
    
    [41] Jung B H, Sarkar T K, Chung Y-S. A Survey of Various Frequency Domain Integral Equations for the Analysis of Scattering from Three-Dimensional Dielectric Objects [J]. Progress In Electromagnetic Research, 2002, 36: 193-246.
    
    [42] Rao S M, Wilton D R, Glisson A W. Electromagnetic Scattering by Surfaces of Arbitrary Shape [J]. IEEE Transactions on Antennas and Propagation, 1982, 30(3): 409-418.
    
    [43] Rao S M, Wilton D R. Transient Scattering by Conducting Surfaces of Arbitrary Shape [J]. IEEE Transactions on Antennas and Propagation, 1991, 39 (1): 56-61.
    
    [44] Davies P J. Numerical stability and convergence of approximations of retarded potential integeral equations [J]. SIAM J. Numer. Anal., 1994, 31: 856-875.
    
    [45] Rynne B P. Stability and convergence of time marching methods in scattering problems [J]. IMA J. Appl. Math., 1985, 35: 297-310.
    
    [46] Rynne B P. Time domain scattering from arbitray surfaces using the electric field integral equation [J]. J. of Electromagn. Waves and Appl, 1991, 5: 93-112.
    
    [47] Sadigh A, Arvas E. Treating the instabilities in marching-on-in-time method from a different perspective [J]. IEEE Trans. Antennas Propagat., 1993, 41 (12):1695-1702.
    
    [48] Tijhuis A G. Electromagnetic inverse profiling: Theory and numerical implementation [M]. Utrecht: the Netherlands: VNU Science Press BV, 1987.
    
    [49] Vechinski D A, Rao S M. A Stable Procedure to Calculate the Transient Scattering by Conducting Surfaces of Arbitrary Shape [J]. IEEE Transactions on Antennas and Propagation, 1992,40: 661-665.
    
    [50] Jung B H, Sarkar T K. Time-Domain Electric-Field Integral Equation with Central Finite Difference [J]. Microwave and Optical Technology Letters, 2001,31(6): 429-435.
    
    [51] Jung B H, Sarkar T K. Corrections to "Time-Domain Electric-Field Integral Equation with Central Finite Difference" [J]. Microwave and Optical Technology Letters, 2002, 33(2):148.
    
    [52] Rynne B P, Smith P D. Stability of Time Marching Algorithms for the Electric Field Integral Equations [J]. Journal of Electromagnetic Waves and Application,1990,12:1181-1205.
    
    [53] Bennett C L. A Technique for Computing Approximate Impulse Response for Conducting Bodies [D]. Lafayette, Indiana: Purdue Univ., 1968.
    
    [54] Pinello W, Cangellaris A C, Ruehli A. Hybrid Electromagnetic Modeling of Noise Interactions in Packaged Electronics Based on The Partialelement Equivalent-Circuit Formulation [J]. IEEE Trans. Microwave Theory Techn., 1997,45(10): 1889-1896.
    
    [55] Davies P J. On the Stability of Time-Marching Schemes for the General Surface Electric-Field Integral Equation [J]. IEEE Transactions on Antennas and propagation, 1996,44(11): 1467-1473.
    
    [56] Davies P J. A Stability Analysis of a Time Marching Scheme for the General Surface Electric Field Integral Equation [J]. Applied Numerical Mathematics,1998,27:35-57.
    [57] Hu J L, Chan C H. Improved Temporal Basis Function for Time Domain Electric Field Integral Equation Method [J]. Electronics Letters, 1999, 35 (11): 883-885.
    [58] Hu J L, Chan C H, Xu Y. A New Temporal Basis Function for the Time-Domain Integral Equation Method [J]. IEEE Microwave and Wireless Components Letters,2001,11 (11): 465-466.
    [59] Hu J L, Chan C H. Novel Approach to Construct Temporal Basis Functions for Time-Domain Integral Equation Method [A]. In: IEEE [C]: 2001. 172-175.
    [60] Restle P J, Ruehli A E, Walker S G. Papadopoulos G. Full-Wave PEEC Time-Domain Method for The Modeling of on-Chip Interconnects [J]. IEEE Trans. Computer-Aided Design Integr. Circuits Syst, 2001, 20(7): 877-886.
    [61] Cai W, Yu T J, Wang H, et al. High-Order Mixed RWG Basis Functions for Electromagnetic Applications [J]. IEEE Transactions on Antennas and Propagation, 2001,49 (7): 1295-1303.
    [62] Peterson A F, Kempel L C. Solution of the MFIE Using Curl-Conforming Basis Functions [J]. IEEE, 2002: 70-73.
    [63] Ergul O, Gurel L. Improving the Accuracy of the MFIE with the Choice of Basis Functions [A]. In: IEEE [C]: 2004. 3389-3392.
    [64] Jung B H, Sarkar T K. Transient Scattering from Three-Dimensional Conducting Bodied by Using Magnetic Field Integral Field Integral Equation [J]. Journal of Electromagnetic Waves and Application, 2002,16 (1): 111-128.
    [65] Ergul O, Gurel L. Investigation of the Inaccuracy of the MFIE Discretized with the RWG Basis Functions [A]. In: IEEE [C]: 2004. 3393-3396.
    [66] Hodges R E, Rahmat-Samii Y. The Evaluation of MFIE Integrals with the Use of Vector Triangle Basis Functions [J]. Microwave and Optical Technology Letters,1997,14(1): 9-14.
    [67] Yla-Oijala P, Taskinen M. Calculation of CFIE Impedance Matrix Elements with RWG and nxRWG Functions [J]. IEEE Transactions on Antennas and Propagation, 2003, 51: 1183-1846.
    [68]Shanker B,Ergin A A,Ayg(u|¨)n K,et al.Analysis of Transient Electromagnetic Scattering from Closed Surfaces Using a Combined Field Integral Equation[J].IEEE Transactions on Antennas and Propagation,2000,48(7):1064-1074.
    [69]Hu,J-L,Chan C H.Novel Approach to Construct Temporal Bases Functions for Time-Domain Integral Equation Method[A].In:IEEE[C]:2001,172-175.
    [70]王生水.时域积分方程及其并行算法的研究与应用[D].博士学位论文.长沙:国防科学技术大学,2007.
    [71]高本庆,刘波.电磁场时域数值技术新进展[J].北京理工大学学报.2002,22(8):401-406
    [72]高文军.ADI-FDTD及其在平面电路及天线设计中的应用研究[D],博士学位论文.北京:北京航空航天大学,2001,980-81.
    [73]Yilmaz A E,Jin J M and Michielssen E.A Parallel FFT accelerated Transient Field-Circuit Simulation[J].IEEE Transactions on Microwave Theory and Techniques,2005,53(9):2851-2865.
    [74]Vechinski D A,Rao S M,Sarker T K.Transient Scattering from Three-Dimensional Arbitrarily Shaped Dielectric Bodies[J].Journal of the Optical Society of America A,1994(11):1458-1470.
    [75]Schlemmer E,Rucker W M,Richter K R.A Marching-on-in-Time Method for 2-D Transient Electromagnetic Scattering from Homogeneous,Lossy Dielectric Cylinders Using Boundary Elements[J].IEEE Transactions on Magnetic,1991,27(5):3856-3859.
    [76]Ayg(u|¨)n K,Fischer B C,Meng J,Shanker B,Michielssen E.A Fast Hybrid Field-Circuit Simulator for Transient Analysis of Microwave Circuits[J].IEEE Transactions on Microwave Theory and Techniques,2004,52(2):573-583.
    [77]Dodson S J,Walker S P,Bluck M J.Implicitness and stability of time domain integral equation scattering analysis[J].Appl.Comput.Electromagn.Soc.,1998,13:291-301.
    [78]Manara G,Monorchio A,Reggiannini R.A space-time discretization criterion for a stable time-marching solution of the electric field integral equation[J].IEEE Trans.Antennas Propagat.,1997,45(3):527-532.
    [79]Mieras H,Bennet C L.Space-Time Integral Equation Approach to Dielectric Targets[J].IEEE Transactions on Antennas and Propagation,1982(AP-30):2-9.
    [80]Yang C Y,Jandhyal V.A Time Domain Surface Integral Technique for Mixed Electromagnetic and Circuit Simulation[A].In:IEEE[C]:2002,41-44.
    [81]Wang Y,Gope D,Jandhyala V.Generalized Kirchoffs Current and Voltage Law Formulation for Coupled Circuit-Electromagnetic Simulation with Surface Integral Equations[J].IEEE Transactions on Microwave Theory and Techniques.2004,52(7):1673-1682.
    [82]Davies P J.Numerical Stability and Convergence of Approximations of Retarded Potential Integeral Equations[J].SIAM J.Numer.Anal.,1994,31:856-875.
    [83]Davies P J.A Stability Analysis of a Time Marching Scheme for the General Surface Eletric Field Integral Equation[J].Applied Numerical Mathematics,1998,27:33-57.
    [84]Electromagnetic scattering and radiation of arbitrary-shaped surfaces by triangular pathch modeling [D].Doctor. Mississppi: Mississppi.
    
    [85] Shin J, Glisson A W, Kishk A A. Analysis of Combined Conducting and Dielectric Structures of Arbitrary Shapes Using an E-PMCHW Integral Equation Formulation [M]: University of Mississippi, 2000.
    
    [86] Li J-Y, Li L-W. Electromagnetic Scattering by a Mixture of Conducting and Dielectric Objects Analysis Using Method of Moments [J]. IEEE Transactions on Antennas and Propagation, 2004, 53 (2): 514-520.
    
    [87] Ruehli A E, Antonini G, Esch J, Ekman J, Mayo, A, Orlandi A. Nonorthogonal PEEC Formulation for Time- and Frequency-Domain EM and Circuit Modeling [J]. IEEE Trans. Electromagn. Compat., 2003,45(2): 167-176.
    
    [88] Yang C and Jandhyala V. Coupled Circuit-Electromagnetic Simulation with Time Domain Integral Equations [A]. in Proc. IEEE APS Dig., vol. 3, Columbus, OH,Jun.2003: 316-319.
    
    [89] Vechinski D A, Rao S M. Transient Scattering from Two-Dimensional Dielectric Cylinders of Arbitrary Shape [J]. IEEE Transactions on Antennas and Propagation, 1992,40(9): 1054-1060.
    [90] Rao S M, Sarkar T K. Implicit Solution of Time-Domain Integral Equations for Arbitrarily Shaped Dielectric Bodies [J]. Microwave and Optical Technology Letters, 1999, 21 (3): 201-205.
    
    [91] ——. A Time-Domain Surface Integral Technique for Mixed Electromagnetic and Circuit Simulation. in Proc [J]. IEEE Electrical Performance of Electronic Packaging, Monterey, CA, Oct. 2002: 41-44.
    [92] Gres N T, Shanker B, Ergin A A, et al. Fast Transient Analysis of Electromagnetic Scattering from Three Dimensional Dielectric Inhomogeneities Using a Volume Integral Equation [M], 2000.
    [93] Graglla R D. The Use of Parametric Elements in the Moment Method Solution of Static and Dynamic Volume Integral Equations [J]. IEEE Transaction on Antennas and Propagation, 1988, 36 (5): 636-646.
    [94] Rynne B P, Smith P D. Stability of Time Marching Algorithms for the Electric Field Integral Equation [J]. J. Electromagn. Waves Appl., 1990, 4: 1181-1205.
    [95] Rynne B P. Time Domain Scattering from Arbitray Surfaces Using the Electric Field Integral Equation [J]. J. of Electromagn. Waves and Appl, 1991, 5: 93-112.
    [96] Sadigh A, Arvas E. Treating the Instabilities in Marching-on-in-Time Method from a Different Perspective [J]. IEEE Trans. Antennas Propagat, 1993, 41(12):1695-1702.
    [97] Wang J, Lu M, Michielssen E. Volume Integral Equation Based Method for Transient Scattering from Nonlinear Penetrable Objects-TM Case [A]. In: IEEE Antennas and Propagation Society International Symposium (Cat.No.00CH37118) [C]: 2000. 729-32.
    [98] Jung B H, Sarkar T K. Analysis of Scattering from Arbitrarily Shaped 3-D Conducting/Dielectric Composite Objects Using A Combined Field Integral Equation [J]. J. of Electromagn. Waves and Appl. 2004,18(6): 729-743.
    [99] Rubin B J. General Solution for Propagation, Radiation and Scattering in Arbitrary 3D Inhomogeneous Structures [J]. IEEE Antennas and Propagation Magazine, 1992,34(1): 17-25.
    [100]Mautz J R.A Stable Integral Equation for Electromagnetic Scattering from Homogeneous Dielectric Bodies[J].IEEE Transactions on Antennas and Propagation,1989,37(8):1070-1071.
    [101]Aygun K,Fisher B C,Meng J,Michielssen E.A Fast Hybrid Field-Circuit Simulator for Transient Analysis of Microwave Circuits[J].IEEE Trans.Microwave Theory Tech.,2004,52(2):573-583.
    [102]Wang Y,Gope D,Jandhyala V.Generalized Kirchoff's current and voltage law formulation for coupled circuit-electromagnetic simulation with surface integral equations[J].IEEE Trans.Microwave Theory Tech.,2004,52(7):1673-1682.
    [103]Wang Y,Jandhyala V,Richard Shi C J.Coupled Electromagnetic Circuit Simulation of Arbitrarily Shaped Conducting Structures[J].in Proc.IEEE Electrical Performance of Electronic Packaging,Boston,MA,2001,10:233-236.
    [104]Wilton D R,Rao S M,Glisson A W,et al.Potential Integrals for Uniform and Linear Source Distributions on Polygonal and Polyhedral Domains[J].IEEE Transactions on Antennas and Propagation,1984,AP-32(3):276-281.
    [105]Sunder K S,Cookson R A.Integration Points for Triangles and Tetrahedrons Obtained from the Gaussian Quadrature Points for a Line[J].Comput.Struct.,1985,21(5):881-885.
    [106]Eibert T F,Hansen V.On the Calculation of Potential Integrals for Linear Source Distributions on Triangular Domains[J].IEEE Transactions on Antennas and Propagation,1995,43(12):1499-1502.
    [107]Doncker P D.A Potential Integral Equations Method for Electromagnetic Scattering by Penetrable Bodies[J].IEEE Transactions on Antennas and Propagation,2001,49(7):1037-1042.
    [108]Nevels R D,Miller J A,Miller R E.A Path Integral Time-Domain Method for Electromagnetic Scattering[J].IEEE Transactions on Antennas and Propagation,2000,48(4):565-573.
    [109]Dodson S J,Walker S P,Bluck M J.Implicitness and stability of time domain integral equation scattering analysis[J].Applied Computational Electromagnetics Society Journal,1998,13:291-301.
    [110]徐利明.分层介质中三维目标电磁散射的积分方程方法及其关键技术[D].博士学位论文.成都:电子科技大学,2005.
    [111]魏丹丹,徐晓文.任意形体金属目标电磁散射计算中奇异积分处理的新方法[J].北京理工大学学报,2002,22(6):739-742.
    [112]Graglia R D.Static and Dynamic Potential Integrals for Linearly Varying Source Distributions in Two- and Three-Dimensional Problems[J].IEEE Transaction on Antennas and Propagation,1987,AP-35(6):662-669.
    [113]Shanker B,Ergin A A,Ayg(u|¨)n K,et al.Analysis of transient electromagnetic scattering from closed surfaces using a combined field integral equation[J].IEEE Transactions on Antennas and Propagation,2000,48:1064-1074.
    [114]Hui K Y,Luk K M.A Miniature Dielectric Resonator Loaded Patch Antenna.IEEE Transactions on Antennas and Propagation,2005,53(6):2118-2122.
    [115]Bluck M J,Pocock M D,Walker S P.An Accurate Method for the Calculation of Singular Integrals Arising in Time-Domain Integral Equation Analysis of Electromagnetic Scattering[J].IEEE Transactions on Antennas and Propagation, 1997,45(12):1793-1798.
    [116]Leontovich M A.Investigations on Radiowave Propagation.Moscow,USSR:Printing House of USSR Academy Science,1948,pt.Ⅱ.
    [117]Cai W,Yu Y,Yuan X C.Singularity Treatment and High-Order RWG Basis Functions for Integral Equations of Electromagnetic Scattering[J].International Journal for Numerical Methods in Engineering,2002,53:31-47.
    [118]赵延文,徐建华,聂在平,et al.精确快速计算时域积分方程中的奇异性积分的新方法[J].电子与信息学报,2005,27(11):1821-1824.
    [119]Gtirel L,Erg(o|¨)l(O|¨).Singularity of the Magnetic-Field Integral Equation and Its Extraction[J].IEEE Antennas Wireless Propagation Letters,2005,4:229-232.
    [120]数学手册编写组.数学手册[M].北京:高等教育出版社,1979.
    [121]郭大钧主编.大学数学手册[M].济南:山东科学技术出版社,1985.
    [122]清华大学应用数学系《现代应用数学手册》编委会.现代应用数学手册计算方法分册[M].北京:北京出版社,1990.
    [123]米特拉.计算机技术在电磁学中的应用[M]:人民邮电出版社,1983.
    [124]Sarkar T K,Koh J.Generation of Wideband Electromagnetic Response through a Laguerre Expansion Using Early Time and Low Frequency Data[A].In:IEEE MTT-S Digest[C]:2002.1989-1992.
    [125]Sarkar T K,Koh J.Generation of a Wide-Band Electromagnetic Response through a Laguerre Expansion Using Early-Time and Low-Frequency Data[J].IEEE Transactions on Microwave Theory and Techniques,2002,50(5):1408-1416.
    [126]Chung Y-S,Sarkar T K,Llorento-Romano S,et al.Finite Element Time Domain Method Using Laguerre Polynomials[A].In:IEEE MTT-S Digest[C]:2003.981-984.
    [127]Jung B H,Chung Y-S,Sarkar T K.Time-Domain EFIE,MFIE,and CFIE Formulations Using Laguerre Polynomials as Temporal Basis Functions for the Analysis of Transient Scattering from Arbitrary Shaped Conducting Structures[J].Progress In Electromagnetics Research,2003,39:1-45.
    [128]Jung B H,Chung Y-S,Yuan M.Analysis of Transient Scattering from Conductors Using Laguerre Polynomials as Temporal Basis Functions[J].Applied Computational Electromagnetics Society Journal,2004,19(2):84-92.
    [129]Chung Y-S,Sarkar T K,Jung B H,et al.Solution of Time Domain Electric Field Integral Equation Using the Laguerre Polynomials[J].IEEE Transactions on Antennas and Propagation,2004,52(9):2319-2328.
    [130]Ji Z,Sarkar T K,Jung B H,et al.A Stable Solution of Time Domain Electric Field Integral Equation for Thin-Wire Antennas Using the Laguerre Polynomials [J].IEEE Transactions on Antennas and Propagation,2004,52(10):2641-2649.
    [131]Yang C Y,Jandhyala V.A Time-Domain Surface Integral Technique for Mixed Electromagnetic and Circuit Simulation[J].IEEE Transactions on Advanced Packaging.2005,28(4):745-753.
    [132]Yuan M,Sarkar T K,Jung B H,et al.Use of Discrete Laguerre Sequences to Extrapolate Wide-Band Response from Early-Time and Low-Frequency Data[J].IEEE Transactions on Microwave Theory and Techniques,2004,52(7): 1740-1750.
    [133]T.B.A Impedance Boundary Conditions for Imperfectly Conducting Surface.Appl.Sci.Res.,1960,8(B):418-436.
    [134]Maloney J G,Smith G S.The Use of Surface Impedance Concepts in The Finite-Difference Time-Domain Method[J].IEEE Trans.Antennas Propag.,1992,40(1):38-48.
    [135]Oh K S,Schutt-Aine J E,An Efficient Implementation of Surface Impedance Boundary Conditions for The Finite-Difference Time-Domain Method[J].IEEE Trans.Antennas Propag.,1995,43(1):660-666.
    [136]Paul C R.Analysis of Multiconductor Transmission Lines.NewYork:Wiley,1994.
    [137]Kunz K S,Luebbers R J.The Finite Difference Time Domain Method in Electromagnetics.Boca Raton,FL:CRC,1993.
    [138]Holland R.Implicit Three-Dimensional Finite Diferencing of Maxwell's Equations[J].IEEE Transactions on Nuclear Science.1984,NS-31,6(12):1322-1326.
    [139]Graglia R D.On the Numerical Integration of the Linear Shape Functions Times the 3D Green's Function or Its Gradient on A Plane Triangle[J].IEEE Transactions on Antennas and Propagation,1993,41(10):1448-1455.
    [140]刘锋,周东明.一种基于Duffy变换的电场奇异积分处理方法[C].2005全国微波毫米波会议论文集,2005.
    [141]尹家贤.时域有限差分法在天线计算中的理论和应用[D].博士学位论文.长沙:国防科学技术大学,2003.
    [142]王长清,祝西里.电磁场计算中的时域有限差分法[M].北京:北京大学出版社,1994.
    [143]Toland B,Lin J,Houshmand B,Itoh T.FDTD Analysis of An Active Antenna[J].IEEE Microwave and Guided Wave Letters.1993,3(11):423-425.
    [144]Devaney A J,Sherman G C.Plane-Wave Representations for Scalar Wave Fields [J].SIAM Review,1973,15(4):765-786.
    [145]Devaney A J,Wolf E.Multipole Expansions and Plane Wave Representations of the Electromagnetic Field[J].Journal of Mathematical Physics,1974,15(2):234-244.
    [146]Heyman E.Time-Dependent Plane-Wave Spectrum Representations for Radiation from Volume Source Distributions[J].Journal of Mathematical Physics,1996,37(2):658-681.
    [147]Marengo E A,Devaney A J.Time-Dependent Plane Wave and Multipole Expansions of the Electromagnetic Field[M].1998.
    [148]Marengo E A,Devaney A J.Time-Dependent Plane Wave and Multipole Expansions of the Electromagnetic Field[J].Journal of Mathematical Physics,1998,39(7):3643-3660.
    [149]Hansen T B,Yaghjian A D.Plane-Wave Theory of Time-Domain Fields Near-Field Scattering Applications[M].New York:IEEE Press,1999.
    [150]Ergin A A,Shanker B,Michielssen E.The Plane-Wave Time-Domain Algorithm for the Fast Analysis of Transient Wave Phenomena[J].IEEE Antennas and Propagation Magazine,1999,41(4):39-52.
    [151]Shanker B,Ergin A A,Ayg(u|¨)n K,et al.Analysis of Transient Electromagnetic Scattering Phenomena Using a Two-Level Plane Wave Time-Domain Algorithm [J].IEEE Transactions on Antennas and Propagation,2000,48(4):510-523.
    [152]Ayg(u|¨)n K,Shanker B,Ergin A A,et al.A Two-Level Plane Wave Time-Domain Algorithm for Fast Analysis of EMC/EMI Problems[J].IEEE Transactions on Antennas and Propagation,2002,44(1):152-154.
    [153]Shanker B,Ergin A A,Michielssen E.Plane-Wave-Time-Domain-Enhanced Marching-on-in-Time Scheme for Analyzing Scattering from Homogeneous Dielectric Structures[J].Journal of Optical Society of America A,2002,19(4):716-726.
    [154]Shanker B,Ergin A A,Michielssen E.The Multilevel Plane Wave Time Domain Algorithm for the Fast Analysis of Transient Scattering Phenomena[M]:IEEE,1999.
    [155]Shanker B,Ergin A A,Lu M Y,et al.Fast Analysis of Transient Electromagnetic Scattering Phenomena Using the Multilevel Plane Wave Time Domain Algorithm [J].IEEE Transactions on Antennas and Propagation,2003,51(3):628-641.
    [156]Lu M,Wang J,Ergin A A,et al.A Diagonal Translation Operator for the Fast Evaluation of Two-Dimensional Transient Wave Fields[A].In:IEEE[C]:1999.1338-1341.
    [157]Michielssen E,Ergin A A,Shanker B.Diagonal Translation Operators for Transient Wave Fields[M]:IEEE,1998.
    [158]Ergin A A,Shanker B,Michielssen E.Fast Evaluation of Three-Dimensional Transient Wave Fields Using Diagonal Translation Operators[J].Journal of Computational Physics,1998,146:157-180.
    [159]Lu M,Sarvas J,Michielssen E.A Simplified 3D Plane Wave Time Domain (PWTD) Algorithm[A].In:Proc.IEEE Antennas Propagat.Soc.International Symposium[C]:2001.188-191.
    [160]Lu M,Wang J,Ergin A A,et al.Fast Evaluation of Two-Dimensional Transient Wave Fields[J].Journal of Computational Physics,2000,158:161-185.
    [161]Lu M,Shanker B,Ergin A A,et al.Novel 2D Transient EFIE,MFIE,and CFIE Solvers Based on the Multilevel Plane Wave Time Domain Algorithm,2000:737-740.
    [162]Lu M,Wang J,Ergin A A,et al.A Diagonal Translating Operator for the Fast Evaluation of Two-Dimensional Transient Wave Fields[M].
    [163]Lu M,Yegin K,Michielssen E.Fast Time Domain Integral Equation Solvers for Analyzing Two-Dimensional Scattering Phenomena;Part Ⅰ Temporal Acceleration[J].Electromagnetics,2004,24(6):425-449.
    [164]Lu M,Michielssen E.Fast Time Domain Integral Equation Solvers for Analyzing Two-Dimensional Scattering Phenomena;Part Ⅱ Full PWTD Acceleration[J].Electromagnetics,2004,24(6):451-470.
    [165]Ergin A A,Shanker B,Ayg(u|¨)n K,et al.Computational Complexity and Implementation of Two-Level Plane Wave Time Domain Algorithm for Scalar Wave Equation[M].
    [166]Knab J J.Interpolation of Band-Limited Functions Using the Approximate Prolate Series[J].IEEE Transactions on Information Theory,1979,25:717-720.
    [167]Jung B H,Sarkar T K.Time-Domain Electric-Field Integral Equation with Central Finite Difference[J].Microwave and Optical Technology Letters,2001,31(6):429-435.
    [168]Bucci O M,Gennarelli C,Savarese C.Optimal Interpolation of Radiated Fields over a Sphere[J].IEEE Transactions on Antennas and Propagation,1991,39:1633-1643.
    [169]Fast Numerical Techniques for Electromagnetic Problems in Frequency Domain.
    [170]R.Coifman V R a S W.The Fast Multipole Method for the Wave Equation:A Pedestrian Prescription[J].IEEE Antennas Propagation Magazine,1993,35(3):7-12.
    [171]Darve E.The Fast Multipole Method:Numerical Implementation[J].Journal of Computational Physics,2000,160:195-240.
    [172]Nilsson M.Fast Numerical Techniques for Electromagnetic Problems in Frequency Domain[M].2003.
    [173]Li J-Y,Li L-W.Characterizing Scattering by 3-D Arbitrarily Shaped Homogeneous Dielectric Objects Using Fast Multipole Method[J].IEEE Antennas and Wireless Propagation Letters,2004,3:1-4.
    [174]Hariharan B,Alum S,Shanker B.A Scalable Parallel Fast Multipole Method for Analysis of Scattering from Perfect Electrically Conducting Surfaces,2002.
    [175]董健.边界积分方程及快速算法在分析复杂电磁问题中的研究与应用[D].博士学位论文.长沙:国防科学技术大学,2005.
    [176]Li J-Y,Oo Z-Z,Li L-W.Solution of Scattering from Homogeneous Dielectric Object Using Fast Multipole Method[A].In:The 3th International Conference on Microwave and Millimeter Wave Technology Proceedings[C]:2002.424-427.
    [177]Michielssen E,Chew W C,Jin J M,et al.Fast Time Domain Integral Equation Solvers for Large-Scale Electromagnetic Analysis[M].2005.
    [178]Shanker B,Ergin A A,Ayg(u|¨)n K,et al.Computation of Transient Scattering from Electrically Large Structures Using the Plane Wave Time Domain Algorithm[M]:IEEE,1998.
    [179]Liu N,Lu M,Shanker B.The Parallel Plane Wave Time Domain Algorithm-Accelerated Marching on in Time Solvers for Large-Scale Electromagnetic Scattering Problems[A].In:IEEE Antennas and Propagation Society Symposium(IEEE Cat.No.04CH37529)[C]:2004.4212-15.
    [180]Ergin A A,Shanker B,Michielssen E.Accuracy and Efficiency of PWTD Enhanced Exact Radiation Boundary Conditions in FDTD Simulations[A].In:IEEE[C]:2000.1354-1357.
    [181]Kobidze G,Shanker B,Michielssen E.Hybrid PO-PWTD Scheme for Analysis of Scattering from Electrically Large PEC Objects[A].In:IEEE[C]:2003.
    [182]Aygun K,Lu M,Shanker B,et al.Analysis of PCB Level EMI Phenomena Using an Adaptive Low_Frequency Plane Wave Time Domain Algorithm[A].In:IEEE [C]:2000.295-300.
    [183]Ergin A A.Plane-Wave Time-Domain Algorithms for Efficient Analysis of Three-Dimensional Transient Wave Phenomena[D].PH.D.Dissertation Univ.Illinois,2000.
    [184]Rao S M.Electromagnetic Scattering and Radiation of Arbitrarily-Shaped Surface by Triangle Patch Modeling[D].PH.D.Dissertation Univ.Mississippi,1980.
    [185]Eleftheriades G V,Mosig J R.On the Network Characterization of Planar Passive Circuits Using the Method of Moments[J].IEEE Transactions on Microwave Theory and Techniques,1996,44(3):438-445.
    [186]Abdulla M N,Steer M B.Extraction of Network Parameters in the Electromagnetic Analysis of Planar Structures Using the Method of Moments[J].IEEE Transactions on Microwave Theory and Techniques,2001,49(1):94-103.
    [187]周东明.时域积分方程快速算法及其应用研究[D].博士学位论文.长沙:国防科学技术大学,2006.
    [188]雷振亚.射频/微波电路导论[M].西安:西安电子科技大学出版社,2005.
    [189]Graglia R D.On the Numerical Integration of the Linear Shape Functions Times the 3D Green's Function or Its Gradient on A Plane Triangle[J].IEEE Transactions on Antennas and Propagation,1993,41(10):1448-1455.
    [190]Duffy M G.Quadrature over A Pyramid or Cube of Integrands with A Singularity at A Vertex[J].SIAM J Numer Anal,1982,19(6):1260-1262.
    [191]Liang J X,Chiau C C,Chen X D,Parini C G.Study of a Printed Circular Disc Monopole Antenna for UWB Systems.IEEE Transactions on Antennas and Propagation,2005,3(11):3500-3504.
    [192]Pozo R and Karin A R.SparseLib++ v.1.5,Sparse Matrix Class Library Reference Guide[M].National Institute of Standards and Technology.April 1996.
    [193]http://www.swarthmore.edu/NatSci/echeeve1/Ref/mna/MNA2.html
    [194]蔡明娟.时域积分方程在分析介质问题中的算法研究与应用[D].博士学位论文.长沙:国防科学技术大学,2006.
    [195]Liu F,Zhou D M.A New Singularity Extraction Technique for TDEFIE[J].Jour of Electronics,2007,24(5):686-689.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700