旋转结构体电磁问题的高效分析与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着计算机技术和电磁学的飞速发展,如何精确快速计算目标的电磁特性成为在目标识别、隐身与反隐身、微波成像等领域研究的重点。对于某些特殊结构,例如旋转体结构(BOR),由于几何外形的特性,对场进行傅立叶展开成不同模式的叠加,不同的模式由于模式正交特性可以独立讨论。传统的三维电磁问题可以退化为二维半问题,大大降低计算规模。本文研究的是基于旋转体结构的高效计算方法,主要分为五个部分讨论。
     第一部分回顾了矩量法(MoM)计算旋转体结构目标的散射场,采用了三角基函数、脉冲基函数离散目标表面的等效电流和磁流。分别利用电场积分方程(EFIE)、磁场积分方程(MFIE)、混合积分方程(CFIE)计算理想导电(PEC)旋转体的雷达散射截面(RCS)。采用Poggio-Miller-Chang-Harrington-W(uPMCHW)方程分析均匀介质旋转体的RCS。最后,在理想导电体区域采用EFIE,在均匀介质区域采用PMCHW方程,分析了介质金属复合结构的电磁散射问题。
     第二部分研究了快速非均匀平面波算法(FIPWA)求解电大尺寸的旋转体结构散射问题。采用Weyl恒等式展开格林函数,近场区仍然使用传统矩量法计算,当场源点满足远场关系,采用FIPWA技术。同时利用贝塞尔函数的解析积分表达,导出了旋转体结构聚合因子和配置因子的解析表达。采用FIPWA对旋转体结构进行电磁计算,大大降低了计算复杂度和内存需求复杂度,因此该方法特别适合电大尺寸的旋转体问题求解。
     第三部分采用有限元方法(FEM)分析了复杂介质填充旋转腔体问题,该腔体内部介质在周向均匀,在截面上非均匀分布。本文采用三角形网格离散旋转体结构的截面,使用标量点元基函数和矢量边元基函数分别表示不同模式下周向和切向场分量。分析了腔体内部的不同谐振模式的谐振频率、场分布等问题。利用不同的基函数组合,抑制奇异模出现。在此基础上,又采用了高阶有限元分析了旋转结构腔体问题,提高了计算的精度。
     第四部分结合有限元方法和边界元方法处理任意截面非均匀介质分布的旋转结构目标的散射问题。将计算区域分为内部区域和外部区域,内部区域的场采用有限元方法计算,外部区域采用积分方程计算表面等效电流和磁流的关系。结合有限元方法和边界元方法计算,该算法既可以方便处理非均匀介质分布,保持了算法的灵活性;同时无需添加吸收边界条件,利用格林函数直接满足辐射条件,又保证了结果的精确性。该方法也可用于介质金属复合结构的电磁散射问题。第五部分采用多区迭代方法分析群旋转体目标。将每一个旋转体目标单独划分为一个子域求解,逐渐考虑子域之间的耦合,直到最后整体解收敛,子域之间的耦合和子域内部耦合都采用多层快速多极子求解。同时在这个基础上,采用多区迭代方法分析了任意三维结构的多体目标和电大尺寸目标,既保证了求解的精度,同时也很好的节约了计算资源。
     本文采用积分方程方法,有限元方法,有限元-边界元混合方法分析旋转体结构目标。通过快速算法加速计算,节约计算资源。本文的研究工作表明,快速高效的算法能够很好的提高旋转体结构目标问题的求解效率,在实际电子工程中有极大优势。
With the development of computer science and electromagnetics, accurate and fast computational electromagnetics is an important topic in many areas, such as recognizing the target, stealth and anti-stealth technology, micro-wave imaging. The field of some spectial geometry like body of revolution (BOR) can be expressed in a Fourier series because of the axial symmetry of the geometry. The computational complesity is reduced because of the orthogonality of each mode. The 3-D domain is reduced to 2.5-D which will depress the scale of electromagnetic computation. The thesis mainly concentrates on the fast and efficient algorithm based on body of revolution. And it contains five parts as follows.
     The method of moments (MoM) for scattering problem of body of revolution is reviewed in the first part. Triangular basis and pluse basis are used to expand the equivalent electric and magnetic currents. Electric field integral equation (EFIE), magnetic field integral equation (MFIE) and combined field integral equation (CFIE) are used for solving perfect electric conductor (PEC) BOR's radar cross section (RCS). Poggio-Miller-Chang-Harrington-Wu(PMCHW)equation is implemented to analyze homogeneous BOR's problems. Composite BOR is then simulated with EFIE in PEC region and PMCHW equation in dielectic region.
     Fast inhomogeneous plane wave algorithm (FIPWA) is introduced for BOR’s scattering prolem in the second part. The Green's function is expanded in inhomogeneous plane waves by using Weyl identity. Traditional MoM is used for near field part. FIPWA is used for far field interaction. Using the integral expression of Bessel function, the aggregation and disaggregation factors can be expressed in analytical form. The memory requirment and CPU time are saved by using FIPWA for scattering problems of large scale BOR.
     A finite element method (FEM) with hybrid nodal and edge basis functions for solving nonaxisymmetric modes in axisymmetric resonators filled with inhomogeneous media is presented. The material is inhomogeneous on the cross section of the cavity. Non-zero eigenvalues can be reduced by choosing proper basis functions. Higher-order basis functions are used to improve the accuracy with the same number of unknowns.
     FEM and boundary integration (BI) method are combined for solving the scattering problem of imhomogeneous BOR in the forth part. FEM is used for solving the inhomogeneous interior region with nodal and edge basis functions. BI is used for solving the exterior region part. This hybrid algorithm takes the advantages of FEM and BI. It can handle inhomogeneous problem efficiently and guarantee the accuracy at the same time.
     Muiti-region iteration (MRI) is used for solving multi-BOR problems in the last part. Each BOR is set as one region and solved independently. The coupling is considered during the iteration. Large scale 3-D PEC objects or multi-objects with arbitrary shape are also simulated by proposed MRI. The memory requirement is saved and the accuracy is guaranteed at the same time.
     Integral equation (IE), FEM, higher-order FEM and FEM-BI are studied for BOR problem in the thesis. The efficienncy and accuracy are improved by using these different methods. The studies of this thesis demonstrate that fast and efficient algorithm for BOR can be used to improve the efficiency and accuracy and will be extended in future research and engineering application.
引文
[1] R.F.Harrington. Field computation by moment methods. New York: Macmillan,1968
    [2] R.F.Harrington. Time-Harmonic Electromagnetic Fields. New York: McGraw-Hill, 1961
    [3]李世智,《电磁散射与辐射问题的矩量法》,电子工业出版社,1985.
    [4]盛新庆.计算电磁学要论.科学出版社,2004
    [5] S.M.Rao, D.R.Wilton, A.W..Glisson,“Electromagnetic Scattering by Surfaces of Arbitrary Shape,”IEEE Trans. on Antennas Propagat., vol.AP-30, No.3, pp.409-419, May 1982
    [6] A. Chatterjee, J. M. Jin, and J. L. Volakis. Edge-based finite elements and vector ABCs applied to 3D scattering, IEEE Trans. Antennas Propagat. , Feb. 1993, vol. AP-41, pp. 221-226
    [7] J. M. Jin. The finite element method in electromagnetics. Wiley, 2002
    [8] J. M. Jin, Douglas J. Riley. Finite element analysis of antennas and arrays. Wiley-IEEE, 2009
    [9] John Leonidas Volakis, Arindam Chatterjee, Leo C. KempelFinite element method for electromagnetics: antennas, microwave circuits, and scattering applications. Wiley-IEEE, 1998
    [10] V.Rokhlin. Rapid solution of integral equations of scattering theory in two dimensions. Journal of Computational physics, 1990, 86:414-439
    [11] J.M.Song and W.C.Chew. Fast multipole method solution using parametric geometry. Microwave and Optical Technology Letters, 1994, 7(16):760-765
    [12] J.M.Song and W.C.Chew. Fast multipole method solution of three dimensional integral equation. IEEE Antennas Propagation Symposium, 1995, 1528-1531
    [13] W.C.Chew, J.M.Jin, E.Michielssen, J.Song (Eds). Fast and efficient algorithms in computational electromagnetics. Artech House, Norwood, MA,2001.
    [14] C.C.Lu, W.C.Chew. Fast algorithm for solving hybrid integral equations. IEE PROCEEDINGS-H, 1993, 140(5):455-460
    [15] C.C.Lu and W.C.Chew. Electromagnetic scattering from material coated PEC objects: a hybrid volume and surface integral approach. IEEE Antennas Propagation Symposium, 1999
    [16] Cai-Cheng Lu and Weng Cho Chew. Fast far-field approximation for calculating the RCS of large objects. Microwave and Optical Technology Letters, 1995, 8(5):238-241
    [17] W.C.Chew, Y.M.Wang, and L.Gurel. Recursive algorithm for wave-scattering solutions using windowed addition theorem. Journal of electromagnetic waves and applications, 1992,6(11):1537-1560
    [18] J.M.Song, C.C.Lu., W.C.Chew. Multilevel fast multipole algorithm for electromagnetic scattering by large complex bojects. IEEE Transaction on Antennas Propagation, 1997, 45(10):1488-1493
    [19] J.M.Song, C.C.Lu, W.C.Chew and S.W.Lee. Introduction to Fast Illinois Solver Code (FISC). IEEE Antennas Propagation Symposium, 1997, 48-51
    [20] J.M.Song, C.C.lu, W.C.Chew, and S.W.Lee. Fast Illinois Solver Code (FISC), IEEE Transactions on Antennas and Propagation, 1998, 40(3):27-34
    [21] J.M.Song and W.C.Chew. Multilevel fast-multipole algorithm for solving combined field integral equations of electromagnetic scattering. Microwave and Optical Tech. Lett., 1995, 10(10):14-19
    [22] X.Q.Sheng, J.M.Jin, J.M.Song, etc. On the formulation of hybrid finite-element and boundary-integral methods for 3D scattering using multi-level fast multipole algorithm. IEEE Antennas Propagations Symposium, 1998, 236-239
    [23] Caicheng Lu and Wengcho Chew. A multilevel algorithm for solving a boundary integral equation of wave scattering. Microwave and Optical Technology Letters, 1994, 7(10):466-470
    [24] S. Koc, J.M.Song, W.C.Chew. Error analysis for the multilevel fast multipole algorithm. IEEE Antennas propagation Symposium, 1998, 1758-1761
    [25] J.M.Song and W.C.Chew. Requirements scaling properties in large scale computing. IEEE Antennas Propagation Symposium, 1998, 1518-1521
    [26] K. C. Donepudi, J. M. Song, Jian-Ming Jin, et al. A Noval Implementation of Multilevel fast multipole algorithm for Higher Order Galerkins Method. IEEE transaction on Antennas Propagation, VOL.48. NO.8, AUGUST 2000, pp.1192-1197
    [27]邹光先,集群环境下基于MPI的并行多层快速多极子方法研究,电子科技大学硕士论文,2004
    [28]林云,并行多层快速多极子算法中若干关键技术的研究,电子科技大学硕士论文,2006
    [29]赵华鹏,基于曲三角贴片离散的多层快速多极子方法并行化研究,电子科技大学硕士论文,2007
    [30]陈国良,《并行计算》,高等教育出版社,1999
    [31] Application of Massive Parallel Architecture to Computational Electromagnetics Xianneng Shen Doctoral Dissertation Syracuse University.
    [32] Lin Yun, ZouGuangXian, Niezaiping Hu Jun, Parallel MLFMA Computation base on MPI The 3rd International Conference on Computational Electromagnetics and Its Applications, ICCEA’04, Beijing, 2004,November1-4
    [33]阮颖铮等.雷达截面与隐身技术.国防工业出版社,1998
    [34] E. F. KNOTT. A Progressing of High-Frequency RCS Prediction Techniques. Proc. IEEE, 1985, 73(2):252-264
    [35] Hasnain H. Syed, John L. Volakis. PTD Analysis of Impedance Structures. IEEE Trans. Antennas Propaga., 1996 ,44(1):983-988
    [36] R.G. Koujoumijan , P. H. Pathak. A Uniform Geometrical Theory of Diffraction for An Edge in a Perfectly Conducting Surface. Proc. IEEE, 1974, 62(11):1448-1461
    [37] A. Michaeli. Equivalent Edge Currents for Arbitrary Aspects of Observation. IEEE Trans. Antennas Propagat., 1984, 32(3):252-258
    [38] A. Michaeli. Elimination of infinities in equivalent edge currents, Part I: Fringe current components. IEEE Trans. Antennas Propagat., 1986, 34(7):912–918
    [39] E. F. Knott. The relationship between Mitzner’s ILDC and Michaeli’s equivalent currents. IEEE Trans. Antennas Propagat., 1985, 33(1):112-114
    [40] A. D. Yaghjian, R. A. Shore, M. B. Woodworth. Shadow boundary incremental length diffraction coefficients for perfectly conducting smooth, convex surfaces. Radio Sci., 1996, 31(6):1681-1695
    [41] R. A. Shore, A. D. Yaghjian. Shadow boundary incremental length diffraction coefficients applied to scattering from 3-D bodies. IEEE Trans. Antennas Propagat., 2001, 40(2):200-210
    [42] E. Sun, W.V.T. Rusch. Time Domain Physical Optics. IEEE Trans. Antennas Propagat., 1994, 42(1):9-15
    [43] P. M. Johansen. Time-domain version of the physical theory of diffraction. IEEE Trans. Antennas Propagat., 1999, 47(2):261-270
    [44]杨凌霞.时域等效电磁流方法及其在电磁散射中的运用.西安电子科技大学硕士论文,2003
    [45]庄钊文等.军用目标雷达散射截面预估与测量.科学出版社,2007
    [46]王超.NURBS曲面的RCS算法研究.西北工业大学硕士学位论文,2004.
    [47] A. Michaeli. Elimination of infinities in equivalent edge currents, Part II: Fringe current components. IEEE Trans. Antennas Propagat., 1986, 34(8):1034-1037
    [48]吴振森等.PTD和PTDEEC算式的奇异点处理.电波科学学报,1997,12(4):369-374
    [49] F. Obelleiro-Basteiro, J. L. Rodriguez, R. J. Burkholder. An iterative physical optics approach for analyzing the electromagnetic scattering by large open-ended cavities. IEEE Trans. Antennas Propagat., 1995, 43(4):356–362
    [50] R. J. Burkholde, Tomas Lundin. Forward-Backward Iterative Physical Optics Algorithm for Computing the RCS of Open-Ended Cavities. IEEE Trans. Antennas Propagat., 2005, 53(2):793-799
    [51]李明之,王长清,徐承和.迭代物理光学方法(IPO)求解高频部件相互耦合问题.电波科学学报,1997,12(4):176-180
    [52]张强,曾伟.基于曲面口径积分/几何光学的天线罩混合分析.电波科学学报,2003,18(4):419-422
    [53]韦中华.物理光学法分析天线罩瞄准误差.电子科技大学硕士学位论文,2006
    [54] U. Jakobus, F. M. Landstorfer. Improved PO-MM hybrid formulation for scattering from three-dimensional perfectly conducting bodies of arbitrary shape. IEEE Trans. Antennas Propagat., 1995, 43(2):162-169
    [55] A. Tzoulis, T. F. Eibert. A hybrid FEBI-MLFMM-UTD method for numerical solutions of electromagnetic problems including arbitrarily shaped and electrically large objects. IEEE Trans. Antennas Propag., 2005, 53(10):3358-3366
    [56] Frank Weinmann. Ray Tracing With PO/PTD for RCS Modeling of Large Complex Objects. IEEE Trans. Antennas Propaga., 2006, 54(6):1797-1806
    [57] M.G.Andreasen. Scattering from bodies of revolution. IEEE Trans. on AP,1965,13:303-310
    [58] J.R.Mautz, R.F.Harrington. Radiation and scattering from bodies of revolution. Appl.Sci. Res.,1969,20(1):405-435
    [59] J.Mautz, R.Harrington. Electromagnetic Scattering from a Homogeneous Body of Revolution. Technical rept. NOV 1977
    [60] J.Mautz, R.Harrington. H-field, E-field, and combined-field solutions for conducting bodies of revolution. Archiv fuer Elektronik und Uebertragungstechnik, 1978, 32,157-164.
    [61] J.Mautz, R.Harrington. A combined-source solution for radiation and scattering from a perfectly conducting body. IEEE Trans. on AP,1979,27(4):445-454
    [62] J.Mautz, R.Harrington. Electromagnetic scattering from a homogeneous material body of revolution. Electronic and communications,1979,33:71-80
    [63] R.F.Harrington. Boundary integral formulations for homogeneous material bodies. J. Electromagn. Waves Applicat.,1989,3:1-15
    [64] J.R.Mautz, R.F.Harrington. Electromagnetic coupling to a conducting body of revolution with a homogeneous material region. Electromagnetics,1982,2: 257-308
    [65] P.Uslenghi. Computation of surface currents on bodies of revolution. Alta Frequenza,1970,39:709-720
    [66] L.N.Medgyesi-Mitschang, J.Mullen. Radiation and scattering from asymmetrically excited bodies of revolution. IEEE Trans. on AP,1976,24:90-93
    [67] D.Davidson, D.McNamara. Predicting radiation patterns from aperture antennas on structures using the method of moments body of revolution technique. IEEE Symposium on Antennas and Propagation,1986
    [68] J.F.Hunka, K.K.Mei. Electromagnetic scattering by two bodies of revolution. Electromagnetics,1981,1:329-347
    [69] T.K.Wu, L.L.Tsai. Scattering from arbitrarily-shaped lossy dielectric bodies of revolution. Radio Sci.,1977,12:709-718
    [70] A.W.Glisson, D.R.Wilton. Simple and efficient numerical methods for problems of electromagnetic radiation and scattering from surfaces. IEEE Trans. on AP,1980,28:593-603
    [71] L.N.Medgyesi-Mitschg, J.M.Putnam. Electromagnetic scattering from axially inhomogeneous bodies of revolution. IEEE Trans. on Apropag,1984,32:797-806
    [72] P.L.Huddleston, L.N.Medgyesi-Mitschg, J.M.Putnam. Combined field integral equation formulation for scattering by dielectrically coated conducting bodies. IEEE Trans. on AP,1986,34:510-520
    [73] E.Y.Sun, W.V.T.Rusch. EFIE time-marching scattering from bodies of revolution and its applications. IEEE Trans. on AP,1994,42:412–417
    [74] A.A.Kishk, Y.M.M.Antar, L.Shafai, L.E.Allan. Integral equation solution of scattering from partially coated conduction bodies of revolution. Electromagnetics,1987,7:51-60
    [75] A.A.Kishk, G.E.Bridges, A.Sebak, L.Shafai. Integral equation solution of scattering from partially coated conduction bodies of revolution. IEEE Trans. Magnet.,1991,27:4283-4286
    [76] S.D.Gedney, R.Mittra. The use of the FFT for the efficient solution of the problem of electromagnetic scattering by a body of revolution. IEEE Trans. on AP,1990,38:313-322
    [77] A.K.Abdelmageed. Efficient evaluation of modal Greens functions arising in Emscattering by bodies of revolution. Electromagn,2000,27:337-356
    [78] A.A.K.Mohsen, A.K.Abdelmageed. A fast algorithm for treating EM scattering by bodies of revolution, Int. J. Elect. Commun.,2001,3:164-170
    [79] W.M.Yu, D.G.Fang, T.J.Cui. Closed form modal Green’s functions for accelerated computation of bodies of revolution. IEEE Trans. on AP,2008,56:3452-3461
    [80] Cao,X.-Y., J. Gao. The singularity problem at the wire/surface junction region for antenna and arrays with bodies of revolution. Progress In Electromagnetics Research B,2008,10:117-130
    [81] Qiu,Z., C.M.Butler. Analysis of a wire in the presence of an open body of revolution. Progress In Electromagnetics Research, PIER ,1997,15:1-26
    [82] Abdelmageed.A.K. Efficient evaluation of modal Green's functions arising in EM scattering by bodies of revolution. Progress In Electromagnetics Research, PIER,2000,27:337-356
    [83] Lee.J.F, G.Wilkins, R.Mittra. Finite-element analysis of axisymmetric cavity resonator using a hybrid edge element technique. IEEE Trans. Microwave Theory Tech.,1993,41:1981-1987
    [84] Wong.M.F, M.Park, V.Frouad Hanna. Axisymmetric edge-based finite element formulation for bodies of revolution: Application to dielectric resonators. IEEE Microwave Symp.MTT-S, Orlando, FL, 1995
    [85] Richalot.E., M.F.Wong, V.Frouad Hanna, H.Naudrand. Analysis of radiating axisymmetric structures using a 2-D finite-element and spherical mode expansion. Microwave Opt. Technol. Lett.,1999,20:8-13
    [86] Hoppe, D.J., L.W.Epp, J.F.Lee. A hybrid symmetric FEM/MOM formulation applied to scattering by inhomogeneous bodies of revolution. IEEE Trans. on AP,1994,42:798-805
    [87] Moneum, M.A.A., Z.Shen, J.L.Volakis, O.Graham. Hybrid PO-MoM analysis of large axi-symmetric radomes. IEEE Trans.on AP,2001,49:1657-1666
    [88] Greenwood.A.D., J.M.Jin. A novel effcient algorithm for scattering from a complex BOR using mixed finite elements and cylindrical PML. IEEE Trans. on AP,1999,47:620-629
    [89] Greenwood.A.D., J.M.Jin. Finite-element analysis of complex axisymmetric radiating structures. IEEE Trans. on AP,1999,47:1260-1266
    [90] Lebaric.J.E., D.Kajfez. Analysis of dielectric resonator cavities using the finite integration technique. IEEE Trans.Microwave Theory Tech.,1989,37:1740-1748
    [91] S.Govind. Numerical computation of electromagnetic scattering by inhomogeneous penetrable bodies. PhD thesis, Univ. Mississippi,1978
    [92] A.A.Kishk, L.Shafai. On the accuracy limits of different integral equation formulations for numerical solution of dielectric bodies of revolution. Canadian Journal of Physics,1985,63:1532-1539
    [93] A.A.Kishk, L.Shafai. Improvement of the numerical solution of dielectric bodies with high permittivity. IEEE Trans. on AP,1989,37:1486-1490
    [94]马广德.介质涂复旋转体雷达散射截面的数值计算方案.南京理工大学学报, 1993,70: 77-82
    [95]马凤国,刘其中等.流基混合法分析表面波散射.电波科学学报, 1999,14(2):186-190
    [96] L.Medgeysi-Mitschang, C.Eftimiu. Scattering from axisymmetric obstacles embedded in axisymmetric dielectrics: The method of moments solution. Applied Physics,1979,19:275-284
    [97] L.Medgeysi-Mitschang, J.M.Putnam. Elcetromagnetic scattering from axially inhomogeneous bodies of revolution. IEEE Trans. on AP,1984,32:797-806
    [98] A.A.Kishk, L.Shafai. Different formulations for numerical solution of single or multibodies of revolution with mixed boundary conditions. IEEE Trans. on AP,1986,34:666-673
    [99] A.A.Kishk, L.Shafai. Radiation characteristics of cylindrical dielectric resonator antennas with new applications. IEEE Antennas and Propagtion Society Newsletter,1989:7-16
    [100] J.M.Putnam. Combined-fied formulation for conducting bodies with thin coationgs. Applied Computational Electromagnetics Society Journal,1989,4:15-26
    [101] J.M.Putnam, L.N.Medgyesi-Mitschang. Combined field interal equation formulation for inhomugeneous two-and three-dimensional bodies: The junction problem. IEEE Trans. on AP,1991,39:667-672
    [102] A.W.Glisson, C.M.Butler. Analysis of a wire antenna in the presence of a body of revolution. IEEE Trans. on AP,1980,28:604-609
    [103] J.F.Shaeffer, L.N.Medgyesi-Mitschang. Radiation from wire antennas attached to bodies of revolution: The junction problem. IEEE Trans. on AP,1981,29:479-487
    [104] J.F.Shaeffer. EM scattering from bodies of revolution with attached wires. IEEE Trans. on AP,1982,30:426-431
    [105] R.Perez-Leal, M.F.Catedra. Input impedance of wire antennas attached on-axis to conducting bodies of revolution. IEEE Trans. on AP,1988,36:1236-1243
    [106] D.C.Jenn. Application of integral equation theory to reflector antenna analysis. PhD thesis, University of Southern California,1987
    [107] M.F.Catedra. Analysis of bodies of revolution composed of conductors and dielectrics using only electric equivalent currents: Application to small horns with dielectric core. IEEE Trans. on AP,1988,36:1311-1313
    [108] T.Durham, C.G.Christodoulou. Composite body-of-revolution and arbitrary surface analysis using the method of moments. IEEE Antennas Propagat. Soc. AP-S Int. Symp., 1991,1488-1491
    [109] T.Durham, C.G.Christodoulou. Electromagnetic radiation from structures consisting of combined body of revolution and arbitrary surfaces. IEEE Trans. on AP,1992,40:1061-1067
    [110] T.Durham, C.G.Christodoulou. A method for treating junctions between bodies of revolution and arbitrary surfaces. IEEE Antennas Propagat. Soc. AP-S Int. Symp., 1993,342-345
    [111] T.Durham, C.G.Christodoulou. A method for treating junctions between bodies of revolution and arbitrary surfaces. IEEE Trans. on AP,1994,42: 213-219
    [112] T.Durham, C.G.Christodoulou. Integral equation analysis of dielectric and conducting bodies of revolution in the presence of arbitrary surfaces. IEEE Trans. on AP,1995,43(7):674-680
    [113] Karr.B.A., Durham,T, et.al. Integral equation analysis of dielectric and conducting bodies of revolution in the presence of arbitrary surfaces. IEEE Trans. on AP,2004,52(7):1913-1916
    [114] D.C.Jenn. An E-field integral equation solution for the radiation from reflector antennas with struts. IEEE Trans. on AP,1989,37:683–689
    [115] E. H. Newman and D. M. Pozar, Electromagnetic modeling of composite wire and surface geometries. IEEE Trans. on AP, 1978,26:784-789
    [116] B.Hu, W.C.Chew. E.Michielssen, J.Zhao. Fast inhomogeneous plane wave algorithm for the fast analysis of two-dimensional scattering problem. Radio Sci.,1999,34:759-772
    [117] B.Hu, W.C.Chew, S. Velamparambil. Fast inhomogeneous plane wave algorithm for the analysis of electromagnetic scattering. Radio Sci.,2001,36:1327-1340
    [118] W.C Chew. Waves and Fields in Inhomogeneous Media. New York 1990
    [119] J.D.Jackson. Classical Electrodynamics, 2nd Edition. New York 1975
    [120] Wavenology EM User’s Manual. Wave Computation Technologies, Inc., 2009
    [121]胡俊,复杂目标矢量电磁散射的高效算法—快速多极子算法及其应用,博士论文,2000
    [122]王浩刚,电大尺寸含腔目标矢量电磁散射一体化精确建模与高效算法研究,博士论文,2001
    [123] S.V.Velamparambil, W.C.Chew, and J.M.Song, 10 million unknowns is it that big? IEEE Antennas and Propagation Magazine, Vol. 45, No. 2, April 2003
    [124] Xi Rui, Jun Hu, Qinghuo Liu. Fast Inhomogeneous Plane Wave Algorithm for Homogeneous Dielectric Body of Revolution, Commun. Comput. Phys., 2010, 8(4), 917-932
    [125] Xi Rui, Jun Hu, Qinghuo Liu. Fast Inhomogeneous Plane Wave Algorithm for Scattering from PEC Body of Revolution, Microwave Opt. Technol. Lett., 2010, 52(8), 1915-1922
    [126] Xi Rui, Jun Hu, Qinghuo Liu,Scattering from PEC Body of Revolution with Fast Multipole Method, IEEE Antennas Propagat. Soc. AP-S Int. Symp., Charleson, USA, June 1-5, 2009
    [127] Xi Rui, Jun Hu, Qinghuo Liu,Scattering from a Composite Body of Revolution with Fast Inhomogeneous Plane Wave Algorithm. IEEE Antennas Propagat. Soc. AP-S Int. Symp., Toronto, Canada, July 11-17, 2010
    [128] Xi Rui, Jun Hu, Qinghuo Liu,Hybrid Finite Element Method and Boundary Integration Method for an Inhomogeneous Body of Revolution, IEEE Antennas Propagat. Soc. AP-S Int. Symp., Toronto, Canada, July 11-17, 2010
    [129] A. Chatterjee, J. M. Jin, and J. L. Volakis. Edge-based finite elements and vector ABCs applied to 3D scattering, IEEE Trans. Antennas Propagat. , 1993, 41, 221-226
    [130] J. Liu, J. M. Jin. A special higher order finite-elelment method for scattering by deep cavities. IEEE Trans. Antennas Propagat. , 2000, 48, (5): 694-703
    [131] Peterson.A.F., S.L.Ray, R.Mittra. Computational Methods for Electromagnetics, IEEE Press, 1998
    [132] Anderson.E., Z.Bai, C.Bischof, S.Blackford, J.Demmel, J.Dongarra, J.Du Croz, A.Greenbaum, S.Hammarling, A.McKenney, D.Sorensen. LAPACK User's Guide, 3rd Edition, SIAM, Philadelphia,1999
    [133] Jian Liu, J. M. Jin. A novel hybridization of higher order finite element and boundary integral methods for electromagnetic scattering and radiation problems. IEEE Trans. Antennas Propagat. ,1993, 49(12),1794-1806
    [134] L. S. Andersen, J. L. Volakis. Development and application of a novel class of hierarchical tangential vector finite elements for electromagnetics. IEEE Trans. Antennas Propagat. , 1999, 47(1):112-120
    [135] L. S. Andersen, J. L. Volakis. Accurate and efficient simulation of antennas using hierarchical mixed-order tangential vector finite elements for tetrahedral. IEEE Trans. Antennas Propagat. , 1999,47(8):1240-1243
    [136] R. D. Graglia, D. R. Wilton, A. F. Peterson, I.–L. Gheorma, Higher order interpolatory vector bases on prism elements, IEEE Trans. Antennas Propagt. , 1998, 46(3): 442-450
    [137] Savage.J.S., A.F.Peterson. Higher order vector finite elements for tetrahedral cells. IEEE Trans. Microwave Theory Tech.,1996,44:874-879
    [138] Xi Rui, Jun Hu, Qinghuo Liu,Fast Inhomogeneous Higher order finite element method for inhomogeneous axisymmetric resonators. Prog. Electromagn. Res. B, 2010, 21, 189-201.
    [139] J. M. Jin, J. Liu, Z. Lou, C. S. T. Liang. A fully high-order finite-element simulation of scattering by deep cavities. IEEE Trans. Antennas Propagat. , 2003,51(9): 2420-2429
    [140] E. Jorgensen, J. L. Volakis, P. Meincke, and O. Breinbjerg. Higher order hierarchical Legendre basis functions for electromagnetic modeling. IEEE Trans. Antennas Propagat. , Nov. 2004,52(11):2985-2995
    [141] Xi Rui, Jun Hu, Zaiping Nie. Solving Scattering from Multiple Conducting Objects by Hybrid MLFMA with Generalized Forward-Backward Method. Electromagnetics, 2008, 28(8): 572-581
    [142] Xi Rui, Jun Hu, Zaiping Nie. EM scattering analysis of 3D multipole conductor by multi-region iterative method. Systems Engineering and Electronics, 2008, 30(10): 62-64

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700