利用AFLP技术对谷子抗锈基因进行分子标记
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
谷子锈病是对谷子产量有严重影响的主要病害之一,培育和利用谷子抗锈品种是当前控制其危害的一种最为经济有效的措施。寻找与谷子抗锈基因连锁的分子标记,构建遗传连锁图,对于抗谷子抗锈病基因的分离和利用具有重要意义。
     本研究对谷子高抗锈病品种十里香和高感锈病品种豫谷1号及其杂交后代F2代分离群体进行AFLP分子标记分析。取得以下主要结果:
     1.采用改良的CTAB法获得高质量的谷子基因组DNA,并用限制性内切酶MseⅠ和EcoRⅠ双酶切谷子基因组DNA。应用AFLP分子标记技术对谷子F2代分离群体进行分析。随机选择270对AFLP引物组合对抗锈亲本,感锈亲本以及F2代分离群体的抗锈基因池和感锈基因池进行分析,发现有92对引物组合能揭示出多态性。
     2.对筛选出的92对引物组合多次重复性验证F2代单株,检测结果显示引物组合E-AAC/M-ATA,E-AAC/M-CGT和E-AC/M-CC能够在两亲本和F2代分离群体间扩增出稳定的多态性条带。此3对引物组合均能在父本十里香和抗锈基因池中扩增出目的条带,条带长度分别为188bp,212bp和176bp,而母本和感锈基因池中没有相应条带。经MapMaker 3.0软件分析,AFLP分子标记E-AAC/M-ATA,E-AAC/M-CGT和E-AC/M-CC与抗锈病基因Rusi1连锁,遗传距离分别为9.2 cM,9.8 cM和12.4 cM。应用Mapdraw软件构建了这3个AFLP分子标记和谷子抗锈病基因Rusi1的遗传连锁图谱。
     3.优化了AFLP分子标记技术在谷子抗锈病基因研究中的反应体系。根据相关文献报道的AFLP分子标记技术在其它作物中的应用情况,结合谷子基因组DNA的的特点,对影响最终检测结果的相关因素进行了详尽研究,对AFLP分子标记技术进行了相关改良,使其能够最有效地应用于谷子抗锈病基因的研究中,构建了一套适合于谷子抗锈病基因研究的AFLP分子标记技术体系。
Millet rust is one of the most infectious fungus which affects yield of foxtail millet (Setaria italica (L.) Beauv). Therefore, breeding and using herbicide resistant varieties in agriculture production seems to be one of the most effective and economical methods to control Uromyces setariae-italicae (Diet) Yoshino so as to improve yield. According to this, scanning the linkage molecular markers and construct the genetic linkage map for millet rust resistance gene should be very important to isolate and use this resistant gene. It must be of great value for promoting the herbicide resistance breeding in foxtail millet.
     In this study, the parents, Shilixiang which shows high resitance to foxtail millet rust, Yugu1 which is highly susceptible to foxtail millet rust and their F2 progeny were used as experimental materials for the AFLP analysis of millet rust resistant gene.
     1. Modified CTAB method was used to extract DNA of foxtail millet, which meets AFLP requirements in high quantity. And then two restriction enzymes MseI and EcoRI were used to deal with the DNA of foxtail millet. AFLP analysis was conducted in the two parents and their F2 progeny. 92 out of the 270 pairs of randomly selected primers amplified the polymorphic bands.
     2. Three pairs (E-AAC/M-ATA,E-AAC/M-CGT and E-AC/M-CC) of 92 pairs which amplified the polymorphic bands, showed the same discriminating results in replications. The primers E-AAC/M-ATA,E-AAC/M-CGT and E-AC/M-CC produced fragments with the length of 188bp, 212bp and 176bp linked to rust resistant gene Rusi1 with the genetic distance of 9.2 cM, 9.8 cM and 12.4 cM. And then the three AFLP molecular markers were used to construct a genetic linkage map for millet rust resistance gene. The AFLP markers and the genetic linkage map would be facilitated the selection on millet rust resistant gene.
     3. Modified AFLP molecular marker technique was used in scanning the linkage molecular markers and construct the genetic linkage map for millet rust resistance. According to the already published documents which reported the use of AFLP molecular marker technique in other plants and the features of the DNA of foxtail millet, the factors that eventually affected the results in scanning the linkage molecular markers for millet rust resistance were discussed in details. And finally, a set of modified AFLP molecular marker technique was established, which is of great use in scanning the linkage molecular markers and construct the genetic linkage map for millet rust resistance.
引文
[1] Li Y,Wu S.Traditional maintenance and multiplication of foxtail millet (Setaria Italica (L) Beauv.) landrace in China[J].Euphytica,1996,87:33-38.
    [2] Purseglove J W.Tropical crops[M].London:Monocotyledons,1972.
    [3] Acheampong E,Anishetty N M,Willams J T.A world survey of sorghum and millets Germplasm[M].IBPGR,rome,1984.
    [4]蔡金星,刘秀风.论小米的营养及其食品开发[J].西部粮油科技,1999,24(1):38-39.
    [5]李荫梅.谷子育种学[J].北京农业出版社,1996.
    [6]廖建雄,王根轩.植物生理学报, 1999,24(1):64-68.
    [7] Nataraja,Raveendran,Appadurai.A path coefficient analysis of yield and yield components in proso millet[J].Plant genetics and breeding,1978,66(12):771-773.
    [8] Muthusamy,Padmanaban D.Effects of temperature and light on germination of urediniospores of the pearl millet rust pathogen,puccinia substriata var. indica[J].Plant Disease,1981,4:359-362.
    [9] Devos K M,Wang Z M,Beales J,et al.Comparative genetic maps of foxtail millet(Setraria italica) and rice (Oryza sativa)[J].Theoretical and Applied Genetics,1998,96(1):63-68.
    [10]叶绿丽.小杂粮产业发展前景及对策[J].榆林学报,2006,17(2):10-13.
    [11] Wang Z M,Devos K M,Liu C J,et al.Construction of RFLP-based maps of foxtail millet,(Setraria italica( L) Beauv)[J].Theoretical Applied Genetics,1998,96(1):31-36.
    [12] Li Y,Jia J Z,Wang Y R,et al.Intraspecefic and interspecific variation in Setraria revealed by RAPD analysis[J].Genetic Resources and Crop Evolution,1998,45: 279-285.
    [13] Austin DF. Foxtail millets abandoned food in two hemispheres[J].Econ Bot,2006, 60:143-158.
    [14] Reddy V,Upadhyaya,Gowda C.Characterization of world’s foxtail millet germplasm collections for morphological traits.Journal of SAT Agricultural Research,2006, 2:1-3.
    [15]梁克恭,刘维.谷子品种对粟锈病的抗性鉴定研究[J].植物保护,1995,21(6):16-18.
    [16]王斌,王召菊.谷子黑穗病田间接菌方式试验[J].山西农业科学,2007,35(4):73-74.
    [17]王雅儒,曹秀菊.谷子(粟)白发病抗病性研究[J].植物病理学报,1997,24(3):144-148.
    [18]王节之,郝晓芬.谷子花粉介导法转几丁质酶基因的研究[J].生物技术,2004, 14(5):5-6.
    [19] Marino A C,Nelson J C.Molecular genetic maps of the group 6 chromosomes of hexaploid wheat (Triticum aestivum L.em. Thell.)[J].Genome,1996,39:359-366.
    [20] Morgante M.Genetic mapping and variability of seven soybean simple sequencerepeat loci[J].Genome,1994,37:763-769.
    [21]董志平,马继芳.谷子品种及抗锈资源的RAPD分析.河北省科学院学报,1999, (3):282-285.
    [22]王珍海,谷子白发病的发生原因及防治对策.中国农村小康科技,2008,(2):53-55.
    [23]黎裕,贾继增,王天宇.分子标记的种类及其发展[J/OL].生物技术通报, http://www. -chinainfo.gov.cn/periodical/swjstblswjs./990405.html,1998-6-16.
    [24]相金英,王志民.谷子的品种鉴定与RFLP [J].邯郸农业高等专科学校学报,2008, (2):53-55.
    [25] Kawase M,Fukunaga K,Kato K.Diverse origins of waxy foxtail millet crops in East and Southeast Asia mediated by multiple transposable element insertions.Theoretical and Applied Genetics.2005,274:131-140.
    [26] Luis F Cabrita,Uygun Aksoy,Serra Hepaksoy,et al.Suitability of isozyme,RAPD and AFLP markers to assess genet ic differences and relatedness among fig (Ficus carica L. ) clones [J ].Scientific Horticulturae,2002, 87:26-29.
    [27] Liezel Herselman.Genetic variation among Southern African cultivated peanut genotypes as revealed by AFLP analysis [J]. Euphyt ica, 2003,133: 31-37.
    [28] BlearsM J,DeGrandis,SA.Lee H et al.Amplified fragment length polymorphism (AFLP) a review of the procedure and its applications [J].Microbiology, 1998, 21:49-54.
    [29] Raveendran TS.一个适合于印度泰米尔纳德地区的高产抗锈品种. Madras Agricultural Journal,,1979,66(12):771-773.
    [30] Muthusamy M.不同谷子品种对锈病的反应,印度国家作物抗病学术讨论会集.1981:33-34.
    [31] Kemp BP.Beedring JR,Cooper RM,cDNA-AFLP reveals genes differentially expressed during the hypersensitive response of cassava,Molecular Plant Pathology, 2005,6(2): 113-123.
    [32]董志平,赵兰波.谷锈菌生理分化及谷子抗锈性研究初报[J].河北农业大学学报, 1995,18(4):45-48.
    [33]董志平,李青松,高立起等,谷子纹枯病发生规律及影响因素[J].华北农学报, 2003, 18:103-107.
    [34]梁克恭.谷子品种对粟锈病抗性鉴定研究[J].植物保护,1995,21(6):17-18.
    [35]胡洪凯,王天宇.谷子(Setaria italica)显性雄性不育基因的发现[J].作物学报,1986, 12(2):73-78.
    [36]袁进成,石云素.谷子显性雄性不育基因Msch的AFLP标记[J].作物学报,2005, 31(10):1295-1299.
    [37]牛玉红,黎裕.谷子抗除草剂“拿捕净”基因的AFLP标记[J].作物学报,2002, 28(3):359-362.
    [38]李伟,智慧.适合于狗尾草属遗传分析的ISSR标记筛选及反应体系优化研究[J].华北农学报,2007,22(4):141-145.
    [39]陆朝福,朱立煌.植物育种中的分子标记辅助选择[J].生物工程进展,1995,15 (4):11-17.
    [40]万春玲,朱玉芳,谭远德,等.AFLP标记在研究家蚕遗传多样性方面的应用[J].生物技术,1999,9(5):4-9.
    [41]梁克恭,武小菲,刘维.粟锈病菌夏孢子生活力及寄主范围的研究[J].植物病理学报, 1999,24(1):90-94.
    [42]王晓武.甘蓝显性雄性不育基因的分子标记筛选及随机引物扩增DNA标记的建立[D].北京:中国农业科学院,1998.
    [43]吴晓雷,贺超英,陈受宜,等.用SSR分子标记研究大豆属种间亲缘进化关系[J].遗传学报,2001,28(4):359-366.
    [44]熊立仲,王石平,刘克德,等.微卫星DNA和AFLP标记在水稻分子标记连锁图上的分布[J].植物学报,1998,40(7):605-614.
    [45]何光华,裴炎,杨光伟,等.野败型杂交水稻恢复基因的AFLP标记研究[J].遗传学报, 2000,27(4):304-310.
    [46] Melchinger A E.分子标记在寡基因抗病育种中的应用[J].农业新技术新方法译丛,1991,39(4):1-5.
    [47] Brubaker C L.Reevaluaing the origin of domesticated cotton using nuclear restriction fragment length polymorphisms (RFLPs)[J].American Journal of Botany,1994, 81(10):1309-1326.
    [48] Kelly A.Use of genetic fingerprinting and random amplified polymorphic DNA to characterize pathotypes of Fusarium oxysporum fspciceris infecting chickpea[J]. Phytopathology,1994,84(11):1293-1298.
    [49] Vantoal T T,Peng J,Martin S K.Using AFLP markers to determine the genome contribution of parents to populations[J].Crop Sci,1997,37:1370-1373.
    [50] Devos K M,Pittaway T S,Reynolds A,et al.Comparative mapping reveals a complex relationship between the pearl millet genome and those of foxtail millet and rice[J].Theoretical and Applied Genetics,2000,100(2):190-198.
    [51] Krauss S L,Peakall R.An evaluation of the AFLP fingerprinting technique for the analysis of paternity i natural populations of persoonia mollis(proteacese) [J].Australian Journal of Botany,1998,46(3-4):533-546.
    [52] Helentjaris.Construction of genetic linkage maps in Maize and tomato using RFLP[J].Theoretical and Applied Genetics,1986,72:761-769.
    [53] Sun C Q,Wang X K,Li Z C,et al.Comparison of the genetic diversity of common wild rice (Oryza rufipogon Griff) and cultivated rice (O. Sativa L.) using RFLP markers[J].Genetics,2001,102(1):157-162.
    [54] Duval M F,Noyar J L,Perrier X,et al.Molecular diversity in ineapple assessed by RFLP markers [J].Theoretical and Applied Genetics,2001,102(1):83-90.
    [55] Estoup A,Presa P,Krieg F,et al.(CT) n and (GT) n microsatellites: a new class of genetic markers for salmo trutta L. (brown trout) [J].Heredity,1993,71:488-496.
    [56] Hearne C M,Ghosh S,Todd J A.Microsatellites for linkage analysis of genetic traits[J].Trends Genetics,1992,8:288-294.
    [57] Williams J G,Kubelik A K,Livak K J,et al.DNA polymorphisms amplified by arbitrary primers are useful as genetic markers[J].Nucleic Acid Research,1990,18(22): 6531-6535.
    [58] Schachermayr G.Identification of molecular markers linked to the Agropyron elongatum-derived leaf rust resistance gene Lr24 in wheat[J].Theoretical and Applied Genetics,1995,90:982-990.
    [59] Martin G B,Brommonschenkel S H,Chunwongse J,et al.Map based cloning of protein kinase gene conferring disease resistance in tomato[J].Science,1993,262:1432-1436.
    [60] Cenci A,Dovifio R,Tanzarella O M,et al.PCR markers linked to the Pml3 gene coding for resistance to powdery mildew in wheat[J].Saskatoon.Proc.9ath International Wheat Genetics Symp[C].Canada:University of Saskatchewan,1998,231-233.
    [61] Paran I,Michelmore R W.Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce[J].Theoretical and Applied Genetics,1993,85: 985-993.
    [62] Jacob H J,Lindpaintner K,Lincoln S E,et al.Genetic mapping of a gene causing hypertension in the stroke-prone spontaneously hypertensive rat[J].Cell,1991,67: 213-224.
    [63] Flores B E,Gentzbittel L,Kayyal H,et al.AFLP mapping of QTLs for in vitro organogenesis traits using recombinant inbred lines in suflower(Helianthus annuus L.)[J].Theoretical and Applied Genetics,2000,101(8):1299-1306.
    [64] Enuequin M,Panaud O,Toupance B,et al.Assessment of genetic relationships between Setaria italica and its wild relative S.viridis using AFLP markers[J].Theoretical and Applied Genetics,2000,100(7):1061-1066.
    [65] Litt M,Luty J A.A hypervariable microsatellite revealed by in vitro amplification of dinucleotide repeat within the cardiac muscle action Gene[J].Genomics,1989, 44:397-401.
    [66] Hazan J,Dubay C,Pankowiak M C,et al.A genetic linkage map of human chromosome 20 composed entirely of microsatellite markers[J]. Genomics, 1992,12: 183-189.
    [67] Dietrich W,Katz H,Lincoln S E,et al.A genetic map of the mouse suitable for typing intraspecific crosses[J].Genetics,1992,131:423-447.
    [68] Fu Y H,Kuhl D P,Pizzuti A,et al.Variation of the CGC repeat at the fragile X site results in genetic instability:resolution of the Sherman paradox[J].Cell,1991,67: 1047-1058.
    [69] Buchanan F C,Adams L J,Littlejohn R P,et al.Determination of evolutionary relationships among sheep breeds using microsatellites[J].Genomics, 1994,22:397- 403.
    [70] Schloetterer C,Amos B,Tautz D.Convertion of polymorphic simple sequence loci in cetacean species[J].Nature,1991,354:63-65.
    [71] Morgante M,Olivieri A M.PCR-amplified microsatellites as markers in plant genetics [J].Plant Journal,1993,3:175-182.
    [72] Akkaya M S,Bhagwat A A,Cregan P B.Length polymorphism of simple sequence repeat DNA in soybean[J].Genetics,1992,132:1131-1139.
    [73] Wu K S,Tanksly S D.Abundance polymorphism and genetic mapping of microsatellites in rice[J].Genomics,1993,241:225-235.
    [74] Saghai M M,Biyashev R M,Yang G P,et al.Extraordinarily polymorphic microsatellite DNA in barley: Species diversity chromosomal location and population dynamics[J]. Genomics,1994,91:546-5470.
    [75] Senior M L,Heun M.Mapping maize microsatellites and polymerase chain reaction confirmation of the tagged repeats using a CT primer[J].Genome,36:884-889.
    [76] Byran G J,Collins A J,Stephenson P,et al.Isolation and characterisation of microsatellites from hexaploid bread wheat[J].Theoretical and Applied Genetics,1997, 94:557-563.
    [77] Yang G P,Saghai M M,Xu C G,et al.Comparative analysis of microsatellite DNA polymorphism in landraces and cultivars of rice[J].Genomics,1994,245:187-194.
    [78] Roder M S,Plaschke S U,Konig A,et al.Abundance,variability and chromosomal location of microsatellites in wheat[J].Genomics,1995,246:327-333.
    [79] Estoup A,Presa P,Krieg F,et al.(CT) n and (GT) n microsatellites: a new class of genetic markers for salmo trutta L. (brown trout) [J].Heredity,1993,71:488-496.
    [80] Hearne C M,Ghosh S,Todd J A.Microsatellites for linkage analysis of genetic traits[J].Trends Genetics,1992,8:288-294.
    [81] Martin J P,Sanchez Y M.Genetic relationships among species of the genus Diplotaxis (Brassicaceae) using inter-simple sequence repeat markers[J].Theoretical and Applied Genetics,2000,101(8):1234-1241.
    [82] Cavan G,Potier V,Moss S R.Genetic diversity of weeds growing in continuous wheat[J].Weed Research,2000,40(3):301-310.
    [83] Nagaoka T,Ogihara Y.Applicability of inter-simple sequence repeart polymorphisms in wheat for use as DNA markers in comparison to RFLP and RAPD markers[J]. Theoretical and Applied Genetics,1994,597-602.
    [84] Staub J E,Serquen F C,Gupta M.Genetic markers,map construction,and their application in plant breeding[J].HortScience,1996,31(5):729-741.
    [85] Zabeau M,Vos P.Selective restriction fragment amplification: a general method forDNA fingerprinting[J].Genomics,1993.1405.
    [86] Vos P,Hogers R,Bleeder M.A new technique for DNA fingerprinting[J].Nucleic Acids Research,1995,23(21):4407-4414.
    [87] Vogel J M,Powell W,Rafalski A.Application of genetic diagnostics to plant genome analysis and plant breeding[J].Hort science,1996,31(7):1107-1108.
    [88] Vuylsteke M,Mark R,Antonise R,et al.Two high-density AFLP(R) linkage maps of Zea mays L.:analysis of distribution of AFLP markers[J].Theoretical and Applied Genetics,1999,99(6):921-935.
    [89] Enuequin M,Panaud O,Toupance B,et al.AFLP mapping in foxtail millet in the context of comparative mapping of domestication genes in cereals[C].Genomics, 1999,17-21.
    [90] Keim P,Schupp J M,Travis S E,et al.A high density soybean genetic map based on AFLP markers[J].Crop Science,1997,37(2):537-543.
    [91] Cato S A,Corbett G E,Richardson T E.Evaluation of AFLF for genetic mapping in Pinus radiata D. Don[J].Molecular Breeding,1999,5:275-281.
    [92] Colwyn M T,Vos P,Zabeau M,et al.Identification of amplified restriction fragment polymorphism (AFLP) markers tightly linked to the tomato Cf-9 gene for resistance to Cladosporium fulvum[J].The Plant Journal,1995,8(5):785-794.
    [93] Cervera M T,Steenackers N.AFLP molecular markers for resistance to melampsora larici populina in poplar[J].Molecular and General Genetics,1996,1:142-150.
    [94] Qi X,Lindhout P.Development of AFLP markers in barley[J].Molecular and General Genetics,1997,254(3):330-336.
    [95] Meksem K,Leister D,Peleman J,et al.A high-resolution map of the vicinity of the Rl locus on chromosome V of potato based on RFLP and AFLP markers[J].Molecular and General Genetics,1995,249:74-81.
    [96] Van D V.Mapping of the cyst nematode resistance locus Gpa2 in potato using a strategy based on comigrating AFLP markers[J].Theoretical and Applied Genetics, 1997,95(5-6):874-880.
    [97] Paran I,Michelmore R.Development of reliable PCR-based markers linked downy mildews resistance genes in lettuce[J].Genetics,1993,85:985-993.
    [98] Angiolillo A,Mencuccini M,Baldoni L.Olive genetic diversity assessed using amplified fragment length polymorphisms[J].Theoretical and Applied Genetics,1999, 98(3-4):411-421.
    [99] Maughan P J,Marouf A S, Buss G. R,Huestis,G. M.Amplified fragment length polymorphism (AFLP) in soybean: species diversity,inheritance,and near-isogenic line analysis,Theoretical and Applied Genetics,1996, 93, 392-401.
    [100]Sandal N,Krusell L,Radutoiu S,et al. A genetic linkage map of the model legume Lotus japonicus and strategies for fast mapping of new loci. Genetics,2002, 161,1673-1683.
    [101]Meksem K, Ruben E,Hyten D,Triwitayakorn K,Lightfoot D A.Conversion of AFLP bands into high-throughput DNA markers.Genetics,2001,265,207-214.
    [102]Cabrita L F,Aksoy U,Hepaksoy S,Leit?o J M.Suitability of isozyme,RAPD and AFLP markers to assess genetic differences and relatedness among fig (Ficus carica L.) clones.Scientia Horticulturae, 2001,87(4):261-273.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700